ML

## 10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

## Principal Component Analysis (PCA)

Matt Gormley
Lecture 24
Apr. 12, 2023

## Reminders

- Homework 8: Reinforcement Learning
- Out: Mon, Apr. 10
- Due: Fri, Apr. 21 at 11:59pm


## Playing Atari games with Deep RL



## DIMENSIONALITY REDUCTION

## High Dimension Data

Examples of high dimensional data:

- High resolution images (millions of pixels)



## High Dimension Data

Examples of high dimensional data:

- Multilingual News Stories
(vocabulary of hundreds of thousands of words)



## High Dimension Data

## Examples of high dimensional data:

- Brain Imaging Data (100s of MBs per scan)



## High Dimension Data

## Examples of high dimensional data: <br> - Customer Purchase Data



You could be seeing useful stuff here!
Amazon Sign in to get your order status, balances and rewards.

Recommended for you, Matt



Engineering Books 86 ITEMS

## Learning Representations

Dimensionality Reduction Algorithms:
Powerful (often unsupervised) learning techniques for extracting hidden (potentially lower dimensional) structure from high dimensional datasets.

Examples:
PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, Matrix Factorization

Useful for:

- Visualization
- More efficient use of resources (e.g., time, memory, communication)
- Statistical: fewer dimensions $\rightarrow$ better generalization
- Noise removal (improving data quality)


## Shortcut Example



## Shortcut Example



## This section in one slide...

1. Dimensionality reduction:


## 3. Definition of PCA:

Choose the matrix $V$ that either...

1. minimizes reconstruction error
2. consists of the $K$ eigenvectors with largest eigenvalue

The above are equivalent definitions.
2. Random Projection:


## 4. Algorithm for PCA:

The option we'll focus on:
Run Singular Value Decomposition (SVD) to obtain all the eigenvectors. Keep just the top-K to form V. Play some tricks to keep things efficient.
5. An Example


## DIMENSIONALITY REDUCTION BY RANDOM PROJECTION

## Random Projection

Example: 2D to 1D

Goal: project from M-dimensions down to K-dimensions

## Data:

$\mathcal{D}=\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N}$ where $\mathbf{x}^{(i)} \in \mathbb{R}^{M}$
Algorithm:

1. Randomly sample matrix: $\mathbf{V} \in \mathbb{R}^{K \times M}$ $V_{k m} \sim \operatorname{Gaussian}(0,1)$
2. Project down: $\underbrace{\mathbf{u}^{(i)}}_{K \times 1}=\underbrace{\mathbf{V}}_{K \times M M \times 1} \underbrace{\mathbf{x}^{(i)}}$
3. Project up: $\underbrace{\tilde{\mathbf{x}}^{(i)}}_{M \times 1}=\underbrace{\mathbf{V}^{T}}_{M \times K} \underbrace{\mathbf{u}^{(i)}}_{K \times 1}=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{x}^{(i)}\right)$

2D input data


$$
\begin{aligned}
& u^{(1)} \in \mathbb{R} \quad u^{(2)} \quad u^{(3)} \quad u^{(4)} \quad u^{(5)} \quad u^{(6)}
\end{aligned}
$$

## Random Projection

Goal: project from M-dimensions down to K-dimensions

Data:
$\mathcal{D}=\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N}$ where $\mathbf{x}^{(i)} \in \mathbb{R}^{M}$
Algorithm:

1. Randomly sample matrix: $\mathbf{V} \in \mathbb{R}^{K \times M}$ $V_{k m} \sim \operatorname{Gaussian}(0,1)$
2. Project down: $\underbrace{\mathbf{u}^{(i)}}_{K \times 1}=\underbrace{\mathbf{V}}_{K \times M M \times 1} \underbrace{\mathbf{x}^{(i)}}$
3. Project up: $\underbrace{\mathbf{x}^{(i)}}_{M \times 1}=\underbrace{\mathbf{V}^{T}}_{M \times K K \times 1} \underbrace{\mathbf{u}^{(i)}}=\mathbf{V}^{T}\left(\mathbf{V} \mathbf{x}^{(i)}\right)$


Problem: a random projection might give us a poor low dimensional representation of the data

## Johnson-Lindenstrauss Lemma

Q: But how could we ever hope to preserve any useful information by randomly projecting into a low-dimensional space?

