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Reminders

* Homework 8: Reinforcement Learning
— Out: Mon, Apr. 10
— Due: Fri, Apr. 21 at 11:59pm

* Homework 9: Learning Paradigms

— Out: Fri, Apr. 21

— Due: Fri, Dec. 9 at 11:59pm
(only two grace/late days permitted)




Crowdsourcing Exam Questions

Exercise Answer Here:
1. Select one of
lecture-level

learning objectives

2. Write a question
that assesses that
objective

3. Adjust to avoid
‘trivia style’
question


http://mlcourse.org/slides/10601-objectives.pdf

CLUSTERING



Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar

data points.
Question: When and why would we want to do this?

Useful for:

e Automatically organizing data.

e Understanding hidden structure in data.

* Preprocessing for further analysis.

® Representing high-dimensional data in a low-dimensional space (e.g.,
for visualization purposes).

Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere...)

e (luster news articles or web pages or search results by topic.
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e (luster protein sequences by function or genes according to expression
profile. R
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o (luster users of social networks by interest (community detection).
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Slide courtesy of Nina Balcan



Applications (Clustering comes up everywhere...)

* Cluster customers according to purchase history.

e And many many more applications....

Slide courtesy of Nina Balcan



Clustering

Question: Which of these partitions is “better’”?
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OPTIMIZATION BACKGROUND



Coordinate Descent

* Goal: minimize some objective
g* = argmin](é)
6

* ldea: iteratively pick one variable and minimize the
objective w.r.t. just that one variable, keeping all
the others fixed.




Block Coordinate Descent

* Goal: minimize some objective (with 2 blocks)

a* B = argmm](a ,B)
ap
* ldea: iteratively pick one block of variables (& or ,67)
and minimize the objective w.r.t. that block,
keeping the other(s) fixed.

Wt X 5@

while not converged:
a = argmin]/(a,
4 = argmin] ( B)

g = argmm](a ,8)
L__\ 5




K-MEANS



K-Means Algorithm (Derivation)




K-Means Algorithm (Derivation)

Input: unlabeled data D = {x("1V = x() ¢ RM

Goal: Find an assignment of points to clusters
Model Paramters:
o cluster centers: C = [cy,c¢a,...,Ck|, ¢c; € RM
o clusterassignments: z = [z(1), 22 . (M) 200 c {1 ... K}

Decision Rule: assign each point x(*) to its nearest cluster center c;
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K-Means Algorithm (Derivation)

Input: unlabeled data D = {x("1V = x() ¢ RM

Goal: Find an assignment of points to clusters

Model Paramters:

o cluster centers: C = [cy,c¢a,...,Ck|, ¢c; € RM

o clusterassignments: z = [z(1), 22 . (M) 200 c {1 ... K}

Decision Rule: assign each point x(*) to its nearest cluster center c;

Objective:

N
C = argminzmin HX(i) - CjH%
C =1 J
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= argmin g min ||x® — c_e
C
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K-Means Algorithm (Derivation)
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K-Means Algorithm (Derivation)

Input: unlabeled data D = {x("1V = x() ¢ RM

Goal: Find an assignment of points to clusters

Model Paramters:

o cluster centers: C = [cy,c¢a,...,Ck|, c; € RM

o clusterassignments: z = [z(1), 2(2) . 2(N)] 200 ¢ {1,... K}

Decision Rule: assign each point x(*) to its nearest cluster center c;

Objective:

N
C = argminz mjln HX(Z) - CjH%
=1

N

_ . . (i) i 2
argénln;rﬁli? ||X C. |2 Now apply
Block Coordinate Descent!

N
C,z = argmin g 1% — ¢,
Cz =

2
2

N>

=|argmin J(C, z)
C,z




K-Means Algorithm

unlabeled feature vectors
D = {x(, x®),..., x(N\)}

cluster centers c = {c,,..., ¢k}

until convergence:
a) z« argmin,J(C, z)
(pick each cluster assignment to minimize distance)
b) C« argmin¢J(C, 2)
(pick each cluster center to minimize distance)

<

This is an application of
Block Coordinate Descent!
The only remaining step is to figure out
what the argmins boil down to...




