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Reminders

* Homework 8: Reinforcement Learning
— Out: Mon, Apr. 10
— Due: Fri, Apr. 21 at 11:59pm

* Homework 9: Learning Paradigms

— Out: Fri, Apr. 21

— Due: Fri, Dec. 9 at 11:59pm
(only two grace/late days permitted)




Learning Paradigms

Paradigm

Supervised

— Regression

— Classification

— Binary classification
— Structured Prediction
Unsupervised

— Clustering

— Dimensionality Reduction
Semi-supervised

Online

Active Learning
Imitation Learning

Reinforcement Learning

Data

D = {X(i)> y(i)}évﬂ
y(@® e R

y® e {1,...,K}
y® e {+1,-1}
y(%) is a vector
D—{xOW,  x~p()

predict {z(D}N. where z() € {1,..., K}

convert each x® € RM tou® € RE with K << M
D= {X(i)a y(i)}f;iﬁ U {X(j)}jy:Q1

D = {(xW,yM), (x@) 4@ (x3) 4B, .}

D = {x®}¥  and can query (¥ = ¢*(-) ata cost

D = {(sM,aM), (5,a@), ..}

D= {(S(l)ﬂ(l),r(l)), (8(2),0,(2),7«(2)), .

x ~p*(-)andy = c*(+)



ML Big Picture

Learning Paradigms: Problem Formulation:

. . Q . . 7 -~
What data is available and What is the structure of our output prediction: <
when? What form of prediction? boolean Binary Classification 50
. . )
. supervised learning categorical Multiclass Classification 8_8
0 unsupervised learning . . DS =
el ea ordinal Ordinal Classification ] g =
. reinforcement learning real Regression i_) W Y.Y
°  activelearning ordering Ranking = o <5
. imitation learning . . _ o S 8 0
domain adaptation multiple discrete  Structured Prediction s 2 0 §
online learning multiple continuous (e.g. dynamical systems) o S %C«_S
sl ESITE e both discrete & (e.g. mixed graphical modelé)\| & = ot 5
recommender systems Qo <12 o
] cont. LI X Z>0n

manifold learning
dimensionality reductio
ensemble learning

distant supervision
hyperparameter optimization

feature learning
n

Facets of Building ML
Systems:

How to build systems that are
robust, efficient, adaptive,
effective?

~Bigldeasin ML:
Which are the ideas driving
development of the field?

* inductive bias

eoretical Foundations: 1. Data prep «  generdlization / overfitting
What principles guide learning? 2. Model selection *  bias-variance decomposition
Q probabilistic 3. T"a"”"i:’)g (optimization / *  generative vs. discriminativ
searc :

. . : * deep nets, graphical model
 information theoretic 4. Hyperparameter tuning on o P’ » ErIp

evolutionary search validation data . Glegining

ML timizati 5. (Blind) Assessment on tes distant rewards

as optimization data




Outline for Today

We’ll talk about two distinct topics:

1. Ensemble Methods: combine or learn multiple
classifiers into one
(i.e. a family of algorithms)

2. Recommender Systems: produce
recommendations of what a user will like
(i.e. the solution to a particular type of task)

We’ll use a prominent example of a recommender
systems (the Netflix Prize) to motivate both
topics...



RECOMMENDER SYSTEMS



Recommender Systems

A Common Challenge:

— Assume you’re a company
selling items of some sort:
movies, songs, products,
etc.

— Company collects millions
of ratings from users of
their items

— To maximize profit [ user
happiness, you want to
recommend items that
users are likely to want



Recommender Systems

f ,'--, . b’ ‘ ‘
{ 4 ‘ .“/
w NEW & INTERESTING FINDS ON AMAZON e i ! .
( » Nz — s ot —a
amazon
N - Prime

9

Hello, Matt
Departments ~ Browsing History ~ Matt's Amazon.com Cyber Monday Gift Cards & Registry  Sell Your Account ~

Your Amazon.com Your Browsing History Recommended For You Improve Your Recommendations Your Profile Learn More
L . .
Matt's You could be seeing useful stuff here! e
Amazon Sign in to get your order status, balances and rewards. g

Recommended for you, Matt

World of Anna Hibiscus 8 Books... Biodegradable Dental Floss with a Adsumudi Math Game - The Yamamotoyama - Jasmine Tea 16
' & & & & R4 Refillable Glass Holder |... Monstrously Fun, Smart Game... bags
70 pts $9.99 $17.99 $6.30
prime FREE Delivery prime FREE Delivery prime FREE Delivery prime FREE Delivery

12



Recommender Systems
NETFLIX

Netflix Prize

Home Rules Leaderboard Update

Congratulations!