A: Even random projection enjoys some surprisingly impressive properties. In fact, a standard of the J-L lemma starts by assuming we have a random linear projection obtained by sampling each matrix entry from a Gaussian(0,1).

## An Elementary Proof of a Theorem of Johnson and Lindenstrauss

Sanjoy Dasgupta, ${ }^{1}$ Anupam Gupta ${ }^{2}$
ABSTRACT: A result of Johnson and Lindenstrauss [13] shows that a set of $n$ points in high dimensional Euclidean space can be mapped into an $O\left(\log n / \epsilon^{2}\right)$-dimensional Euclidean space such that the distance between any two points changes by only a factor of $(1 \pm \epsilon)$. In this note, we prove this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct. Alg., 22: 60-65, 2002

## DEFINITION OF PRINCIPAL COMPONENT ANALYSIS (PCA)

## Principal Component Analysis (PCA)

- Assumption: the data lies on a low Kdimensional linear subspace
- Goal: identify the axes of that subspace, and project each point onto hyperplane

- Algorithm: find the K eigenvectors with largest eigenvalue using classic matrix decomposition tools



## Data for PCA

$$
\begin{gathered}
\mathcal{D}=\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N} \\
\mathbf{x}^{(i)} \in \mathbb{R}^{M}
\end{gathered}
$$

$$
\mathbf{X}=\left[\begin{array}{c}
\left(\mathbf{x}^{(1)}\right)^{T} \\
\left(\mathbf{x}^{(2)}\right)^{T} \\
\vdots \\
\left(\mathbf{x}^{(N)}\right)^{T}
\end{array}\right]
$$

We assume the data is centered, i.e. the sample mean is zero

$$
\hat{\boldsymbol{\mu}}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)}=\mathbf{0}
$$

Q: What if your data is not centered?

A: Subtract off the sample mean

$$
\tilde{\mathbf{x}}^{(i)}=\mathbf{x}^{(i)}-\hat{\boldsymbol{\mu}}, \forall i
$$

## Background: Sample Variance

Suppose we have a sequence of random samples $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ from a random variable $X$.

The (biased) sample variance $\hat{\sigma}^{2}$ is given by:

$$
\hat{\sigma}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x^{(i)}-\hat{\mu}\right)^{2}
$$

where $\hat{\mu}$ is the sample mean.

## Sample Covariance Matrix

The sample covariance matrix $\boldsymbol{\Sigma} \in \mathbb{R}^{M \times M}$ is given by:

$$
\Sigma_{\underline{j} \underline{k}}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{j}^{(i)}-\hat{\mu}_{j}\right)(\underbrace{(i)}_{k}-\widehat{\mu}_{k})
$$

Since the data matrix is centered, we rewrite as:

$$
\boldsymbol{\Sigma}=\frac{1}{N} \mathbf{X}^{T} \mathbf{X}
$$

$$
\mathbf{X}=\left[\begin{array}{c}
\left(\mathbf{x}^{(1)}\right)^{T} \\
\left(\mathbf{x}^{(2)}\right)^{T} \\
\vdots \\
\left(\mathbf{x}^{(N)}\right)^{T}
\end{array}\right]
$$

## Principal Component Analysis (PCA)

Linear Projection:
Given KxM matrix $\mathbf{V}$, and $\mathbf{M x 1}$ vector $\mathbf{x}^{(i)}$ we obtain the Kx1 projection $\mathbf{u}^{(i)}$ by:

$$
\underline{\mathbf{u}^{(i)}}=\underline{\mathbf{V}} \mathbf{x}^{(i)}
$$



Definition of PCA:
PCA repeatedly chooses a next vector $\mathbf{v}_{\mathrm{j}}$ that minimizes the reconstruction error s.t. $\mathbf{v}_{\mathrm{j}}$ is orthogonal to $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{j}-1}$.

