
Reinforcement Learning:
MDPs

+
Value Iteration

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 22

Apr. 5, 2023

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 7: HMMs
– Out: Fri, Apr. 1
– Due: Tue, Apr. 12 at 11:59pm
– (Re-released handout on Monday.)

• Course Evaluation Poll
– in lieu of Exam 2: Exit Poll

4

MARKOV DECISION PROCESSES

6

RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎 , 𝑅 ∶ 𝒮 × 𝒜 → ℝ
• Transition probabilities, 𝑝 𝑠! 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠! 𝑠, 𝑎) = .1 if 𝛿 𝑠, 𝑎 = 𝑠′
0 otherwise

where 𝛿 𝑠, 𝑎 is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉": 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and
executing policy 𝜋

7

Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)

Markov Decision Process (MDP)

• For supervised learning the PAC learning
framework provided assumptions about
where our data came from:

• For reinforcement learning we assume our
data comes from a Markov decision process
(MDP)

8

Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state 𝑠# ∈ 𝒮
2. For time step 𝑡:

1. Agent observes state 𝑠$ ∈ 𝒮
2. Agent takes action 𝑎$ ∈ 𝒜 where 𝑎$ = 𝜋 𝑠$
3. Agent receives reward 𝑟$ ∈ ℝ where 𝑟$ = 𝑅 𝑠$, 𝑎$
4. Agent transitions to state 𝑠$%& ∈ 𝒮 where 𝑠$%& ∼ 𝑝 𝑠! 𝑠$, 𝑎$)

3. Total reward is ∑$'#(𝛾$𝑟$
– The value 𝛾 is the “discount factor”, a hyperparameter 0 < 𝛾 < 1

• Makes the same Markov assumption we used for HMMs! The next state
only depends on the current state and action.

• Def.: we execute a policy 𝜋 by taking action 𝑎 = 𝜋 𝑠 when in state 𝑠

9

RL: Objective Function
• Goal: Find a policy 𝜋 ∶ 𝒮 → 𝒜 for choosing “good” actions that

maximize:

𝔼 total reward = 𝔼 I
$'#

(

𝛾$𝑟$

• The above is called the
“finite horizon expected future discounted reward”

• Can we define other notions of optimality?

10

EXPLORATION VS. EXPLOITATION

12

MDP Example:
Multi-armed bandit

13

•Single state: 𝒮 = 1
•Three actions: 𝒜 = 1, 2, 3
•Deterministic transitions
•Rewards are stochastic

MDP Example:
Multi-armed bandit

Bandit 1 Bandit 2 Bandit 3

1 2 1

1 0 0

1 0 3

1 0 2

0 0 4

1 5 2

0 0 1

1 5 4

1 0 0

1 5 3

1 0 3

0 5 1

1411/14/22

•Single state: 𝒮 = 1
•Three actions: 𝒜 = 1, 2, 3
•Deterministic transitions
•Rewards are stochastic ???

???

???

???

???

???

???

???

???

???

???

???

??????

???

???

???

???

???

???

???

???

???
???

?????????

???

???

???

???

???

???

???

???

???

FIXED POINT ITERATION

18

Fixed Point Iteration for Optimization
• Fixed point iteration is a general tool for solving systems of

equations
• It can also be applied to optimization.

19

1. Given objective function:
2. Compute derivative, set to

zero (call this function f).
3. Rearrange the equation s.t.

one of parameters appears on
the LHS.

4. Initialize the parameters.
5. For i in {1,...,K}, update each

parameter and increment t:
6. Repeat #5 until convergence

J(✓)

dJ(✓)

d✓i
= 0 = f(✓)

0 = f(✓)) ✓i = g(✓)

✓(t+1)
i = g(✓(t))

Fixed Point Iteration for Optimization
• Fixed point iteration is a general tool for solving systems of

equations
• It can also be applied to optimization.

20

1. Given objective function:
2. Compute derivative, set to

zero (call this function f).
3. Rearrange the equation s.t.

one of parameters appears on
the LHS.

4. Initialize the parameters.
5. For i in {1,...,K}, update each

parameter and increment t:
6. Repeat #5 until convergence

J(x) =
x3

3
+

3

2
x2 + 2x

dJ(x)

dx
= f(x) = x2 � 3x+ 2 = 0

) x =
x2 + 2

3
= g(x)

x x2 + 2

3

Fixed Point Iteration for Optimization
We can implement our
example in a few lines of
python.

