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Reminders

* Homework 8: Reinforcement Learning
— Out: Mon, Apr. 10
— Due: Fri, Apr. 21 at 11:59pm




Playing Atari games with Deep RL
L = u

Source: https://www.youtube.com/watch?v=VieYniJoRnk&t=2s&ab_channel=TwoMinutePapers




DIMENSIONALITY REDUCTION



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)




Data

Imension

High D

Examples of high dimensional data

— Multilingual News Stories

(vocabulary of hundreds of thousands of words)
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High Dimension Data

Examples of high dimensional data:
— Brain Imaging Data (100s of MBs per scan)

Subject Object
Image from (Wehbe et al., 2014)
10

Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/



High Dimension Data

Examples of high dimensional data:

— Customer Purchase Data
‘ w NEW & INTERESTING FINDS ON AMAZON { - [ “’ §/

amazon

Hello, Matt
Departments ~ Browsing History ~  Matt's Amazon.com Cyber Monday Gift Cards & Registry Sell Help Your Account ~

Your Amazon.com  Your Browsing History ~ Recommended For You  Improve Your Recommendations ~ Your Profile  Learn More

'S You could be seeing useful stuff here!
e :
Amazon Sign in to get your order status, balances and rewards.

Recommended for you, Matt

(= Lo 1\ S

Grocery Pets ) . Baby Products Engineering Books
14 ITEMS 6 ITEMS 5 ITEMS 86 ITEMS



Learning Representations

Dimensionality Reduction Algorithms:

Powerful (often unsupervised) learning techniques for extracting
hidden (potentially lower dimensional) structure from high
dimensional datasets.

Examples:

PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, Matrix
Factorization

Useful for:
* Visualization

* More efficient use of resources (e.g., time, memory,
communication)

 Statistical: fewer dimensions = better generalization
* Noise removal (improving data quality)

Slide adapted from Nina Balcan



Shortcut Example

16
Photo from https://www.springcarnival.org/booth.shtml



Shortcut Example

https://youtu.be/606396EJcJo?t=20



https://youtu.be/606396EJcJo?t=20

This section in one slide...

1. Dimensionality reduction: 2. Random Projection:
J KxM
1 ® CD Paﬂioa,7 S‘-"‘“f“' M“Ln.x \/e K
1° -e ’—@) Pm]e(:l‘ AMJA B T\)LJ & V)‘Z(’)
> @ ® ® A A o S ST
4. Algorithm for PCA:

3. Definition of PCA: The option we’ll focus on:

Choose the matrix V that either...

1. minimizes reconstruction error

2. consists of the K eigenvectors with
largest eigenvalue

Run Singular Value
Decomposition (SVD) to
obtain all the eigenvectors.
Keep just the top-K to form V.

Play some tricks to keep
The above are equivalent definitions. things efficient.

5. An Example

e




DIMENSIONALITY REDUCTION BY
RANDOM PROJECTION



Random Projection

2D input data
Goal: project from M-dimensions down A «(© VER®

Example: 2D to 1D

to K-dimensions »
55 QX
Data: @
/ x(5)
D = {x(1N  where x() ¢ RM ~
1 O
Algorithm: O
1. Randomly sample matrix: V € R&*xM ©
Viem ~ Gaussian(0, 1)
2. Project down: u® = v xO
N N N
Kx1 KxMMx1
: _
. Projectup: XV = VT ul® = vT(vx{)
3 l px’ =LV u’ ( ) o ( <
Mx1 — MxKKXxI1 1D projection on(;{) the real line
u(‘)é].]-Q ‘u(Z) u(3)7 u®@) uG) ye)

- -1©- -0 -0/ -0 -I-0/0-

-2 -0 O I 2



Random Projection
Example: 2D to 1D

a
2D input da
Goal: project from M-dimensions down A V ER™
to K-dimensions é\.