The Netflix Prize sought to substantially
improve the accuracy of predictions about
how much someone is going to enjoy a
movie based on their movie preferences.

On September 21, 2009 we awarded the
$1M Grand Prize to team “BellKor’s
Pragmatic Chaos™. Read about their
algorithm, checkout team scores on the
Leaderboard, and join the discussions on
the Forum.

We applaud all the contributors to this
quest, which improves our ability to
connect people to the movies they love.

FAQ | Forum | NetflixHome
© 1997-2009 Netfiix, Inc. All rights reserved.




Recommender Systems
NETFLIX

N o
N f’l‘ l’

LI LILLV A N R B Y ) -

The Netflix Prize sought to substantially
improve the accuracy of predictions about
how much someone is going to enjoy a
movie based on their movie preferences.

On September 21, 2009 we awarded the
$1M Grand Prize to team "BellKor’s
Pragmatic Chaos”. Read about their
algorithm, checkout team scores on the
Leaderboard, and join the discussions on
the Forum.

We applaud all the contributors to this
quest, which improves our ability to
connect people to the movies they love.

FAQ | Forum 14
© 1997-2009 Netfix, It




Recommender Systems

Netflix Prize

Home Rules Leaderboard Update

BigChaos . -
Opera Solutions " . 2009-07-24 00:34:07
BellKor . . 2009-07-26 17:19:11




ENSEMBLE METHODS



Recommender Systems
NETFLIX

x Prize CONPLETED

Home Rules Leaderboard Update

Top performing systems
Leaderboard were ensembles

Showing Test Score. Click here to show quiz score

Rank Team Name Best ore % Improvement Best Submit Time
1 BellKor's Pragmatic Chaos 0.8567 10.06 2009-07-26 18:18:28
2 The Ensemble 0.8567 10.06 2009-07-26 18:38:22
3 Grand Prize Team 0.8582 9.90 2009-07-10 21:24:40
4 Opera Solutions and Vandelay United 0.8588 9.84 2009-07-10 01:12:31

5 Vandelay Industries ! 0.8591 9.81 2009-07-10 00:32:20
6 PragmaticTheory 0.8594 9.77 2009-06-24 12:06:56
Y § BellKor in BigChaos 0.8601 9.70 2009-05-13 08:14:09
8 Dace _ 0.8612 9.59 2009-07-24 17:18:43
9 Feeds2 0.8622 9.48 2009-07-12 13:11:51

10 BigChaos 0.8623 9.47 2009-04-07 12:33:59
1 Opera Solutions 0.8623 9.47 2009-07-24 00:34:07
12 BellKor 0.8624 9.46 2009-07-26 17:19:11



Weighted l\/\a]orlty Algorlthm

(Littlestone & Warmuth, 1994)

* Given: pool A of binary classifiers (that
you know nothing about)

 Data: stream of examples (i.e. online

learning setting) R g
* Goal: design a new learner that uses o ©
the predictions of the pool to make
new predictions ®
* Algorithm: +
— Initially weight all classifiers equally
— Receive a training example and predict 4

the (weighted) majority vote of the
classifiers in the pool

— Down-weight classifiers that contribute

to a mistake by a factor of 7



Weighted l\/\a]orlty Algorithm

(Littlestone & Warmuth, 1994)

Suppose we have a pool of T' binary classifiers A = {hy, ..., hr}
where h; : RM — {+1 —1}. Let oy be the weight for c|a55|ﬁer h,t

Algorithm 1 Weighted Majority Algorithm

1:
2:
3:
4:

procedure WEIGHTEDMAJORITY(A, ()

Initialize classifier weights oy, = 1, Vt € {1, ...