Vector $\mathbf{v}_{\mathrm{j}}$ is called the $\boldsymbol{j}$ th principal component.
Notice: Two vectors $\mathbf{a}$ and $\mathbf{b}$ are orthogonal if $\mathbf{a}^{\top} \mathbf{b}=0$. $\rightarrow$ the K-dimensions in PCA are uncorrelated

Vector Projection

Recall: Projection-

length of projection of $\vec{x}$ ant $\vec{v}$

$$
a=\frac{\vec{v} \frac{x}{x}}{\|v\|_{2}} \quad \text { if }\|v\|_{2}=1
$$

projection af $\vec{x}$ onto $\vec{v}$ $\vec{v}=a \vec{v}=\frac{(\vec{v} \vec{x}) \vec{v}}{\|\vec{v}\|_{2}^{2}} \quad \underset{\text { otherwise }}{\text { if }}\|v\|_{2}=1$

## Principal Component Analysis (PCA)

Whiteboard

- Objective functions for PCA


## Projection Example

## Question:

Below are two plots of the same dataset D. Consider the two projections shown.
Q11. Which maximizes the variance? $55 \% / 45 \%$
Q2 ${ }^{2 .}$ Which minimizes the reconstruction error)
$c=$ toxic

## Answer:




## PCA Objective Functions

What is the first principal component $\mathbf{v}_{1}$ chosen by PCA?
Option 1: The vector that minimizes the reconstruction error

$$
\mathbf{v}_{1}=\underset{\mathbf{v}:\|\mathbf{v}\|^{2}=1}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N}\left\|\mathbf{x}^{(i)}-\left(\mathbf{v}^{T} \mathbf{x}^{(i)}\right) \mathbf{v}\right\|^{2}
$$

Option 2: The vector that maximizes the variance

$$
\mathbf{v}_{1}=\underset{\mathbf{v}:\|\mathbf{v}\| \|^{2}=1}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{v}^{T} \mathbf{x}^{(i)}\right)^{2}
$$

## Equivalence of Maximizing Variance and Minimizing <br> Reconstruction Error

## PCA

Claim: Minimizing the reconstruction error is equivalent to maximizing the variance.

Proof: First, note that:


Substituting into the minimization problem, and removing the extraneous terms, we obtain the maximization problem.

$$
\text { recon. erfor } \begin{align*}
{\left[\mathbf{v}^{*}\right.} & =\underset{\mathbf{v}:\|\mathbf{v}\|^{2}=1}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \frac{\left\|\mathbf{x}^{(i)}-\left(\mathbf{v}^{T} \mathbf{x}^{(i)}\right) \mathbf{v}\right\|^{2}}{}  \tag{2}\\
& =\underset{\mathbf{v}:\|\mathbf{v}\|^{2}=1}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \underbrace{(i) \|^{2}}-\left(\mathbf{v}^{T} \mathbf{x}^{(i)}\right)^{2}  \tag{3}\\
& \left.=\underset{\mathbf{v}:\|\mathbf{v}\|^{2}=1}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{v}^{T} \mathbf{x}^{(i)}\right)^{2}\right] \text { variance } \tag{4}
\end{align*}
$$

## PCA Objective Functions

What is the first principal component $\mathbf{v}_{1}$ chosen by PCA?
Option 1: The vector that minimizes the recc

$$
\mathbf{v}_{1}=\underset{\mathbf{v}:\|\mathbf{v}\|^{2}=1}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \| \mathbf{x}^{(i)}-\left(\mathbf{v}^{T}\right.
$$

Question: Why can't we just use gradient descent to find the principal components?

Option 2: The vector that maximizes the variance

$$
\mathbf{v}_{1}=\underset{\mathbf{v}:\|\mathbf{v}\| \|^{2}=1}{\operatorname{argmax}} \frac{1}{N} \sum_{i=1}^{N}\left(\mathbf{v}^{T} \mathbf{x}^{(i)}\right)^{2}
$$

## Principal Component Analysis (PCA)

Linear Projection:
Given KxM matrix V, and Mx1 vector $\mathbf{x}^{(i)}$ we obtain the Kx1 projection $\mathbf{u}^{(i)}$ by:

$$
\mathbf{u}^{(i)}=\mathbf{V} \mathbf{x}^{(i)}
$$

Definition of PCA:

PCA repeatedly chooses a next vector $\mathbf{v}_{\mathrm{j}}$ that minimizes the reconstruction error s.t. $\mathbf{v}_{\mathbf{i}}$ is orthogonal to $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{j}-1}$.