K-Means Algorithm

1) Given unlabeled feature vectors
D = {x(1), x(z),”, , x(N)}
2) Initialize cluster centers ¢ = {c,,..., ¢}
3) Repeat until convergence:
a) foriin{1,..., N}
20 « argmin, (|| x® - ¢ ||,)
b) forjin{y,...,K}
G argmincj 2. i:z0) = (” x() - G ”2)2

N
3(6 ,'ZB = éQ\ &) — Col 2_32
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K-Means Algorithm

unlabeled feature vectors
D = {x(, x®),..., x(N\)}

cluster centers c = {c,,..., ¢k}

until convergence:
a) foriin{1,..., N}
z() « index j of cluster center nearest to x("
b) forjin{3,...,K}
¢, < mean of all points assigned to cluster |

24



K-MEANS EXAMPLE



Example: K-Means
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Example: K-Means
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Example: K-Means

~ Clustering with K-Means (k=3, iter=0)
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Example: K-Means

~ Clustering with K-Means (k=3, iter=1)
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K-Means

Example

3, iter=2)

~ Clustering with K-Means (k
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K-Means

Example

3, iter=3)

~ Clustering with K-Means (k
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K-Means

Example

3, iter=4)

~ Clustering with K-Means (k
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K-Means

Example

3, iter=5)

~ Clustering with K-Means (k
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K-MEANS EXAMPLE



Example: K-Means
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Example: K-Means
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Example: K-Means

 Clustering with K-Means (k=2, iter=0)




Example: K-Means

 Clustering with K-Means (k=2, iter=2)
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Example: K-Means

~ Clustering with K-Means (k=2, iter=3)
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K-Means

Example

2, iter=4)

~ Clustering with K-Means (k
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K-Means

Example

2, iter=5)

~ Clustering with K-Means (k
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K-Means

Example

2, iter=6)

~ Clustering with K-Means (k
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K-Means

Example

2, iter=7)

~ Clustering with K-Means (k
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INITIALIZING K-MEANS



Initialization of K-Means

K-Means Algorithm
unlabeled feature vectors

D = {X(1),

x@,..., x(N)1

cluster centers c = {c,,..., ¢k}

S

a) foriir

b) forjin

Remaining Question:
How should we initialize the cluster centers?

Three Solutions:

1. Random centers (picked from the data
points)

2. Furthest point heuristic

3. K-Means++

46



Initialization for K-Means

Example 1:

* Initialized randomly such
that each cluster center s
in a well separated

Gaussian
o O
@ O ©
O oo0©O
O O O




Initialization for K-Means

O Example 1:
* Initialized randomly such
o that each cluster center s
O o in a well separated
Gaussian
* Good overall performance

>
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Initialization for K-Means

A Example 2:

O O  Initialized
o O randomly such
O that two centers
O are in the same
Gaussian cluster




Initialization for K-Means

Example 2:
* |nitialized

randomly such
that two centers
are in the same
Gaussian cluster
Poor performance
Lan be arbitrarily
" “bad (imagine the
final red cluster
points moving
arbitrarily far

away!
2 y!) .




Initialization for K-Means

K-Mean Performance (with Random Initialization)
If we do random initialization, as k increases, it becomes more likely we

won’t have perfectly picked one center per Gaussian in our initialization

(so K-Means will output a bad solution).

* Fork equal-sized Gaussians,

. .. . . k!
Pr[each initial center is in a different Gaussian] = 5

* Becomes unlikely as k gets large.

Slide courtesy of Nina Balcan



Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the

previously chosen centers ¢, ¢,,..., ¢, Example 1

* No outliers

A O ‘C3 * Good performance
o O
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q
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Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the
previously chosen centers c,, ¢,,..., ¢,

Example 2: t N e O O 2
* One outlier

throws off O 8
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Initialization for K-Means

Algorithm #2: Furthest Point Heuristic Observations:

1. Pick the first cluster center c, * Solves the problem with Gaussian
randomly data

2. Pick each subsequent center ¢; so * But outliers pose a new problem!

that it is as far as possible from the
previously chosen centers c,, ¢,,..., ¢,

Example 2:

* One outlier
throws off
the algorithm

* Poor
performance




Initialization for K-Means

Algorithm #3: K-Means++
Let D(x) be the distance between a
point x and its nearest center. Chose
the next center proportional to D% (x).