for each training example (x,y) do

7T}

Predict majority vote class (splitting ties randomly)

h(z) = sign (Z atht(x)>

if a mistake is made h(z) # y then
for each classifiert € {1,...,7T} do
If he(z) # y, then oy < Loy




Weighted Majority Algorithm

Theorems (Littlestone & Warmuth, 1994)

For the genéral case where WM is applied to
a pool A of algorithms we show the following
upper bounds on the number of mistakes made

in a given sequence of trials: <:: These are
€ .
1. O(log|A|+m), if one algorithm of A makes mls’t’a ke
at most m mistakes. bounds” of the
y variety we saw
2. gl(log.tjl-l,;l + ;n)‘, if 1eia,ch tof a subpo.olt (;(f k for the
gorithms o makes at most m mistakes. Perceptron
3. O(log ]'—;:-l + %), if the total number of mis- algorithm
takes of a subpool of k algorithms of A is

at most m.



ADABOOST



Comparison

Weighted Majority Algorithm AdaBoost

* anexample of an * an example of a boosting
ensemble method method

e assumes the classifiersare ¢ simultaneously learns:
learned ahead of time — the classifiers themselves

* only learns (majority vote) — (majority vote) weight for

weight for each classifiers each classifiers

£§aw\“)lg) qu]"u) ~
°w\7 Leerns A clegi §ies
Locs wot S Ahsir WS

27



AdaBoost

 Definitions

— Def: a weak learner is one that returns a
hypothesis that is not much better than random
guessing

— Def: a strong learner is one that returns a
hypothesis of arbitrarily low error

* AdaBoost answers the following question:

— Does that exist an efficient learning algorithm
that can combine weak learners to obtain a
strong learner?



AdaBoost: Toy Example

weak classifiers = vertical or horizontal half-planes

Slide from Schapire NIPS Tutorial



AdaBoost: Toy Example

Slide from Schapire NIPS Tutorial

31



AdaBoost: Toy Example

ﬂ(@ oy 2 W; ﬂ(\’m, h(x")

/12 D3
+ - B +
S St = _I_
—+ o S + @ @ S
- — - -
= ©

€7=0.21
oc2=0.65

Slide from Schapire NIPS Tutorial

32



AdaBoost: Toy Example

£7=0.14

Slide from Schapire NIPS Tutorial

33



AdaBoost: Toy Example

L\| y A lqz
H =sign | 0.42 + 0.65 +0.92
final
s
£
f— + — S
+ =

Slide from Schapire NIPS Tutorial



AdaBoost

Given: (x1,y1), -+, (Tm, ym) Where z; € X, y; € Y = {-1,+1}
Initialize D1(7) = 1/m.
Fort=1,...,T:

e Train weak learner using distribution D;.
e Get weak hypothesis h; : X — {—1, +1} with error

€ = Privp, [hi(2:) 7 yi -

e Choose oy = %ln (ﬂ) —— LA(Von) %o k‘;k error, swall m)l\-l—

4 Update: “ "i“(o%-‘) ;r [oamor, que wc\}'«l-
Di(i) = *Di(0) [ e i hy(wi) =y 1S comecd, doun werly
t+1 7 e if by () # Yi 1§ inomst, P weigh

Dy (i) exp(—auy;hy(2;)) LL:C"" chss : yueyht more

= Zt .\_Cltﬁ; :ﬁr\.av\* zgs

where Z; is a normalization factor (chosen so that D, ; will be a distribution).

Output the final hypothesis:
T
H(z) = sign (Z atht(a:)) :

t=1

35
Algorithm from (Freund & Schapire, 1999)



AdaBoost: Theory

(Training) Mistake Bound

The most basic theoretical property of AdaBoost concerns its ability to reduce the training error.
Let us write the error & of h, as 5 — 7:. Since a hypothesis that guesses each instance’s class
at random has an error rate of 1 / ZToTb_mary problems), +; thus measures how much better than
random are h,’s predictions. Freund and Schapire [23] prove that the training error (the fraction of
mistakes on the training set) of the final hypothesis H is at most

IT [2V/e:(1 —€) H\/l——l”;,“<(‘\p (—)Z 2) (1)

t
Thus, if each weak hypothesis is slightly better than random so that 7; = 7 for some 7 > 0, then
the training error drops exponentially fast.

