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Reminders

• Homework 8: Reinforcement Learning
– Out: Mon, Apr. 10
– Due: Fri, Apr. 21 at 11:59pm

• Homework 9: Learning Paradigms
– Out: Fri, Apr. 21
– Due: Fri, Dec. 9 at 11:59pm

(only two grace/late days permitted)

3



Crowdsourcing Exam Questions
Exercise
1. Select one of 

lecture-level 
learning objectives
http://mlcourse.org/slides/10601-objectives.pdf

2. Write a question 
that assesses that 
objective

3. Adjust to avoid 
‘trivia style’ 
question

4

Answer Here:

http://mlcourse.org/slides/10601-objectives.pdf


CLUSTERING
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Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar 

data points.

Question: When and why would we want to do this?

• Automatically organizing data.

Useful for:

• Representing high-dimensional data in a low-dimensional space (e.g., 
for visualization purposes).

• Understanding hidden structure in data.

• Preprocessing for further analysis.

Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere…)

• Cluster protein sequences by function or genes according to expression 
profile.

• Cluster users of social networks by interest (community detection).

Facebook network Twitter Network

Slide courtesy of Nina Balcan

• Cluster news articles or web pages or search results by topic.



• Cluster customers according to purchase history.

Applications (Clustering comes up everywhere…)

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications….

Slide courtesy of Nina Balcan



Clustering

Question: Which of these partitions is “better”?
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OPTIMIZATION BACKGROUND
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Block Coordinate Descent
• Goal: minimize some objective 

�⃗�∗ = argmin
"

𝐽 �⃗�

• Idea: iteratively pick one variable and minimize the 
objective w.r.t. just that one variable, keeping all 
the others fixed. 
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Block Coordinate Descent
• Goal: minimize some objective (with 2 blocks)

�⃗�∗, 𝛽∗ = argmin
#,%

𝐽 �⃗�, 𝛽

• Idea: iteratively pick one block of variables (�⃗� or 𝛽) 
and minimize the objective w.r.t. that block, 
keeping the other(s) fixed. 
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�⃗� = argmin
%

𝐽 �⃗�, �⃗�

�⃗� = argmin
&

𝐽 �⃗�, �⃗�

while not converged:



K-MEANS
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K-Means Algorithm (Derivation)
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Recipe for K-Means Derivation:

1) Define a Model.
2) Choose an objective function.
3) Optimize it!



K-Means Algorithm (Derivation)
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• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK ], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)
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Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22
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• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK ], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}
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• Objective:
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||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

Now apply 
Block Coordinate Descent!



K-Means Algorithm
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This is an application of
Block Coordinate Descent!

The only remaining step is to figure out 
what the argmins boil down to…

1) Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) z← argminz J(C, z)
(pick each cluster assignment to minimize distance)

b) C← argminC J(C, z)
(pick each cluster center to minimize distance)



K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) for i in {1,…, N}
z(i)← argminj (|| x(i) - cj ||2)2

b) for j in {1,…,K}
cj← argmin ∑ (|| x(i) - cj ||2)2

23

cj i:z(i) = j

Likewise, the 
minimization over 

cluster centers 
decomposes, so we 

can find each cj
independently

The minimization 
over cluster 
assignments 

decomposes, so 
that we can find 

each z(i)

independently of 
the others



K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) for i in {1,…, N}
z(i)← index j of cluster center nearest to x(i)

b) for j in {1,…,K}
cj←mean of all points assigned to cluster j

24



K-MEANS EXAMPLE
K=3 cluster centers
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means

33



Example: K-Means
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K-MEANS EXAMPLE
K=2 cluster centers
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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Example: K-Means
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INITIALIZING K-MEANS
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Initialization of K-Means
K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK} 
3) Repeat until convergence:

a) for i in {1,…, N}
z(i)← index j of cluster center nearest to x(i)

b) for j in {1,…,K}
cj←mean of all points assigned to cluster j

46

Remaining Question:
How should we initialize the cluster centers?

Three Solutions:
1. Random centers (picked from the data 

points)
2. Furthest point heuristic
3. K-Means++



Initialization for K-Means
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Example 1:
• Initialized randomly such 

that each cluster center is 
in a well separated 
Gaussian 

• Good overall performance

Algorithm #1: Random Initialization
Select each cluster center uniformly at 
random from the data points in the 
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local 

optima.
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Algorithm #1: Random Initialization
Select each cluster center uniformly at 
random from the data points in the 
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local 

optima.
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in a well separated 
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Initialization for K-Means
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Algorithm #1: Random Initialization
Select each cluster center uniformly at 
random from the data points in the 
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local 

optima.

