
K-Means
+

Ensemble Methods: Bagging

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 25

Apr. 5, 2022

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 8: Reinforcement Learning
– Out: Mon, Apr. 10
– Due: Fri, Apr. 21 at 11:59pm

• Homework 9: Learning Paradigms
– Out: Fri, Apr. 21
– Due: Fri, Dec. 9 at 11:59pm

(only two grace/late days permitted)

3

Crowdsourcing Exam Questions
Exercise
1. Select one of

lecture-level
learning objectives
http://mlcourse.org/slides/10601-objectives.pdf

2. Write a question
that assesses that
objective

3. Adjust to avoid
‘trivia style’
question

4

Answer Here:

http://mlcourse.org/slides/10601-objectives.pdf

CLUSTERING

5

Clustering, Informal Goals

Goal: Automatically partition unlabeled data into groups of similar

data points.

Question: When and why would we want to do this?

• Automatically organizing data.

Useful for:

• Representing high-dimensional data in a low-dimensional space (e.g.,
for visualization purposes).

• Understanding hidden structure in data.

• Preprocessing for further analysis.

Slide courtesy of Nina Balcan

Applications (Clustering comes up everywhere…)

• Cluster protein sequences by function or genes according to expression
profile.

• Cluster users of social networks by interest (community detection).

Facebook network Twitter Network

Slide courtesy of Nina Balcan

• Cluster news articles or web pages or search results by topic.

• Cluster customers according to purchase history.

Applications (Clustering comes up everywhere…)

• Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey)

• And many many more applications….

Slide courtesy of Nina Balcan

Clustering

Question: Which of these partitions is “better”?

10

OPTIMIZATION BACKGROUND

11

Block Coordinate Descent
• Goal: minimize some objective

𝜃⃗∗ = argmin
"

𝐽 𝜃⃗

• Idea: iteratively pick one variable and minimize the
objective w.r.t. just that one variable, keeping all
the others fixed.

12

𝜃!

𝜃"

𝜃⃗ #

𝜃⃗ !

𝜃⃗ " 𝜃⃗ $

Block Coordinate Descent
• Goal: minimize some objective (with 2 blocks)

𝛼⃗∗, 𝛽∗ = argmin
#,%

𝐽 𝛼⃗, 𝛽

• Idea: iteratively pick one block of variables (𝛼⃗ or 𝛽)
and minimize the objective w.r.t. that block,
keeping the other(s) fixed.

13

𝛼⃗ = argmin
%

𝐽 𝛼⃗, 𝛽⃗

𝛽⃗ = argmin
&

𝐽 𝛼⃗, 𝛽⃗

while not converged:

K-MEANS

14

K-Means Algorithm (Derivation)

15

Recipe for K-Means Derivation:

1) Define a Model.
2) Choose an objective function.
3) Optimize it!

K-Means Algorithm (Derivation)

16

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

K-Means Algorithm (Derivation)

17

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

K-Means Algorithm (Derivation)

18

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

K-Means Algorithm (Derivation)

19

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

K-Means Algorithm (Derivation)

20

• Input: unlabeled dataD = {x(i)}Ni=1, x(i) ∈ RM

• Goal: Find an assignment of points to clusters

• Model Paramters:

◦ cluster centers: C = [c1, c2, . . . , cK], cj ∈ RM

◦ cluster assignments: z = [z(1), z(2), . . . , z(N)], z(i) ∈ {1, . . . ,K}

• Decision Rule: assign each point x(i) to its nearest cluster center cj

• Objective:

Ĉ = argmin
C

N∑

i=1

min
j

||x(i) − cj ||
2
2

= argmin
C

N∑

i=1

min
z(i)

||x(i) − cz(i) ||22

Ĉ, ẑ = argmin
C,z

N∑

i=1

||x(i) − cz(i) ||22

= argmin
C,z

J(C, z)

Now apply
Block Coordinate Descent!

K-Means Algorithm

22

This is an application of
Block Coordinate Descent!