Vector $\mathbf{v}_{j}$ is called the $\boldsymbol{j}$ th principal component.
Notice: Two vectors $\mathbf{a}$ and $\mathbf{b}$ are orthogonal if $\mathbf{a}^{\top} \mathbf{b}=0$. $\rightarrow$ the K-dimensions in PCA are uncorrelated

## Background:

## Eigenvectors \& Eigenvalues

For a square matrix $\mathbf{A}$ ( $n \times n$ matrix), the vector $\mathbf{v}$ ( $\mathrm{n} \times 1$ matrix) is an eigenvector iff there exists eigenvalue $\lambda$ (scalar) such that:

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v}
$$



The linear transformation $\mathbf{A}$ is only stretching vector $\mathbf{v}$.

That is, $\lambda \mathbf{v}$ is a scalar multiple of $\mathbf{v}$.

## Background: Eigenvectors \& Eigenvalues

Fact \#1: The eigenvectors of a symmetric matrix are orthogonal to each other.

Fact \#2: The covariance matrix $\boldsymbol{\Sigma}$ is symmetric.

## The First <br> Principal

## PCA

## Component

Claim: The vector that maximizes the variances is the eigenvector of $\Sigma$ with largest eigenvalue.

Proof Sketch: To find the first principal component, we wish to solve the following constrained optimization problem (variance minimization).
$\|\mathbf{v}\|_{z}=v^{\top} v \Rightarrow v^{\top} v-1=0$
So we turn to the method of Lagrange multipliers. The Lagrangian is:

$$
\begin{equation*}
\mathcal{L}(\mathbf{v}, \lambda)=\mathbf{v}^{T} \boldsymbol{\Sigma} \mathbf{v}-\lambda\left(\mathbf{v}^{T} \mathbf{v}-1\right) \tag{2}
\end{equation*}
$$

Taking the derivative of the Lagrangian and setting to zero gives:

$$
\begin{equation*}
\frac{d}{d \mathbf{v}}\left(\mathbf{v}^{T} \boldsymbol{\Sigma} \mathbf{v}-\lambda\left(\mathbf{v}^{T} \mathbf{v}-1\right)\right)=0 \tag{3}
\end{equation*}
$$

Recall: For a square matrix $\mathbf{A}$, the vector $\mathbf{v}$ is an eigenvector iff there exists eigenvalue $\lambda$ such that:

$$
\begin{equation*}
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} \tag{6}
\end{equation*}
$$

Rewriting the objective of the maximization shows that not only will the optimal vector $\mathbf{v}_{1}$ be an eigenvector, it will be one with maximal eigenvalue.

$$
\begin{align*}
\mathbf{v}^{T} \boldsymbol{\Sigma} \mathbf{v} & =\mathbf{v}^{T} \lambda \mathbf{v}  \tag{7}\\
& =\lambda \mathbf{v}_{\downarrow}^{T} \mathbf{v}  \tag{8}\\
& =\lambda\|\mathbf{v}\|^{2}  \tag{9}\\
& =\lambda \tag{10}
\end{align*}
$$

## Principal Component Analysis (PCA)

$\left(X X^{T}\right) v=\lambda v$, so $v$ (the first $P C$ ) is the eigenvector of sample correlation/covariance matrix $X X^{T}$

Sample variance of projection $\mathrm{v}^{T} X X^{T} \mathrm{v}=\lambda \mathrm{v}^{T} \mathrm{v}=\lambda$ $v^{T} \varepsilon v=\lambda$
Thus, the eigenvalue $\lambda$ denotes the amount of variability captured along that dimension (aka amount of energy along that
 dimension).

Eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \cdots$

- The $1^{\text {st }} \mathrm{PC} v_{1}$ is the the eigenvector of the sample covariance matrix $X X^{T}$ associated with the largest eigenvalue, $\lambda_{1}$
- The 2nd PC $v_{2}$ is the the eigenvector of the sample covariance matrix $X X^{T}$ associated with the second largest eigenvalue, $\lambda_{2}$
- And so on ...