Example 2:
• Initialized 

randomly such 
that two centers 
are in the same 
Gaussian cluster

• Poor performance
• Can be arbitrarily

bad (imagine the 
final red cluster 
points moving 
arbitrarily far 
away!)



Initialization for K-Means
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Initialization for K-Means

• For k equal-sized Gaussians, 

Pr[each initial center is in a different Gaussian] ≈ !!
!!
≈ #

$!

• Becomes unlikely as k gets large. 

K-Mean Performance (with Random Initialization)

If we do random initialization, as k increases, it becomes more likely we 
won’t have perfectly picked one center per Gaussian in our initialization 

(so K-Means will output a bad solution).

Slide courtesy of Nina Balcan



Initialization for K-Means
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Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so 

that it is as far as possible from the 
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian 

data
• But outliers pose a new problem!

Example 1:
• No outliers
• Good performance
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Initialization for K-Means
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Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so 

that it is as far as possible from the 
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian 

data
• But outliers pose a new problem!

Example 2:
• One outlier 

throws off 
the algorithm

• Poor 
performance
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Initialization for K-Means
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Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point 𝑥 and its nearest center. Chose 
the next center proportional to D"(𝐱).



Initialization for K-Means
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Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point 𝑥 and its nearest center. Chose 
the next center proportional to D"(𝐱).

• Choose 𝐜𝟏 at random.

• Pick 𝐜𝐣 among 𝐱(𝟏), 𝐱(𝟐), … , 𝐱(𝒏) according to the distribution
• For j = 2, … , K

𝐏(𝐜𝐣 = 𝐱(𝐢)) ∝ 𝐦𝐢𝐧𝐣!%𝐣 𝐱(𝐢) − 𝐜𝐣!
𝟐
D+(𝐱𝐢)

Slide adapted from Nina Balcan

Theorem: K-Means++ always attains an O(log k) approximation to optimal 
K-Means solution in expectation.

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0



Initialization for K-Means
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Example 1:
• One outlier
• Good 

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point 𝑥 and its nearest center. Chose 
the next center proportional to D"(𝐱).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0
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Example 1:
• One outlier
• Good 
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• Let D(x) be the distance between a 

point 𝑥 and its nearest center. Chose 
the next center proportional to D"(𝐱).
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Initialization for K-Means
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Example 1:
• One outlier
• Good 

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a 

point 𝑥 and its nearest center. Chose 
the next center proportional to D"(𝐱).

Observations:
• Interpolates between random and 

farthest point initialization
• Solves the problem with Gaussian 

data
• And solves the outlier problem



Q&A
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Q: In k-Means, since we don’t have a validation set, how do we 
pick k?

A: Look at the training objective 
function as a function of k 
and pick the value at the 
“elbo” of the curve.

Q: What if our random initialization for k-Means gives us poor 
performance?

A: Do random restarts: that is, run k-means from scratch, say, 10 
times and pick the run that gives the lowest training objective 
function value.
The objective function is nonconvex, so we’re just looking for 
the best local minimum.

J(c, z)

k



Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block 

coordinate descent
2. Define an objective function that gives rise to a "good" 

clustering
3. Apply block coordinate descent to an objective function 

preferring each point to be close to its nearest 
objective function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the non-convexity of the K-Means objective 

function with the (possibly) poor performance of 
random initialization
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Ensemble Methods
Ensemble methods learn a collection of models (i.e. the ensemble) 
and combine their predictions on a test instance.

We consider two types:
• Bagging: learns models in parallel by taking many subsets of the 

training data
• Boosting: learns models serially by reweighting the training data
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Bagging
“BAGGing” is also called Boostrap AGGregretion
Bagging answers the question: 
How can I obtain many classifiers/regressors to ensemble together?