The only remaining step is to figure out
what the argmins boil down to…

1) Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) z← argminz J(C, z)
(pick each cluster assignment to minimize distance)

b) C← argminC J(C, z)
(pick each cluster center to minimize distance)

K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) for i in {1,…, N}
z(i)← argminj (|| x(i) - cj ||2)2

b) for j in {1,…,K}
cj← argmin ∑ (|| x(i) - cj ||2)2

23

cj i:z(i) = j

Likewise, the
minimization over

cluster centers
decomposes, so we

can find each cj
independently

The minimization
over cluster
assignments

decomposes, so
that we can find

each z(i)

independently of
the others

K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) for i in {1,…, N}
z(i)← index j of cluster center nearest to x(i)

b) for j in {1,…,K}
cj←mean of all points assigned to cluster j

24

K-MEANS EXAMPLE
K=3 cluster centers

26

Example: K-Means

27

Example: K-Means

28

Example: K-Means

29

Example: K-Means

30

Example: K-Means

31

Example: K-Means

32

Example: K-Means

33

Example: K-Means

34

K-MEANS EXAMPLE
K=2 cluster centers

35

Example: K-Means

36

Example: K-Means

37

Example: K-Means

38

Example: K-Means

39

Example: K-Means

40

Example: K-Means

41

Example: K-Means

42

Example: K-Means

43

Example: K-Means

44

INITIALIZING K-MEANS

45

Initialization of K-Means
K-Means Algorithm
1) Given unlabeled feature vectors

D = {x(1), x(2),…, x(N)}
2) Initialize cluster centers c = {c1,…, cK}
3) Repeat until convergence:

a) for i in {1,…, N}
z(i)← index j of cluster center nearest to x(i)

b) for j in {1,…,K}
cj←mean of all points assigned to cluster j

46

Remaining Question:
How should we initialize the cluster centers?

Three Solutions:
1. Random centers (picked from the data

points)
2. Furthest point heuristic
3. K-Means++

Initialization for K-Means

47

Example 1:
• Initialized randomly such

that each cluster center is
in a well separated
Gaussian

• Good overall performance

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Initialization for K-Means

48

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Example 1:
• Initialized randomly such

that each cluster center is
in a well separated
Gaussian

• Good overall performance

Initialization for K-Means

49

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Example 2:
• Initialized

randomly such
that two centers
are in the same
Gaussian cluster

• Poor performance
• Can be arbitrarily

bad (imagine the
final red cluster
points moving
arbitrarily far
away!)

Initialization for K-Means

50

Algorithm #1: Random Initialization
Select each cluster center uniformly at
random from the data points in the
training data

Observations:
Even when data comes from well-
separated Gaussians…
• …sometimes works great!
• …sometimes get stuck in poor local

optima.

Example 2:
• Initialized

randomly such
that two centers
are in the same
Gaussian cluster

• Poor performance
• Can be arbitrarily

bad (imagine the
final red cluster
points moving
arbitrarily far
away!)

Initialization for K-Means

• For k equal-sized Gaussians,

Pr[each initial center is in a different Gaussian] ≈ !!
!!
≈ #

$!

• Becomes unlikely as k gets large.

K-Mean Performance (with Random Initialization)

If we do random initialization, as k increases, it becomes more likely we
won’t have perfectly picked one center per Gaussian in our initialization

(so K-Means will output a bad solution).

Slide courtesy of Nina Balcan

Initialization for K-Means

52

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 1:
• No outliers
• Good performance

Initialization for K-Means

53

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 1:
• No outliers
• Good performance

Initialization for K-Means

54

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 2:
• One outlier

throws off
the algorithm

• Poor
performance

Initialization for K-Means

55

Algorithm #2: Furthest Point Heuristic
1. Pick the first cluster center c1

randomly
2. Pick each subsequent center cj so

that it is as far as possible from the
previously chosen centers c1, c2,…, cj-1

Observations:
• Solves the problem with Gaussian

data
• But outliers pose a new problem!

Example 2:
• One outlier

throws off
the algorithm

• Poor
performance

Initialization for K-Means

56

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point 𝑥 and its nearest center. Chose
the next center proportional to D"(𝐱).

Initialization for K-Means

57

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point 𝑥 and its nearest center. Chose
the next center proportional to D"(𝐱).

• Choose 𝐜𝟏 at random.

• Pick 𝐜𝐣 among 𝐱(𝟏), 𝐱(𝟐), … , 𝐱(𝒏) according to the distribution
• For j = 2, … , K

𝐏(𝐜𝐣 = 𝐱(𝐢)) ∝ 𝐦𝐢𝐧𝐣!%𝐣 𝐱(𝐢) − 𝐜𝐣!
𝟐
D+(𝐱𝐢)

Slide adapted from Nina Balcan

Theorem: K-Means++ always attains an O(log k) approximation to optimal
K-Means solution in expectation.