## ALGORITHMS FOR PCA

## Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?
Power iteration (aka. Von Mises iteration)

- finds each principal component one at a time in order
- Singular Value Decomposition (SVD)
- finds all the principal components at once
- two options:
- Option A: run SVD on $X^{\top} X$
- Option B: run SVD on $X 4 N_{X}$ (not obvious why Option B should work...)
Stochastic Methods (approximate)
- very efficient for high dimensional datasets with lots of points

[from Wall et al., 2003]


## Singular Value Decomposition

To generate principle components:

- Subtract mean $\overline{\mathrm{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathrm{x}^{n} \quad$ from each data point, to create zero-centered data
- Create matrix $X$ with one row vector per (zero centered) data point
- Solve SVD: $X=U S V^{T}$
- Output Principle components: columns of $V$ (= rows of $V^{T}$ )
- Eigenvectors in $V$ are sorted from largest to smallest eigenvalues
$-S$ is diagonal, with $s_{k}^{2}$ giving eigenvalue for kth eigenvector


## Singular Value Decomposition

To project a point (column vector $x$ ) into PC coordinates: $V^{T} x$

If $x_{i}$ is ${ }^{\text {th }}$ row of data matrix $X$, then

- (ith row of $U S$ ) $=V^{T} x_{i}^{T}$
- $(U S)^{T}=V^{T} X^{T}$

To project a column vector $x$ to $M$ dim Principle Components subspace, take just the first M coordinates of $V^{T} x$

## How Many PCs?

- For $M$ original dimensions, sample covariance matrix is $M x M$, and has up to $M$ eigenvectors. So $M$ principal components (PCs).
- Where does dimensionality reduction come from?

Can ignore the components of lesser significance.


- You do lose some information, but if the eigenvalues are small, you don't lose much
- M dimensions in original data
- calculate $M$ eigenvectors and eigenvalues
- choose only the first D eigenvectors, based on their eigenvalues
- final data set has only D dimensions

PCA EXAMPLES

## Projecting MNIST digits

## Task Setting:

1. Take each $28 \times 28$ image of a digit (i.e. a vector $\mathbf{x}^{(i)}$ of length 784 ) and project it down to $K$ components (i.e. a vector $\mathbf{u}^{(i)}$ )
2. Report percent of variance explained for $K$ components
3. Then project back up to $28 \times 28$ image (i.e. a vector $\tilde{\mathbf{x}}^{(i)}$ of length 784 ) to visualize how much information was preserved


## Projecting MNIST digits

## Task Setting:

1. Take each $28 \times 28$ image of a digit (i.e. a vector $\mathbf{x}^{(i)}$ of length 784 ) and project it down to $K=2$ components (i.e. a vector $\mathbf{u}^{(i)}$ )
2. Plot the 2 dimensional points $\mathbf{u}^{(i)}$ and label with the (unknown to PCA) label $y^{(i)}$ as the color
3. Here we look at all ten digits 0-9


Takeaway:
Even with a tiny number of principal
components $\mathrm{K}=2$, PCA learns a representation that captures the latent information about the type of digit

## Projecting MNIST digits

## Task Setting:

1. Take each $28 \times 28$ image of a digit (i.e. a vector $\mathbf{x}^{(i)}$ of length 784 ) and project it down to $K=2$ components (i.e. a vector $\mathbf{u}^{(i)}$ )
2. Plot the 2 dimensional points $\mathbf{u}^{(i)}$ and label with the (unknown to PCA) label $y^{(i)}$ as the color
3. Here we look at just four digits $0,1,2,3$


Takeaway:
Even with a tiny number of principal
components $\mathrm{K}=2$, PCA learns a representation that captures the latent information about the type of digit

## Learning Objectives

## Dimensionality Reduction / PCA

You should be able to...

1. Define the sample mean, sample variance, and sample covariance of a vector-valued dataset
2. Identify examples of high dimensional data and common use cases for dimensionality reduction
3. Draw the principal components of a given toy dataset
4. Establish the equivalence of minimization of reconstruction error with maximization of variance
5. Given a set of principal components, project from high to low dimensional space and do the reverse to produce a reconstruction
6. Explain the connection between PCA, eigenvectors, eigenvalues, and covariance matrix
7. Use common methods in linear algebra to obtain the principal components