We’ll consider three possible answers:
1. (sample) bagging
2. feature bagging (aka. random subspace method) 
3. random forests (which combine sample bagging and feature 

bagging to train a “forest” of decision trees)

64



BAGGING
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(Sample) Bagging
Key idea: Repeatedly sample with replacement a collection of training 
examples and train a model on that sample. 
Return an ensemble of the trained models; combine predictions by 
majority vote for classification and by averaging for regression.
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Algorithm 1 (Sample) Bagging
1: procedure S B (D, T , S)
2: for t = 1, . . . , T do
3: for s = 1, . . . , S do
4: is ∼ Uniform(1, . . . , N)

5: St = {(x(is), y(is))}Ss=1 ! Bootstrap sample
6: ht = train(St) ! Classi er

return ĥ(x) = aggregate(h1, . . . , hT ) ! Ensemble

for classi cation: ĥ(x) = argmaxy∈Y

∑T
t=1

I[y = ht(x)] !Majority vote

for regression: ĥ(x) = 1

T

∑T
t=1

ht(x) ! Average



(Sample) Bagging
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i x1 x2 x3 y

1 1 0 1 +

2 0 1 1 -

3 1 1 0 +

4 0 1 0 +

5 1 0 0 -

i x1 x2 x3 y

3 1 1 0 +

5 1 0 0 -

3 1 1 0 +

i x1 x2 x3 y

2 0 1 1 -

5 1 0 0 -

1 1 0 1 +

training dataD

bootstrap sample S1

bootstrap sample S2

i x1 x2 x3 y

2 0 1 1 -

4 0 1 0 +

1 1 0 1 +

bootstrap sample S3

x2
0 1

- +

x1

x3

0 1

0 1
-

- +

x1

+

x3

0 1

0 1

-

+

classi er h1

classi er h2

classi er h3

test instance

x1 x2 x3

0 0 0

-

-

+

-
majority

vote



Feature Bagging
Key idea: Repeatedly sample without replacement a subset of the 
features, create a copy of the training data with only those features, and 
train a model on the copy. 
Return an ensemble of the trained models; combine predictions by 
majority vote for classification and by averaging for regression.
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Algorithm 2 Feature Bagging
1: procedure S B (D, T , S)
2: for t = 1, . . . , T do
3: for s = 1, . . . , S do
4: ms ∼ Uniform(1, . . . ,M)

5: for i = 1, . . . , N do
6: x̃(i) = [x(i)

m1
, x

(i)
m2

, . . . , x
(i)
mS

]T

7: Dt = {(x̃(i), y(i)}Ni=1 ! Random subspace
8: ht = train(Dt) ! Classi er

return ĥ(x) = aggregate(h1, . . . , hT ) ! Ensemble



Feature Bagging
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i x1 x2 x3 x4 y

1 1 0 1 0 +

2 0 1 1 1 -

3 1 1 0 0 +

i x4 x2 y

1 0 0 +

2 1 1 -

3 0 1 +

i x2 x3 y

1 0 1 +

2 1 1 -

3 1 0 +

training dataD

bootstrap sample S1

bootstrap sample S2

i x1 x3 y

1 1 1 +

2 0 1 -

3 1 0 +

bootstrap sample S3

x4
0 1

+ -

x2

x3

0 1

0 1
-

+ -

classi er h1

classi er h2

classi er h3

test instance

x1 x2 x3 x4

0 1 0 0

+

+

-

+
majority

vote

x1
0 1

- +



RANDOM FORESTS
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Random 
Forests

� Combines the prediction of many diverse decision trees to 

reduce their variability  

� If 𝐵 independent random variables 𝑥 ' , 𝑥 ( , … , 𝑥 ) all have  

variance 𝜎(, then the variance of                      is 
*!

+

� Random forests 

= bagging + split-feature randomization

= bootstrap aggregating + split-feature randomization

71

1
𝐵
.
#$%

&

𝑥 # 𝜎"

𝐵

Henry Chai - 8/2/22



Random Forests
Key idea: Combine (sample) bagging and a specific variant of feature 
bagging to train decision trees. 

Repeat the following to train many decision trees: 
• draw a sample with replacement from the training examples, 
• recursively learn the decision tree 
• but at each node when choosing a feature on which to split, first 

randomly sample a subset of the features, then pick the best feature 
from among that subset. 

Return an ensemble of the trained decision trees.

72



Split-feature 
Randomizati
on

� Issue: decision trees trained on bootstrapped 
samples still behave similarly

� Idea: in addition to sampling the data points (i.e., 
the rows), also sample the features (i.e., the 
columns)

� Each time a split is being considered, limit the 
possible features to a randomly sampled subset 

Henry Chai - 8/2/22 76
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Random 
Forests

� Input: 𝒟 = 𝒙 + , 𝑦 +
+,'
-

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵
� Create a dataset, 𝒟#, by sampling 𝑁 points from 

the original training data 𝒟 with replacement

� Learn a decision tree, 𝑡#, using 𝒟# and the CART 

algorithm with split-feature randomization, 

sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡', … , 𝑡) , the aggregated 

hypothesis

80Henry Chai - 8/2/22



81Henry Chai - 8/2/22

How can we 
set 𝐵 and 𝜌?