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0

Initialization for K-Means

58

Example 1:
• One outlier
• Good

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point 𝑥 and its nearest center. Chose
the next center proportional to D"(𝐱).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0

Initialization for K-Means

59

Example 1:
• One outlier
• Good

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point 𝑥 and its nearest center. Chose
the next center proportional to D"(𝐱).

i D(x) D2(x) P(c2 = x(i))

1 3 9 9/137

2 2 4 4/137

…

7 4 16 16/137

…

N 3 9 9/137

Sum: 137 1.0

Initialization for K-Means

60

Example 1:
• One outlier
• Good

performance

Algorithm #3: K-Means++
• Let D(x) be the distance between a

point 𝑥 and its nearest center. Chose
the next center proportional to D"(𝐱).

Observations:
• Interpolates between random and

farthest point initialization
• Solves the problem with Gaussian

data
• And solves the outlier problem

Q&A

61

Q: In k-Means, since we don’t have a validation set, how do we
pick k?

A: Look at the training objective
function as a function of k
and pick the value at the
“elbo” of the curve.

Q: What if our random initialization for k-Means gives us poor
performance?

A: Do random restarts: that is, run k-means from scratch, say, 10
times and pick the run that gives the lowest training objective
function value.
The objective function is nonconvex, so we’re just looking for
the best local minimum.

J(c, z)

k

Learning Objectives
K-Means

You should be able to…
1. Distinguish between coordinate descent and block

coordinate descent
2. Define an objective function that gives rise to a "good"

clustering
3. Apply block coordinate descent to an objective function

preferring each point to be close to its nearest
objective function to obtain the K-Means algorithm

4. Implement the K-Means algorithm
5. Connect the non-convexity of the K-Means objective

function with the (possibly) poor performance of
random initialization

62

Ensemble Methods
Ensemble methods learn a collection of models (i.e. the ensemble)
and combine their predictions on a test instance.

We consider two types:
• Bagging: learns models in parallel by taking many subsets of the

training data
• Boosting: learns models serially by reweighting the training data

63

Bagging
“BAGGing” is also called Boostrap AGGregretion
Bagging answers the question:
How can I obtain many classifiers/regressors to ensemble together?

We’ll consider three possible answers:
1. (sample) bagging
2. feature bagging (aka. random subspace method)
3. random forests (which combine sample bagging and feature

bagging to train a “forest” of decision trees)

64

BAGGING

65

(Sample) Bagging
Key idea: Repeatedly sample with replacement a collection of training
examples and train a model on that sample.
Return an ensemble of the trained models; combine predictions by
majority vote for classification and by averaging for regression.

66

Algorithm 1 (Sample) Bagging
1: procedure SĆĒĕđĊBĆČČĎēČ(D, T , S)
2: for t = 1, . . . , T do
3: for s = 1, . . . , S do
4: is ∼ Uniform(1, . . . , N)

5: St = {(x(is), y(is))}Ss=1 ! Bootstrap sample
6: ht = train(St) ! ClassiƤer

return ĥ(x) = aggregate(h1, . . . , hT) ! Ensemble

for classiƤcation: ĥ(x) = argmaxy∈Y

∑T
t=1

I[y = ht(x)] !Majority vote

for regression: ĥ(x) = 1

T

∑T
t=1

ht(x) ! Average

(Sample) Bagging

67

i x1 x2 x3 y

1 1 0 1 +

2 0 1 1 -

3 1 1 0 +

4 0 1 0 +

5 1 0 0 -

i x1 x2 x3 y

3 1 1 0 +

5 1 0 0 -

3 1 1 0 +

i x1 x2 x3 y

2 0 1 1 -

5 1 0 0 -

1 1 0 1 +

training dataD

bootstrap sample S1

bootstrap sample S2

i x1 x2 x3 y

2 0 1 1 -

4 0 1 0 +

1 1 0 1 +

bootstrap sample S3

x2
0 1

- +

x1

x3

0 1

0 1
-

- +

x1

+

x3

0 1

0 1

-

+

classiƤer h1

classiƤer h2

classiƤer h3

test instance

x1 x2 x3

0 0 0

-

-

+

-
majority

vote

Feature Bagging
Key idea: Repeatedly sample without replacement a subset of the
features, create a copy of the training data with only those features, and
train a model on the copy.
Return an ensemble of the trained models; combine predictions by
majority vote for classification and by averaging for regression.