A o O
o O
OO
o O
o O O
O oo ©O
O O o




o i | p(x) | D) | P(c, = x)
Initialization for K-N* 3 9 937

2 2 4 4/137
Algorithm #3: K-Means++
* Let D(x) be the distance between a
point x and its nearest center. Chose
the next center proportional to D% (x).

7 4 16 16/137

9 9/137

*_
C* 3 qDW‘:S—(CF&}um 137 1.0
<,é
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* Pick ¢; among x(l), x®), .., x(M according to the e

) 2
=i 1~ e

| O N O U
Theorem: K-Means++ always attains an O(log k) approximation to optimal

K-Means solution in expectation.

Choose ¢4 at random.

: .I > 57
Slide adapted from Nina Balcan




: i D69 000 [ Plcy=x0)_
Initialization for K-N 3o ssry

2.7/ 4 4[137 .
Algorithm #3: K-Means++ %\,\L ?—o! ¢,
* Let D(x) be the distance between a
point x and its nearest center. Chose
the next center proportional to D?(x).

7 4.— 16 16/137 -
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: i D6 D) [Plc=x)
Initialization for K-N+ 3 s o

2 2 4 4/137
Algorithm #3: K-Means++
* Let D(x) be the distance between a
point x and its nearest center. Chose
the next center proportional to D?(x).

9/137
1.0
A

Example 1: 5 O

* One outlier O.O

* Good O

performance O
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Initialization for K-Means

Algorithm #3: K-Means++ Observations:
* Let D(x) be the distance between a * Interpolates between random and
point x and its nearest center. Chose farthest point initialization

the next center proportional to D% (x). Solves the problem with Gaussian
data

* And solves the outlier problem

Example 1: o O O
* One outlier
* Good 0.8
performance O

o O

O
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Q&A W /JC(,z)

Q. In k-Means, since we don’t have a validation set, how\d/we
pick k?

A: Lookat the training objective
function as a function of kK J(c, 2) t

and pick the value at the j
“elbo” of the curve.

—t— ———> K
\23‘!5675’

Q. What if our random initialization for k-Means gives us poor
performance?

A: Do random restarts: that is, run k-means from scratch, say, 10
times and pick the run that gives the lowest training objective
function value.

The objective function is nonconvex, so we’re just looking for
the best local minimum.



Learning Objectives

K-Means

You should be able to...

1.

4

Distinguish between coordinate descent and block
coordinate descent

Define an objective function that gives rise to a "good"
clustering

Apply block coordinate descent to an objective function
preferring each point to be close to its nearest
objective function to obtain the K-Means algorithm

Implement the K-Means algorithm

Connect the non-convexity of the K-Means objective
function with the (possibly) poor performance of
random initialization



Ensemble Methods

Ensemble methods learn a collection of models (i.e. the ensemble)
and combine their predictions on a test instance.

We consider two types:

* Bagging: learns models in parallel by taking many subsets of the
training data

* Boosting: learns models serially by reweighting the training data



Bagging

“BAGGing” is also called Boostrap AGGregretion

Bagging answers the question:
How can | obtain many classifiers/regressors to ensemble together?

We’ll consider three possible answers:
1. (sample) bagging
2. feature bagging (aka. random subspace method)

3. random forests (which combine sample bagging and feature
bagging to train a “forest” of decision trees)



BAGGING



(Sample) Bagging

Key idea: Repeatedly sample with replacement a collection of training
examples and train a model on that sample.

Return an ensemble of the trained models; combine predictions by
majority vote for classification and by averaging for regression.