Data:
D = {x(1N  where x() ¢ RM

Algorithm:

I
|
|
>
1. Randomly sample matrix: V ¢ RE*M M.
|
|

Viem ~ Gaussian(0, 1)

2. Project down: ul = Vv
—~— ~—~ ~
Kx1 KxMMx1

. | | L >
3. Projectup: x'9 = VT u® = vT(vx®) X
S
M x1 MxKKx1

Problem: a random projection might give
us a poor low dimensional
representation of the data



Johnson-Lindenstrauss Lemma

. But how could we ever hope to preserve any useful information
by randomly projecting into a low-dimensional space?

Even random projection enjoys some surprisingly impressive properties.
In fact, a standard of the J-L lemma starts by assuming we have a random
linear projection obtained by sampling each matrix entry from a

Gaussian(0,1).

An Elementary Proof of a Theorem of
Johnson and Lindenstrauss

Sanjoy Dasgupta,’ Anupam Gupta®

ABSTRACT: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high
dimensional Euclidean s can be mapped into an O(log n/ 62)-dimensionai Eucﬁﬁm%.
mﬁn-cmvﬁ two points changes bym of (1 * €). In this note, we prove
this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct.
Alg., 22: 60-65, 2002

http://www.cs.cmu.edu/~anupamg/papers/jl.pdf



DEFINITION OF PRINCIPAL
COMPONENT ANALYSIS (PCA)



Principal Component Analysis (PCA)

* Assumption: the data ——
lies on a low K- e
dimensional linear
subspace

* Goal: identify the axes _
of that subspace, and a e

nd principal
component

project each point
onto hyperplane

* Algorithm: find the K
eigenvectors with
largest eigenvalue
using classic matrix
decomposition tools

24
https://commons.wikimedia.org/wiki/File:Scatter _diagram_for_quality characteristic XXX.svg



Data for PCA

(<)

D = {x1 V. (x(2)T

X(Z) c RM .
(xNT

We assume the data is centered,
l.e. the sample mean is zero

1
N — E () —
pn = i:1x =0

Q: What if A: Subtract off the sample mean

your data is (i - A
not centered? 70 = 540 p, Vi



Background: Sample Variance

Suppose we have a sequence of random samples {z() ... z(M)}
from a random variable X.
The (biased) sample variance 62 is given by:

N
/\2_

1 |
— (0) _ 7)2

1=1

where [i is the sample mean.



Sample Covariance Matrix

The sample covariance matrix Y. & [P X
—a

s given by: N 255 ~ 7\\7 2 (x4, )
Yijk = %Z(}ﬂgz) — ﬁg;)(f;(:) — ﬁﬁ)
Since the data ngsrix is centered, we rewrite as:
$ = LXTX gg;i;
N X = .

(=)



Principal Component Analysis (PCA)

Linear Projection: /

. . (— W,
Given KxM matrix V, and Mx1 V= | —g—
vector x() we obtain the Kx1 :
projection u® by: il

u(i) =V x(i)

Definition of PCA:

PCA repeatedly chooses a next vector v; that
s.t.v;is orthogonal to vy, Vy,eesy Vs

Vector v; is called the jth principal component.

Notice: Two vectors a and b are orthogonal if a'b = o. v
=>»the K-dimensions in PCA are uncorrelated



Vector Projection

[Recll: Prjecny
X ‘!E ﬂoj‘“- 05 t(:aec‘l"bn 5;5’( O'A'o —\7
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Principal Component Analysis (PCA)

Whiteboard
— Objective functions for PCA



Projection Example

Question:

Below are two plots of the same dataset D. Consider the
two projections shown.

&11- Which maximizes the variance? SS%ALIS%(

&22. Which minimizes the reconstruction errar? C= {"”“C
[0% /Z"/O"/ol

Answer:

Option_B_

AP )



PCA Objective Functions

What is the first principal component v, chosen by PCA?

Option 1: The vector that minimizes the reconstruction error

N
1 . |
Vi = argmin N E ||X(%) _ (VTX(z))VHQ

vi||v|[?=1 i=1

Option 2: The vector that maximizes the variance

N
1 |
V] = argmax — E (vIx(¥))?

vi|v|[?=1 i—=1



Equivalence of Maximizing PCA

Variance and Minimizing
Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
[x® — (x| = |[xD[]? - (vIx?)? (1)

L_ S E— .\
since viv = ||v]|* = 1.
L_‘-' %

comm——

Substituting into the minimization prQblem, and removing the extra-
neous terms, we obtain the maximizatign problem.