68

Algorithm 2 Feature Bagging
1: procedure SĆĒĕđĊBĆČČĎēČ(D, T , S)
2: for t = 1, . . . , T do
3: for s = 1, . . . , S do
4: ms ∼ Uniform(1, . . . ,M)

5: for i = 1, . . . , N do
6: x̃(i) = [x(i)

m1
, x

(i)
m2

, . . . , x
(i)
mS

]T

7: Dt = {(x̃(i), y(i)}Ni=1 ! Random subspace
8: ht = train(Dt) ! ClassiƤer

return ĥ(x) = aggregate(h1, . . . , hT) ! Ensemble

Feature Bagging

69

i x1 x2 x3 x4 y

1 1 0 1 0 +

2 0 1 1 1 -

3 1 1 0 0 +

i x4 x2 y

1 0 0 +

2 1 1 -

3 0 1 +

i x2 x3 y

1 0 1 +

2 1 1 -

3 1 0 +

training dataD

bootstrap sample S1

bootstrap sample S2

i x1 x3 y

1 1 1 +

2 0 1 -

3 1 0 +

bootstrap sample S3

x4
0 1

+ -

x2

x3

0 1

0 1
-

+ -

classiƤer h1

classiƤer h2

classiƤer h3

test instance

x1 x2 x3 x4

0 1 0 0

+

+

-

+
majority

vote

x1
0 1

- +

RANDOM FORESTS

70

Random
Forests

� Combines the prediction of many diverse decision trees to

reduce their variability

� If 𝐵 independent random variables 𝑥 ' , 𝑥 (, … , 𝑥) all have

variance 𝜎(, then the variance of is
*!

+

� Random forests

= bagging + split-feature randomization

= bootstrap aggregating + split-feature randomization

71

1
𝐵
.
#$%

&

𝑥 # 𝜎"

𝐵

Henry Chai - 8/2/22

Random Forests
Key idea: Combine (sample) bagging and a specific variant of feature
bagging to train decision trees.

Repeat the following to train many decision trees:
• draw a sample with replacement from the training examples,
• recursively learn the decision tree
• but at each node when choosing a feature on which to split, first

randomly sample a subset of the features, then pick the best feature
from among that subset.

Return an ensemble of the trained decision trees.

72

Split-feature
Randomizati
on

� Issue: decision trees trained on bootstrapped
samples still behave similarly

� Idea: in addition to sampling the data points (i.e.,
the rows), also sample the features (i.e., the
columns)

� Each time a split is being considered, limit the
possible features to a randomly sampled subset

Henry Chai - 8/2/22 76

Runtime Genre Budget Year IMDB Rating

Split-feature
Randomizati
on

� Issue: decision trees trained on bootstrapped
samples still behave similarly

� Idea: in addition to sampling the data points (i.e.,
the rows), also sample the features (i.e., the
columns)

� Each time a split is being considered, limit the
possible features to a randomly sampled subset

Henry Chai - 8/2/22 77

Runtime Genre Budget Year IMDB Rating

Runtime

Split-feature
Randomizati
on

� Issue: decision trees trained on bootstrapped
samples still behave similarly

� Idea: in addition to sampling the data points (i.e.,
the rows), also sample the features (i.e., the
columns)

� Each time a split is being considered, limit the
possible features to a randomly sampled subset

Henry Chai - 8/2/22 78

Runtime Genre Budget Year IMDB Rating

Runtime

Genre

Split-feature
Randomizati
on

� Issue: decision trees trained on bootstrapped
samples still behave similarly

� Idea: in addition to sampling the data points (i.e.,
the rows), also sample the features (i.e., the
columns)

� Each time a split is being considered, limit the
possible features to a randomly sampled subset

Henry Chai - 8/2/22 79

Runtime Genre Budget Year IMDB Rating

Runtime

Genre Genre

Random
Forests

� Input: 𝒟 = 𝒙 + , 𝑦 +
+,'
-

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵
� Create a dataset, 𝒟#, by sampling 𝑁 points from

the original training data 𝒟 with replacement

� Learn a decision tree, 𝑡#, using 𝒟# and the CART

algorithm with split-feature randomization,

sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡', … , 𝑡) , the aggregated

hypothesis

80Henry Chai - 8/2/22

81Henry Chai - 8/2/22

How can we
set 𝐵 and 𝜌?

