

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Reinforcement Learning: MDPs + Value Iteration

Matt Gormley Lecture 22 Apr. 5, 2023

Reminders

- Homework 7: HMMs
 - Out: Fri, Apr. 1
 - Due: Tue, Apr. 12 at 11:59pm
 - (Re-released handout on Monday.)
- Course Evaluation Poll
 - in/lieu of Exam 2: Exit Poll

MARKOV DECISION PROCESSES

RL: Components

From the Environment (i.e. the MDP)

- State space, *S*
- Action space, *A*
- Reward function, R(s, a), $R : S \times A \rightarrow \mathbb{R}$
- Transition probabilities, p(s' | s, a)
 - Deterministic transitions:

$$p(s' \mid s, a) = \begin{cases} 1 \text{ if } \delta(s, a) = s \\ 0 \text{ otherwise} \end{cases}$$

where $\delta(s, a)$ is a transition function

From the Model

- Policy, $\pi : S \to A$
- Value function, $V^{\pi}: S \to \mathbb{R}$
 - Measures the expected total payoff of starting in some state s and executing policy π

Markov Assumption $p(s_{t+1} \mid s_t, a_t, \dots, s_1, a_1)$ $= p(s_{t+1} \mid s_t, a_t)$

Markov Decision Process (MDP)

 For supervised learning the PAC learning framework provided assumptions about where our data came from:

$$\mathbf{x} \sim p^*(\cdot)$$
 and $y = c^*(\cdot)$

 For reinforcement learning we assume our data comes from a Markov decision process (MDP)

Markov Decision Processes (MDP)

In RL, the source of our data is an MDP:

- 1. Start in some initial state $s_0 \in S$
- 2. For time step *t*:
 - 1. Agent observes state $s_t \in S$
 - 2. Agent takes action $a_t \in \mathcal{A}$ where $a_t = \pi(s_t)$
 - 3. Agent receives reward $r_t \in \mathbb{R}$ where $r_t = R(s_t, a_t)$
 - 4. Agent transitions to state $s_{t+1} \in S$ where $s_{t+1} \sim p(s' | s_t, a_t)$
- 3. Total reward is $\sum_{t=0}^{\infty} \gamma^t r_t$
 - The value γ is the "discount factor", a hyperparameter $0 < \gamma < 1$
- Makes the same Markov assumption we used for HMMs! The next state only depends on the current state and action.
- *Def.*: we **execute** a policy π by taking action $a = \pi(s)$ when in state s

RL: Objective Function

• Goal: Find a policy $\pi : S \to \mathcal{A}$ for choosing "good" actions that maximize: $\mathbb{E}[\text{total reward}] = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t r_t\right] = \underbrace{\sum_{t=0}^{\infty} \gamma^t r_t}_{t=0}$

• Can we define other notions of optimality?

EXPLORATION VS. EXPLOITATION

MDP Example: Multi-armed bandit

K= 3 = # af arms

Single state: |S| = 1Three actions: $A = \{1, 2, 3\}$ Deterministic transitions Rewards are stochastic

MDP Example: Multi-armed bandit

Single state: |S| = 1Three actions: $A = \{1, 2, 3\}$ Deterministic transitions Rewards are stochastic

Bandit 1	Bandit 2	Bandit 3	
1	2	1	
1	0	0	
???	0	3	
???	0	2	
???	0	4	
???	5	2	
???	???	1	
???	???	???	
???	???	???	
???	???	???	
???	???	???	
???	???	???	

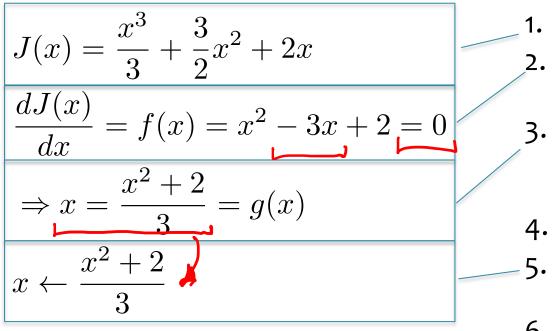
FIXED POINT ITERATION

- Fixed point iteration is a general tool for solving systems of equations
- It can also be applied to optimization.

$$\begin{split} &J(\boldsymbol{\theta})\\ &\frac{dJ(\boldsymbol{\theta})}{d\theta_i} = 0 = f(\boldsymbol{\theta})\\ &0 = f(\boldsymbol{\theta}) \Rightarrow \theta_i = g(\boldsymbol{\theta})\\ &\theta_i^{(t+1)} = g(\boldsymbol{\theta}^{(t)}) \end{split}$$

- 1. Given objective function:
- 2. Compute derivative, set to zero (call this function f).
- Rearrange the equation s.t. one of parameters appears on the LHS.
- 4. Initialize the parameters.
- 5. For *i* in *{1,...,K}*, update each parameter and increment *t*:
- 6. Repeat #5 until convergence

- Fixed point iteration is a general tool for solving systems of equations
- It can also be applied to optimization.