NLo , \
vent iy f&ﬁp,znxw EOME @)
vi|v]|2=1
_ . 1 VTx )2
Vﬁ%ﬁzmlzv?}. >

— argmax — Z( Tx (@) ] Verien (4)

vi||v|[P=1 Y ;4




PCA Objective Functions

What is the first principal component v, chosen by PCA?

- o )
Option 1: The vector that minimizes the recc Queﬁtlon- Why can t
we just use gradient

N
v, = argmin 1 ST x® — (vT descent to find the
vi|lvlz=1 N = principal

components?

Option 2: The vector that maximizes the variance

N
1 .
V] = argmax — E (vIx(9))2

vi||v]|2=1 i—1



Principal Component Analysis (PCA)

Linear Projection: -~ {‘/1'_
Given KxM matrix V, and Mx1 V= | —¢
vector x() we obtain the Kx1
projection u® by:

u(i) — Vx(i)

Question Why can’t
, We just use gradient
““Vu descent to nind the
principal
components?

Definition of PCA:

PCA repeatedly chooses a next vector v; that
s.t.vjis orthogonal to v, V... Vis.

Vector v; is called the jth principal component.

Notice: Two vectors a and b are orthogonal if a'b = o.
=>»the K-dimensions in PCA are uncorrelated



Background:
Eigenvectors & Eigenvalues

For a square matrix A (n x n matrix), the
vector v (n x 1 matrix) is an eigenvector
iff there exists eigenvalue A (scalar)

al
such that: NPSRVIE L R
K i?wo;w‘ ©
Av = Av Hor
¢ Av = Av

The linear transformation A is only
stretching vectorv.

That is, Av is a scalar multiple of v.




Background:
Eigenvectors & Eigenvalues

Fact #1: The eigenvectors of a symmetric
matrix are orthogonal to each other.

Fact #2: The covariance matrix X is
symmetric.



The First
Principal
Component

Claim: The vector that maximizes the variances is the
eigenvector of 3 with largest eigenvalue.

Proof Sketch: To find the first principal component, we
wish to solve the following constrained optimization
problem (variance minimization).

Ife=vv =1V -1=0

PCA

Recall: For a square matrix A, the vector v is an eigen-
vector iff there exists eigenvalue \ such that:

Av =)\v (6)

Rewriting the objective of the maximization shows that
not only will the optimal vector v; be an eigenvector,

: it will be one with maximal eigenvalue.
\ g Zv ='hv
So we turn to the method of Lagrange multipliers. The visv = viv 7)

Lagrangian is:

LV,\) =vIZv - Aviv-1) (2)

Taking the derivative of the Lagrangian and setting to
zero gives:

d
— (vI'Ev - Av'v-1)) =0 (3)
dv

Yv=J\v (5)

= )\va (8)
= X||v]|* (9)
= A (10)



Principal Component Analysis (PCA)

Thus, the eigenvalue A denotes thsﬂ(m__nt’qfﬁ\ﬂgl_aﬂjty
captured along that dimension (aka amount of energy along that

dimension).

Slide from Nina Balcan




ALGORITHMS FOR PCA



Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?

E Power iteration (aka. Von Mises iteration)
— finds each principal component one at a time in order

» Singular Value Decomposition (SVD)
— finds all the principal components at once
— two options: M*M

« Option A: run SVD on X™X &
e OptionB:irunSVD on X d-/N"

(not obvious why Option B should workr.’)\>
* Stochasti ' )

— very efficient for high dimensional datasets with lots of
points

41



A

g !

m

mxn

m=n

Data X, one
row per data

point

US gives
coordinates
of rows of X
in the space
of principle
components

[from Wall et al., 2003]

X = USP”

T A S
Eigenassay

Singular
Value

nxn

S is diagonal,

Sy > Spipy
(s2is ki ]

largest
eigenvalue

)' \

Figengene

nxn

Rows of 77 are unit
length eigenvectors of
XX

—

If cols of X have zero
mean, then X’X =¢ X
and eigenvects are the
Principle Components