36

Figure from (Freund & Schapire, 1999)



AdaBoost: Theory

Generalization Error

Freund and Schapire [23] showed how to bound the generalization error of the final hypothesis in
terms of its training error, the sample size m, the VC-dimension d of the weak hypothesis space and
the number of boosting rounds 7. (The VC-dimension is a standard measure of the “complexity”
of a space of hypotheses. See, for instance, Blumer et al. [5].) Specifically, they used techniques
from Baum and Haussler [4] to show that the generalization error, with high probability, is at most

Pr{H(z) #y + O (

where Pr -| denotes empirical probability on the training sample. This bound suggests that boost-
ing will overfit if run for too many rounds, i.e., as 7" becomes large. In fact; this sometimes does
happen. However, in early experiments, several authors [9, 15, 36] observed empirically that boost-
ing often does not overfit, even when run for thous s. Moreover, 1t was observed that
AdaBoost would sometimes continue to drive down the generalization error long after the training
error had reached zero, clearly contradicting the spirit of the bound above. For instance, the left

37

Figure from (Freund & Schapire, 1999)



AdaBoost

1.0-

0.5-

cumulative distribution

10 100 1000

# rounds margin
log - gt

Figure 2: Error curves and the margin distribution graph for boosting C4.5 on the letter dataset as
reported by Schapire et al. [41]. Left: the training and test error curves (lower and upper curves,
respectively) of the combined classifier as a function of the number of rounds of boosting. The
horizontal lines indicate the test error rate of the base classifier as well as the test error of the final
combined classifier. Right: The cumulative distribution of margins of the training examples after 5,
100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly hidden) and solid curves,
respectively.

Figure from (Freund & Schapire, 1999)



BAGGING VS. BOOSTING



Bagging vs. Boosting

* Bagging tends to be most useful when your
classifiers exhibit high variance from one
training sample to the next

* Boosting tends to be most useful when your
classifiers exhibit high bias (i.e. are very
simple)



Bias-Variance Tradeoff

Suppose we have a regression dataset D = {x(¥, 51N for
which y(9) = ¢*(x(¥)) + ¢ where € ~ Gaussian(0, 1).

We can decompose the mean squared error of a classifier hg(-)
as follows:

E[(y — he(x))?] = Bias® + Variance + ¢*
where
Bias = E|hg(x)| — E|c"(x)]
Variance = E[(E[hg(x)] — ho(x))?]

Above, all the expectations are under the uniform distribution over
the dataset (x,y) ~ D.

For binary classification with y(?) ¢ {0, 1}, we can take
hg(x) = p(y = 1 | x) and the same decomposition applies.



Bias-Variance Tradeoff

Suppose you have two regressors with the same MSE, but...
classifier A is heavily overfitting
classifier B is heavily underfitting

the
E[(y — hg(x))?] = Bias® + Variance + ¢* irreducible
where error
bad
Bias = E[hé’ (X)] — E[C* (X)] assumptions
in learner

Variance = E[(E[hg(x)] — ho(x))?]
sensitivity to
noise in data
We can interpret this as a tradeoff between...

classifier A: achieving low bias at the expense of high variance
classifier B: achieving low variance at the expense of high bias



Learning Objectives

Ensemble Methods: Boosting

You should be able to...

1. Explain how a weighted majority vote over
linear classifiers can lead to a non-linear
decision boundary

2. Implement AdaBoost

3. Describe a surprisingly common empirical
result regarding Adaboost train/test curves



RECOMMENDER SYSTEMS



Recommender Systems

Netflix Prize

Home Rules Leaderboard Update

BigChaos . -
Opera Solutions " . 2009-07-24 00:34:07
BellKor . . 2009-07-26 17:19:11




Recommender Systems

NETFLIX

DJ] S
\ | «
N\ e

LIIX PEIZE

o

CONPLETED

Home Rules

Leaderboard Update

Leaderboard

Showing Test Score. Click here to show quiz score

Rank

O O ~N O O & W N =g

- -
N = O

Team Name

BellKor's Pragmatic Chaos

The Ensemble

Grand Prize Team

Opera Solutions and Vandelay United

Vandelay Industries !
PragmaticTheory
BellKor in BigChaos
Dace

Feeds2

BigChaos

Opera Solutions
BellKor

Best Test Score % Improvement Best Submit Time

0.8567
0.8567
0.8582
0.8588
0.8591
0.8594
0.8601
0.8612
0.8622
0.8623
0.8623
0.8624