� Input: 𝒟 = 𝒙 + , 𝑦 +
+,'
-

, 𝐵, 𝜌

� For 𝑏 = 1, 2, … , 𝐵
� Create a dataset, 𝒟#, by sampling 𝑁 points from

the original training data 𝒟 with replacement

� Learn a decision tree, 𝑡#, using 𝒟# and the CART

algorithm with split-feature randomization,

sampling 𝜌 features for each split

� Output: ̅𝑡 = 𝑓 𝑡', … , 𝑡) , the aggregated

hypothesis

Recall:
Validation
Sets

� Suppose we want to compare
multiple hyperparameter settings
𝜃', … , 𝜃.

� For 𝑘 = 1, 2, … , 𝐾
� Train a model on 𝐷'()*+ using 𝜃,

� Evaluate each model on 𝐷/01 and
find the best hyperparameter
setting, 𝜃2∗

� Compute the error of a model
trained with 𝜃2∗ on 𝐷3453

Henry Chai - 8/2/22 82

𝐷'()*+

𝐷-).

𝐷'/0'

Out-of-bag
Error

� For each training point, 𝒙 + , there are some decision

trees which 𝒙 + was not used to train (roughly ⁄𝐵 𝑒
trees or 37%)

� Let these be 𝑡 1+ = 𝑡%
1+ , 𝑡"

1+ , … , 𝑡2!"
1+

� Compute an aggregated prediction for each 𝒙 + using

the trees in 𝑡 6+ , ̅𝑡 6+ 𝒙 +

� Compute the out-of-bag (OOB) error, e.g., for

regression

83

𝐸33& =
1
𝑁
.
+$%

2

̅𝑡 1+ 𝒙 + − 𝑦 + "

Henry Chai - 8/2/22

Out-of-bag
Error

� For each training point, 𝒙 + , there are some decision

trees which 𝒙 + was not used to train (roughly ⁄𝐵 𝑒
trees or 37%)

� Let these be 𝑡 1+ = 𝑡%
1+ , 𝑡"

1+ , … , 𝑡2!"
1+

� Compute an aggregated prediction for each 𝒙 + using

the trees in 𝑡 6+ , ̅𝑡 6+ 𝒙 +

� Compute the out-of-bag (OOB) error, e.g., for

classification

� 𝐸77) can be used for hyperparameter optimization!

84Henry Chai - 8/2/22

𝐸33& =
1
𝑁
.
+$%

2

̅𝑡 1+ 𝒙 + ≠ 𝑦 +

Out-of-bag
Error

� Suppose we want to compare
different numbers of trees in our
random forest 𝐵', … , 𝐵.

� For 𝑘 = 1, 2, … , 𝐾
� Train a random forest on 𝐷'()*+

with 𝐵, trees

� Compute 𝐸77) for each random
forest and find the best number of
trees, 𝐵2∗

� Evaluate the random forest with
𝐵2∗ trees on 𝐷3453

Henry Chai - 8/2/22 85

𝐷'()*+

𝐷'/0'

Setting Hyperparameters
86

Henry Chai - 8/2/22

Converges quickly

Optimal value
somewhere in the
middle

Feature
Importance

87Henry Chai - 8/2/22

� Some of the interpretability of decision trees gets lost

when switching to random forests

� Random forests allow for the computation of “feature

importance”, a way of ranking features based on how

useful they are at predicting the target

� Initialize each feature’s importance to zero

� Each time a feature is chosen to be split on, add the

reduction in Gini impurity (weighted by the number of

data points in the split) to its importance

Henry Chai - 8/2/22 88

Feature
Importance

Key
Takeaways

� Ensemble methods employ a “wisdom of crowds”

philosophy

� Can reduce the variance of high variance methods

� Random forests = bagging + split-feature

randomization

� Aggregate multiple decision trees together

� Bootstrapping and split-feature randomization

increase diversity in the decision trees

� Use out-of-bag errors for hyperparameter

optimization

� Use feature importance to identify useful attributes

Henry Chai - 8/2/22 89

Learning Objectives
Ensemble Methods: Bagging

You should be able to…
1. Distinguish between (sample) bagging, the random subspace

method, and random forests.
2. Implement (sample) bagging for an arbitrary base

classifier/regressor.
3. Implement the random subspace method for an arbitrary base

classifier/ regressor.
4. Implement random forests.
5. Contrast out-of-bag error with cross-validation error.
6. Differentiate boosting from bagging.
7. Compare and contrast weighted and unweighted majority vote of a

collection of classifiers.
8. Discuss the relation in bagging between the sample size and variance

of the base classifier/regressor.
9. Bound the generalization error of a random forest classifier.

90