Algorithm 1 (Sample) Bagging

1: procedure SAMPLEBAGGlNG(D T,5)

2 fort=1,...,7Tdo

3: fors—l,...,Sdo

4: s ~ Uniform(1,..., N)

5 = {(x(z o)y} > Bootstrap sample

6 ht = train(Sy) > Classifier
return h(x) = aggregate(hy,..., hr) Vy - #_dm&ﬂbmgfemble

for classification:  h(x) = argmaxyey Zt Ay = he(x )]7 > Ma]orlty vote

for regression: h(x) = ” thl hi(X) > Average
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(Sample) Bagging

bootstrap sample &,

NERESERER | rciassifier iy
+

-3 1 1 0

trainin data D ....... EE.> ............ > -
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Feature Bagging

Key idea: Repeatedly sample withesst replacement a subset of the
features, create a copy of the training data with only those features, and
train a model on the copy.

Return an ensemble of the trained models; combine predictions by
majority vote for classification and by averaging for regression.

Algorithm 2 Feature Bagging

1: procedure SAMPLEBAGGING(D, T, S)

2 fort=1,...,Tdo -

3 fors=1,...,5do

4 ms ~ Uniform(1,..., M)

5 fori =1,...,Ndo

6 5{(7,) — [x’%)l y 33572)2, s 7$’$7?S]T

7 D, = {(x®), (DN > Random subspace
8 hy = train(D;) > Classifier

return h(x) = aggregate(hy, ..., hr) > Ensemble




lhewe W X? test instance

Feature Bagging .\ x, % |%, | %,

bootstrap S mple S]_ CR AL L L L L L LR T L DL LI T

- “eclassifier hy

training data D

-ﬂﬂ.ﬂ. bootstrap sample S,
« - [HESESFE  sdassifier b, miajority
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RANDOM FORESTS



* Combines the prediction of many diverse decision trees to

reduce their variability I‘\I\ ’ ’\"1 “_”\*,0
*E1ale/e)antl | - If Bindependent random variables x(, x(2), .. x(®) all have
B
2
Forests variance g2, then the variance of %2 x®is 2
= B
« Random forests

= bagging + split-feature randomization

= bootstrap aggregating + split-feature randomization

Henry Chai - 8/2/22 71



Random Forests

Key idea: Combine (sample) bagging and a specific variant of feature
bagging to train decision trees. (Sﬂ“"u>

(§
rRepeat the following to train many decision trees: 1/ \”57 9
es,

* draw a sample with replacement from the training exampl
* recursively learn the decision tree

* but at each node when choosing a feature on which to split, first
randomly sample a subset of the features, then pick the best featur
from among that subset.

Return an ensemble of the trained decision trees. S(Dm"%

I\-'\AM'Z’—““"
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Split-feature

Randomizati
on

Henry Chai - 8/2/22

* Issue: decision trees trained on bootstrapped

samples still behave similarly

- Idea: in addition to sampling the data points (i.e.,

the rows), also sample the features (i.e., the
columns)

- Each time a split is being considered, limit the

possible features to a randomly sampled subset

76



Split-feature

Randomizati
on

Henry Chai - 8/2/22

* Issue: decision trees trained on bootstrapped

samples still behave similarly

- Idea: in addition to sampling the data points (i.e.,

the rows), also sample the features (i.e., the
columns)

- Each time a split is being considered, limit the

possible features to a randomly sampled subset
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* Issue: decision trees trained on bootstrapped
samples still behave similarly

- Idea: in addition to sampling the data points (i.e.,
the rows), also sample the features (i.e., the
columns)

Split-feature

- Each time a split is being considered, limit the
possible features to a randomly sampled subset

Randomizati
on

Runtime

Runime | eme | ougt | Vear | D8 | Rain

Henry Chai - 8/2/22 78



* Issue: decision trees trained on bootstrapped
samples still behave similarly

- Idea: in addition to sampling the data points (i.e.,
the rows), also sample the features (i.e., the
columns)

Split-feature

- Each time a split is being considered, limit the
possible features to a randomly sampled subset

Randomizati
on

Runtime

Runtin | _eme | Buge| vear L IWDB | rain.