Slide from Tom Mitchell



Singular Value Decomposition

To generate principle components:

— 1 o n
+ Subtract mean X= 2 X from each data point, to

n=1

create zero-centered data

» Create matrix X with one row vector per (zero centered)
data point

« Solve SVD: X =USIT

* Qutput Principle components: columns of V' (= rows of J7)
— Eigenvectors in V are sorted from largest to smallest eigenvalues
— S is diagonal, with s;? giving eigenvalue for kth eigenvector

Slide from Tom Mitchell



Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
VT x

If x; is i!" row of data matrix X, then
e (i"rowof US) =VTxT
« (US)T=VTX"

To project a column vector x to M dim Principle Components
subspace, take just the first M coordinates of V7 x

Slide from Tom Mitchell



How Many PCs?

For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M principal components (PCs).

Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

o5 _ ?\\ 7\7, %3 Variance (%) = ratio of variance along
. —A, —— given principal component to total

20 fh Z r\‘] variance of all principal components
J

Variance (%)

A0 BN A A A mE m e

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

You do lose some information, but if the eigenvalues are small, you don’t lose

much
— Mdimensions in original data
— calculate M eigenvectors and eigenvalues
— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011

47



PCA EXAMPLES



Task Setting:

Projecting MNIST digits

1. Take each 28x28 image of a digit (i.e. a vector x® of length 784) and project it

down to

K components (i.e. a vector u®)

2.  Report percent of variance explained for K components

VIsuallze how much information was preserved

5

5 10 15 20 25
784 components

Original Image

Original Image

Original Image

95 % of Explained Variance

90% of Explained Varian{e
0

80% of Explained Variance

50% of Explained Variance

10 15 20 25 10

0 20 5 10 15 20 5 1 20 5 10 15 20 25
784 components 154 components 87 components 43 components 11 components
s —

S— | e

95% of Explained Variance
0

90% of Explained Variance
0

15
20
25

87 components

80% of Explained Variance 50% of Explained Variance
] 0

5 10 5 5 0 > 0
154 components 43 components 11 components

%o of Explained Variance 90% of Explained Variancg 80% of Explained Variance 50% of Explained Variance

10 15 20 25
784 components

5 10

15 10 15 20 25 0 5 10 15
87 components

5 20 25
43 components 11 components
—

154 co nponenls

Then project back up to 28x28 image (i.e. a vector X() of length 784) to

Takeaway:
Using fewer
principal
components K
leads to higher
reconstruction
error.

But even a
small number
(say 43) still
preserves a lot
of information
about the
original image.



Projecting MNIST digits

Task Setting:
Take each 28x28 image of a digit (i.e. a vector x( of length 784) and project it

1.

down to K=2 components (i.e. a vector u®)

Plot the 2 dimensional points u® and label with the (unknown to PCA) label y®

as the color

Here we look at all ten digits 0 -9

3_

-

Takeaway:
Even with a
tiny number of
principal
components
K=2, PCA
learns a
representation
that captures
the latent
information
about the type
of digit

50



Projecting MNIST digits

Task Setting:

1. Take each 28x28 image of a digit (i.e. a vector x() of length 784) and project it
down to K=2 components (i.e. a vector u®)

2. Plot the 2 dimensional points u®) and label with the (unknown to PCA) label y()
as the color

3.  Here welook at just four digits o, 1, 2, 3

2l Takeaway:
Even with a
2.5 tiny number of
principal
- 2.0 components
K=2, PCA
Lo learns a
representation
that captures
- 1.0
the latent
information
0> about the type
: of digit
T T T T T 0.0

51



Learning Objectives

Dimensionality Reduction /| PCA

You should be able to...

1.

W

Define the sample mean, sample variance, and sample
covariance of a vector-valued dataset

|dentify examples of high dimensional data and common use
cases for dimensionality reduction

Draw the principal components of a given toy dataset

Establish the equivalence of minimization of reconstruction
error with maximization of variance

Given a set of principal components, project from high to low
dimensional space and do the reverse to produce a
reconstruction

Explain the connection between PCA, eigenvectors,
eigenvalues, and covariance matrix

Use common methods in linear algebra to obtain the principal
components