- Given objective function:
- Compute derivative, set to zero (call this function f).
- Rearrange the equation s.t. one of parameters appears on the LHS.
- 4. Initialize the parameters.
- 5. For *i* in *{1,...,K}*, update each parameter and increment *t*:
- 6. Repeat #5 until convergence

We can implement our example in a few lines of python.

$$J(x) = \frac{x^3}{3} + \frac{3}{2}x^2 + 2x$$
$$\frac{dJ(x)}{dx} = f(x) = x^2 - 3x + 2 = 0$$
$$\Rightarrow x = \frac{x^2 + 2}{3} = g(x)$$
$$x \leftarrow \frac{x^2 + 2}{3}$$

def f1(x): '''f(x) = $x^2 - 3x + 2'''$ return $x^{**2} - 3 \cdot x + 2$.

```
def g1(x):
    '''g(x) = \frac{x^2 + 2}{3}'''
    return (x**2 + 2.) / 3.
```

```
def fpi(g, x0, n, f):
    '''Optimizes the 1D function g by fixed point iteration
    starting at x0 and stopping after n iterations. Also
    includes an auxiliary function f to test at each value.'''
    x = x0
    for i in range(n):
        print("i=%2d x=%.4f f(x)=%.4f" % (i, x, f(x)))
        x = g(x)
    i += 1
    print("i=%2d x=%.4f f(x)=%.4f" % (i, x, f(x)))
    return x
```

$$J(x) = \frac{x^3}{3} + \frac{3}{2}x^2 + 2x$$

$$\frac{dJ(x)}{dx} = f(x) = x^2 - 3x + 2 = 0$$

$$\Rightarrow x = \frac{x^2 + 2}{3} = g(x)$$

$$x \leftarrow \frac{x^2 + 2}{3}$$

\$ python fixed-point-iteration.py
i=
$$0 \times = 0.0000 \text{ f}(x) = 2.0000$$

i= $1 \times = 0.6667 \text{ f}(x) = 0.4444$
i= $2 \times = 0.8148 \text{ f}(x) = 0.2195$
i= $3 \times = 0.8880 \text{ f}(x) = 0.1246$
i= $4 \times = 0.9295 \text{ f}(x) = 0.0755$
i= $5 \times = 0.9547 \text{ f}(x) = 0.0474$
i= $6 \times = 0.9705 \text{ f}(x) = 0.0304$
i= $7 \times = 0.9806 \text{ f}(x) = 0.0130$
i= $9 \times = 0.9915 \text{ f}(x) = 0.0038$
i= $10 \times = 0.9944 \text{ f}(x) = 0.0038$
i= $12 \times = 0.9963 \text{ f}(x) = 0.0038$
i= $12 \times = 0.9975 \text{ f}(x) = 0.0017$
i= $14 \times = 0.9983 \text{ f}(x) = 0.0017$
i= $15 \times = 0.9993 \text{ f}(x) = 0.0001$
i= $17 \times = 0.9995 \text{ f}(x) = 0.0003$
i= $18 \times = 0.9998 \text{ f}(x) = 0.0001$
i= $19 \times = 0.9999 \text{ f}(x) = 0.0001$
i= $20 \times = 0.9999 \text{ f}(x) = 0.0001$

VALUE ITERATION

Definitions for Value Iteration

Whiteboard

- Optimal policy
- State trajectory
- Value function
- Bellman equations
- Optimal value function
- Computing the optimal policy
- Ex: Path Planning

Example: Path Planning

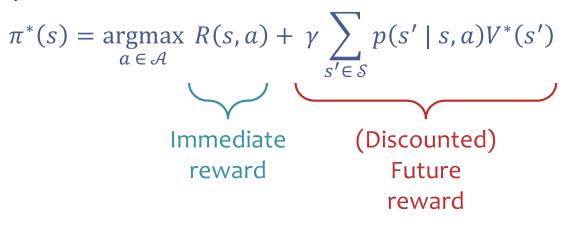
RL: Optimal Value Function & Policy

• Optimal value function:

$$V^*(s) = \max_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s')$$

- System of |S| equations and |S| variables

• Optimal policy:



RL Terminology SKTP

Question: Match each term (on the left) to the corresponding statement or definition (on the right)

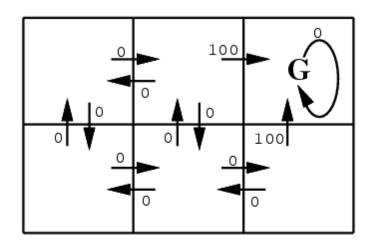
Terms:

- A. a reward function
- B. a transition probability
- C. a policy
- D. state/action/reward triples
- E. a value function
- F. transition function
- G. an optimal policy
- H. Matt's favorite statement

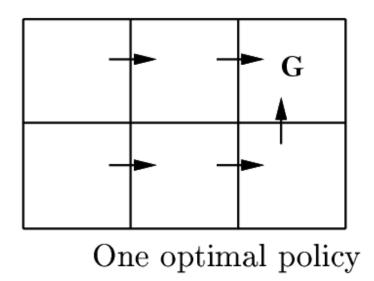
Statements:

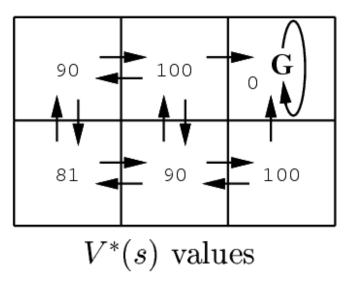
- 1. gives the expected future discounted reward of a state
- 2. maps from states to actions
- 3. quantifies immediate success of agent
- 4. is a deterministic map from state/action pairs to states
- 5. quantifies the likelihood of landing a new state, given a state/action pair
- 6. is the desired output of an RL algorithm
- 7. can be influenced by trading off between exploitation/exploration

Example: Robot Localization



r(s, a) (immediate reward) values





Value Iteration

Whiteboard

– Value Iteration Algorithm

Value Iteration

Algorithm 1 Value Iteration

- 1: **procedure** VALUEITERATION (R(s, a) reward function, $p(\cdot|s, a)$ transition probabilities)
- 2: Initialize value function V(s) = 0 or randomly
- 3: while not converged do
- 4: for $s \in \mathcal{S}$ do

5:
$$V(s) = \max_{a} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V(s')$$

6: Let
$$\pi(s) = \operatorname{argmax}_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V(s'), \forall s$$

7: return π

Variant 1: without Q(s,a) table

Value Iteration

Algorithm 1 Value Iteration

- 1: **procedure** VALUEITERATION(R(s, a) reward function, $p(\cdot|s, a)$ transition probabilities)
- 2: Initialize value function V(s) = 0 or randomly
- 3: while not converged do
- 4: for $s \in \mathcal{S}$ do
- 5: for $a \in \mathcal{A}$ do

6:
$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s,a) V(s')$$

7:
$$V(s) = \max_a Q(s, a)$$

8: Let
$$\pi(s) = \operatorname{argmax}_a Q(s, a), \ \forall s$$

9: return π

Variant 2: with Q(s,a) table

Synchronous vs. Asynchronous Value Iteration

Algorithm 1 Asynchronous Value Iteration

- 1: procedure AsynchronousValueIteration(R(s, a), $p(\cdot|s, a)$)
- 2: Initialize value function V(s) = 0 or randomly
- 3: while not converged do
- 4: for $s \in \mathcal{S}$ do

5:
$$V(s) = \max_{a} R(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, a) V(s')$$

6: Let
$$\pi(s) = \operatorname{argmax}_a R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V(s'), \forall s$$

7: return π

asynchronous updates: compute and update V(s) for each state one at a time

Algorithm 1 Synchronous Value Iteration

1: procedure SYNCHRONOUSVALUEITERATION($R(s, a), p(\cdot|s, a)$) Initialize value function $V(s)^{(0)} = 0$ or randomly 2: t = 03: while not converged do 4: for $s \in S$ do 5: $V(s)^{(t+1)} = \max_{a} R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V(s')^{(t)}$ 6: t = t + 17: Let $\pi(s) = \operatorname{argmax}_{a} R(s, a) + \gamma \sum_{s' \in S} p(s'|s, a) V(s'), \ \forall s$ 8: return π 9:

synchronous updates: compute all the fresh values of V(s) from all the stale values of V(s), then update V(s) with fresh values

Value Iteration Convergence

very abridged

Theorem 1 (Bertsekas (1989)) V converges to V^* , if each state is visited infinitely often

Theorem 2 (Williams & Baird (1993)) if $max_s |V^{t+1}(s) - V^t(s)| < \epsilon$ then $max_s |V^{t+1}(s) - V^*(s)| < \frac{2\epsilon\gamma}{1-\gamma}, \forall s$ Holds for both asynchronous and sychronous updates

Provides reasonable stopping criterion for value iteration

Theorem 3 (Bertsekas (1987)) greedy policy will be optimal in a finite number of steps (even if not converged to optimal value function!)

Often greedy policy converges well before the value function