Henry Chai - 8/2/22 79



Random

Forests

Henry Chai - 8/2/22

< Input: D = {(x™,y™)} B p

n=1"'

Forb=1,2,..,B &/
* Create a dataset, D;,, by sampling N points from
the original training data D with replacement
* Learn a decision tree, t;, using D}, and the CART

algorithm with split-feature randomization,

sampling p features for each split

- Output: t = f(t4, ..., tg), the aggregated

hypothesis

8o



How can we

set B and p?

Henry Chai - 8/2/22

< Input: D = {(x™,y™)} B p

n=1"'

* Forb=1,2,..,B

* Create a dataset, Dj,, by sampling N points from

the original training data D with replacement

* Learn a decision tree, t;, using D}, and the CART
algorithm with split-feature randomization,

sampling p features for each split

- Output: t = f(t4, ..., tg), the aggregated

hypothesis

81



Recall:
Validation

Sets

Henry Chai - 8/2/22

- Suppose we want to compare

multiple hyperparameter settings

*Fork=1,2,..,K

* Train a model on D4y qin USING O,

* Evaluate each model on D,,4; and

find the best hyperparameter
setting, O+

- Compute the error of a model

trained with @« on Dypgt

82



Out-of-bag

Error

Henry Chai - 8/2/22

* For each training point, x("), there are some decision

trees which x(™ was not used to train (roughly B /e

trees or 37%)

* Letthese be t(™™ = {tf"), té_"), . tzsi__:)}

- Compute an aggregated prediction for each x™ using

the trees in t ™, § ) (x (W)

- Compute the out-of-bag (OOB) error, e.qg., for

regression MSE

N
1
Epop = NE(E(—n) (x™) — y(n))z
n=1

83



Out-of-bag

Error

Henry Chai - 8/2/22

* For each training point, x("), there are some decision

trees which x(™ was not used to train (roughly B /e

trees or 37%)

+ Letthese be t(™™ = {tf_n), tg_n) t(_n)}

) mrny N_n

- Compute an aggregated prediction for each x™ using

the trees in t ™, £ (x (™)

- Compute the out-of-bag (OOB) error, e.qg., for

classification

N
1
Eppp = Nz [ECm (x™) = y™]
n=1

- Eppp can be used for hyperparameter optimization!

84



Out-of-bag

Error

Henry Chai - 8/2/22

* Suppose we want to compare
different numbers of trees in our

random forest By, ..., Bk

*Fork=1,2,..,K

* Train a random forest on D¢-4in
with By, trees

« Compute Eygp for each random
forest and find the best number of

trees, By

+ Evaluate the random forest with
B+ treeson Dypqt
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Feature

Importance

Henry Chai - 8/2/22

Some of the interpretability of decision trees gets lost

when switching to random forests

Random forests allow for the computation of “feature
importance”, a way of ranking features based on how

useful they are at predicting the target

Initialize each feature’s importance to zero

C— —

Each time a feature is chosen to be split on, add the

reduction in Gini impurity (weighted by the number of

data points in the split) to its importance
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Key

IELGEVENE

Henry Chai - 8/2/22

- Ensemble methods employ a "wisdom of crowds”
philosophy

* Can reduce the variance of high variance methods

—

- Random forests = bagging + split-feature

randomization
* Aggregate multiple decision trees together

* Bootstrapping and split-feature randomization

increase diversity in the decision trees

- Use out-of-bag errors for hyperparameter

optimization

- Use feature importance to identify useful attributes
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Learning Objectives

Ensemble Methods: Bagging

You should be able to...

1.

Distinguish between (sample) bagging, the random subspace
method, and random forests.

Implement (sample) bagging for an arbitrary base
classifier/regressor.

Implement the random subspace method for an arbitrary base
classifier/ regressor.

Implement random forests.
Contrast out-of-bag error with cross-validation error.
Differentiate boosting from bagging.

Compare and contrast weighted and unweighted majority vote of a
collection of classifiers.

Discuss the relation in bagging between the sample size and variance
of the base classifier/regressor.

Bound the generalization error of a random forest classifier.