21

J(x) =
x3

3
+

3

2
x2 + 2x

dJ(x)

dx
= f(x) = x2 � 3x+ 2 = 0

) x =
x2 + 2

3
= g(x)

x x2 + 2

3

Fixed Point Iteration for Optimization

22

$ python fixed-point-iteration.py
i= 0 x=0.0000 f(x)=2.0000
i= 1 x=0.6667 f(x)=0.4444
i= 2 x=0.8148 f(x)=0.2195
i= 3 x=0.8880 f(x)=0.1246
i= 4 x=0.9295 f(x)=0.0755
i= 5 x=0.9547 f(x)=0.0474
i= 6 x=0.9705 f(x)=0.0304
i= 7 x=0.9806 f(x)=0.0198
i= 8 x=0.9872 f(x)=0.0130
i= 9 x=0.9915 f(x)=0.0086
i=10 x=0.9944 f(x)=0.0057
i=11 x=0.9963 f(x)=0.0038
i=12 x=0.9975 f(x)=0.0025
i=13 x=0.9983 f(x)=0.0017
i=14 x=0.9989 f(x)=0.0011
i=15 x=0.9993 f(x)=0.0007
i=16 x=0.9995 f(x)=0.0005
i=17 x=0.9997 f(x)=0.0003
i=18 x=0.9998 f(x)=0.0002
i=19 x=0.9999 f(x)=0.0001
i=20 x=0.9999 f(x)=0.0001

J(x) =
x3

3
+

3

2
x2 + 2x

dJ(x)

dx
= f(x) = x2 � 3x+ 2 = 0

) x =
x2 + 2

3
= g(x)

x x2 + 2

3

VALUE ITERATION

23

Definitions for Value Iteration

Whiteboard
– Optimal policy
– State trajectory
– Value function
– Bellman equations
– Optimal value function
– Computing the optimal policy
– Ex: Path Planning

24

Example: Path Planning

25

RL: Optimal Value Function & Policy
• Optimal value function:

𝑉∗ 𝑠 = max
" ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 1
%!∈ 𝒮

𝑝 𝑠' | 𝑠, 𝑎 𝑉∗ 𝑠'

– System of 𝒮 equations and 𝒮 variables

• Optimal policy:

𝜋∗ 𝑠 = argmax
" ∈𝒜

𝑅 𝑠, 𝑎 + 𝛾 1
%!∈ 𝒮

𝑝 𝑠' | 𝑠, 𝑎 𝑉∗ 𝑠'

26

Immediate
reward

(Discounted)
Future
reward

RL Terminology

Terms:
A. a reward function
B. a transition probability
C. a policy
D. state/action/reward triples
E. a value function
F. transition function
G. an optimal policy
H. Matt’s favorite statement

27

Statements:
1. gives the expected future

discounted reward of a state
2. maps from states to actions
3. quantifies immediate success of

agent
4. is a deterministic map from

state/action pairs to states
5. quantifies the likelihood of landing

a new state, given a state/action
pair

6. is the desired output of an RL
algorithm

7. can be influenced by trading off
between exploitation/exploration

Question: Match each term (on the left) to the
corresponding statement or definition (on the right)

Example: Robot Localization

28

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Figure from Tom Mitchell

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Tom Mitchell, April 2011

Immediate rewards r(s,a)

State values V*(s)

Value Iteration

Whiteboard
– Value Iteration Algorithm

29

Value Iteration

30

Variant 1: without Q(s,a) table

Value Iteration

31

Variant 2: with Q(s,a) table

Synchronous vs. Asynchronous
Value Iteration

32

asynchronous
updates: compute
and update V(s) for
each state one at a
time

synchronous
updates: compute all
the fresh values of
V(s) from all the stale
values of V(s), then
update V(s) with
fresh values

Algorithm 1 Asynchronous Value Iteration
1: procedure AĘĞēĈčėĔēĔĚĘVĆđĚĊIęĊėĆęĎĔē(R(s, a), p(·|s, a))
2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π

Value Iteration Convergence

33

Provides
reasonable

stopping criterion
for value iteration

Often greedy policy
converges well

before the value
function

Holds for both
asynchronous and

sychronous
updates

very abridged