� Input: 𝒟 = 𝒙 + , 𝑦 +
+,'
-

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵
� Create a dataset, 𝒟#, by sampling 𝑁 points from 

the original training data 𝒟 with replacement

� Learn a decision tree, 𝑡#, using 𝒟# and the CART 

algorithm with split-feature randomization, 

sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡', … , 𝑡) , the aggregated 

hypothesis



Recall: 
Validation 
Sets

� Suppose we want to compare 
multiple hyperparameter settings 
𝜃', … , 𝜃.

� For 𝑘 = 1, 2, … , 𝐾
� Train a model on 𝐷'()*+ using 𝜃,

� Evaluate each model on 𝐷/01 and 
find the best hyperparameter 
setting, 𝜃2∗

� Compute the error of a model 
trained with 𝜃2∗ on 𝐷3453
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Out-of-bag 
Error

� For each training point, 𝒙 + , there are some decision 

trees which 𝒙 + was not used to train (roughly ⁄𝐵 𝑒
trees or 37%)

� Let these be 𝑡 1+ = 𝑡%
1+ , 𝑡"

1+ , … , 𝑡2!"
1+

� Compute an aggregated prediction for each 𝒙 + using 

the trees in 𝑡 6+ , ̅𝑡 6+ 𝒙 +

� Compute the out-of-bag (OOB) error, e.g., for 

regression
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Out-of-bag 
Error

� For each training point, 𝒙 + , there are some decision 

trees which 𝒙 + was not used to train (roughly ⁄𝐵 𝑒
trees or 37%)

� Let these be 𝑡 1+ = 𝑡%
1+ , 𝑡"

1+ , … , 𝑡2!"
1+

� Compute an aggregated prediction for each 𝒙 + using 

the trees in 𝑡 6+ , ̅𝑡 6+ 𝒙 +

� Compute the out-of-bag (OOB) error, e.g., for 

classification

� 𝐸77) can be used for hyperparameter optimization!

84Henry Chai - 8/2/22

𝐸33& =
1
𝑁
.
+$%

2

̅𝑡 1+ 𝒙 + ≠ 𝑦 +



Out-of-bag 
Error

� Suppose we want to compare 
different numbers of trees in our 
random forest 𝐵', … , 𝐵.

� For 𝑘 = 1, 2, … , 𝐾
� Train a random forest on 𝐷'()*+

with 𝐵, trees

� Compute 𝐸77) for each random 
forest and find the best number of 
trees, 𝐵2∗

� Evaluate the random forest with 
𝐵2∗ trees on 𝐷3453
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Setting Hyperparameters
86
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Converges quickly 

Optimal value 
somewhere in the 
middle



Feature 
Importance
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� Some of the interpretability of decision trees gets lost 

when switching to random forests

� Random forests allow for the computation of “feature 

importance”, a way of ranking features based on how 

useful they are at predicting the target

� Initialize each feature’s importance to zero

� Each time a feature is chosen to be split on, add the  

reduction in Gini impurity (weighted by the number of 

data points in the split) to its importance
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Feature
Importance



Key 
Takeaways

� Ensemble methods employ a “wisdom of crowds” 

philosophy 

� Can reduce the variance of high variance methods

� Random forests = bagging + split-feature 

randomization

� Aggregate multiple decision trees together

� Bootstrapping and split-feature randomization 

increase diversity in the decision trees

� Use out-of-bag errors for hyperparameter 

optimization

� Use feature importance to identify useful attributes
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Learning Objectives
Ensemble Methods: Bagging

You should be able to…
1. Distinguish between (sample) bagging, the random subspace 

method, and random forests.
2. Implement (sample) bagging for an arbitrary base 

classifier/regressor.
3. Implement the random subspace method for an arbitrary base 

classifier/ regressor.
4. Implement random forests.
5. Contrast out-of-bag error with cross-validation error.
6. Differentiate boosting from bagging.
7. Compare and contrast weighted and unweighted majority vote of a 

collection of classifiers.
8. Discuss the relation in bagging between the sample size and variance 

of the base classifier/regressor.
9. Bound the generalization error of a random forest classifier.
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