10.06
10.06
9.90
9.84
9.81
9.77
9.70
9.59
9.48
9.47
9.47
9.46

2009-07-26 18:18:28
2009-07-26 18:38:22
2009-07-10 21:24:40
2009-07-10 01:12:31
2009-07-10 00:32:20
2009-06-24 12:06:56
2009-05-13 08:14:09
2009-07-24 17:18:43
2009-07-12 13:11:51
2009-04-07 12:33:59
2009-07-24 00:34:07
2009-07-26 17:19:11
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Recommender Systems

* Setup:
— [tems:

movies, songs, products, etc.
(often many thousands)

— Users:
watchers, listeners, purchasers, etc.
(often many millions)

— Feedback:
5-star ratings, not-clicking ‘next’,
purchases, etc.
* Key Assumptions:

— Can represent ratings numerically
as a user/item matrix

— Users only rate a small number of
items (the matrix is sparse)

Alice
Bob 3
Charlie ' 3

47



Two Types of Recommender Systems

Content Filtering Collaborative Filte@

* Example: Pandora.com * Example: Nettlix movie
music recommendations recommendations
(Music Genome Project) * Pro: Does not assume

* Con: Assumes access to access to

about about items (e.g. does not

items (e.g. properties of a need to know about movie
song) genres)

* Pro: Gotanewitemto * Con: Does not work on
add? No problem, just be new items that have no
sure to include the side ratings

information



COLLABORATIVE FILTERING



Collaborative Filtering

* Everyday Examples of Collaborative Filtering...
— Bestseller lists
— Top 40 music lists
— The “recent returns” shelf at the library
— Unmarked but well-used paths thru the woods
— The printer room at work
— “Read any good books lately?”

* Common insight: personal tastes are correlated

— If Alice and Bob both like X and Alice likes Y then
Bob is more likely to like Y

— especially (perhaps) if Bob knows Alice

Slide from William Cohen



Two Types of Collaborative Filtering

1. Neighborhood Methods 2. Latent Factor Methods

Serious
-
The Color Purple Amadeus @
@ Lethal Weapon
Sense and
Geared Sensibility {locean's 11 - s
toward « o > toward
8 females B e
i am
| h. ! Dave
Joe | Dumb and
-1 Dumber
— Independence| | ="
Diaries Day <
Gus
Escapist
51

Figures from Koren et al. (2009)



Two Types of Collaborative Filtering
1. Neighborhood Methods

= In the figure, assume that

Al e 1
EO a green line indicates the
7FT movie was watched
1
i Algorithm:

1. Find neighbors based
on similarity of movie
preferences

. Recommend movies
that those neighbors
watched

52
Figures from Koren et al. (2009)



Two Types of Collaborative Filtering

2. Latent Factor Methods

e Assume that both Serious
movies and users

. The Color Purple Amadeus ‘
live in some low- a s |55
o8 / \
\

Braveheart

dimensional space 4
descrlblpg their @ . [[ethalWeapon
properties Senseand \
Gaed |Sensibiity (Ocearis 11]* | g Geared
e Recommend a e e toward
movie based on its  females ,}-P \ e
proximity to the L Dave. b
. e = \
user in the latent The Lisa King RS Db and
a1 Dumber
space . eAL
P The Princess Independence| | @
« Example Algorithm: Diaries Day
Matrix Factorization Escapist

53
Figures from Koren et al. (2009)



Recommending Movies

Question: Q i Answer:

Applied to the Netflix Prize

problem, which of the following T Gy
methods always requires side | Ree Y
infor.mation about the users and —_— ')j;”.
movies? Comt - v
Select all that apply

A. principal component analysis

B. collaborative filtering Ty, Xt

C. latent factor methods m %
D. ensemble methods

E. content filtering [er

F. neighborhood methods

G. recommender systems

H - '\'bxlc



MATRIX FACTORIZATION



Matrix Factorization

* Many different ways of factorizing a matrix

 We’ll consider three:

@ Unconstrained Matrix Factorization
Iz. Singular Value Decomposition
3. Non-negative Matrix Factorization

* MF is just another example of a common

recipe:
1. define a model
2. define an objective function
3. optimize with SGD



Matrix Factorization

Whiteboard

— Background: Low-rank Factorizations
— Residual matrix



MF for Netflix Problem

Example

VONVIGYSYD [© |[@ | |o |e |[o | o
NVNOMALLIYd [@ |© |[©@ |© |o |o | o .x
I1LIVISNISSIIdITIS |© |[© |[© |[©@ | |o | m
vilvdoan [© (@ (o f T [T ([T F_m
P =
gvsavasnnnr | @ @ |e |e |@ |° =
OY3IN o o o o o o (=] w
i ~ o < n o ~ m
_ I — =)
> T Q
0© = >
B 8 g
I o
o
VONVIGVYSYD | © | -
NVINOM ALLFYd [© |
J1LIVAIS NISSATdaTIs (e | - 5
vyIvdoan | ~ 1_
HVvs3avd sninnr H_ o
OYIN||— | @ M

HISTORY
OMANCE

<
>
g & 7
onvwod[ e \\e o[-~ [= [~
>
A4OLSHY < §[
TTHlN o  F 0 © N
VONVIGYSYD [ @ |©@ |© | [ | = |
NYWOMALLFYd | C (@ | | [ [+ |
JILIVASNISSIIdITIS (@ (@ |@ [ [ |+ |+ o
vdlvdoI1D | 7 | T [ |
gvsavosniinr | < (< | < |
OYAN| = [ [ | <
- N &M & n O N
[ I -
& z S
(@) o) <
7 - S
T (o]
3

(a) Example of rank-2 matrix factorization
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Figures from Aggarwal (2016)



Regression vs. Collaborative Filtering

Regression
%

Collaborative Filtering

x Ke Ky X /‘/
TRAINING %
W W | 4
NO
% DEMARCATION
BETWEEN
. % TRAINING AND
4 TEST ROWS
% TEST %
% ROWS ,
W v
< > < >
INDEPENDENT DEPENDENT NO DEMARCATION BETWEEN DEPENDENT
VARIABLES VARIABLE AND INDEPENDENT VARIABLES

Figures from Aggarwal (2016)



UNCONSTRAINED MATRIX
FACTORIZATION



Unconstrained Matrix Factorization

Whiteboard
— Optimization problem
— SGD
— SGD with Regularization
— Alternating Least Squares
— User/item bias terms (matrix trick)



Unconstrained Matrix Factorization

SGD for UMF:
whzle Vw+ thwc,y-é:
D Sl () Som Z wifl, oA ade

OC»-ﬂuk g5 = —UT’:)

Unlede 1
@ F Dsc — 6; 1 X‘VD}‘)Q(U/V\)
V; +— ¥ - V%, 35(

V*. Gy = - 7 V\uL
V‘{) J‘D(U V> e';) U + 7\?{}
whoe e = 0 - 0-V:




Unconstrained Matrix Factorization

SGD for UMF:

USU / I—lu&(g 24 ;
3T,

U: f ﬁ//'/ \/:‘ |\;'
|l




Unconstrained Matrix Factorization

Alternating Least Squares (ALS) for UMF:
Blocle  (oord. T}Su-l— N

NL‘& aot C,Mv-gel (,"‘,:\l 3(, ¢o

@ U = Ql‘)wm j(() ,V) /
® V - °‘9"‘““‘ S,V
Law. Q@a

SOV = 2 - 0:9)° ©)- % 2_ = (y.-8'%)
Ak ¥ Ot&\d} s % V "9’\“4
Lesst slvw Lewct Spoms U
Opho H1: b JWM,??QJ( b 2e  ~d sohe
Ca clowd F
* soh JOV) M chmed Sl dinddly ot ny

, «M\ D(LV) o wencovivex
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Matrix Factorization

Example
Factors

Factor vector 2

-1.0

=15 F

-1.5 -1.0 -0.5 0.0 0.5 1.0
Factor vector 1

Figure 3. The first two vectors from a matrix decomposition of the Netflix Prize
data. Selected movies are placed at the appropriate spot based on their factor

vectors in two dimensions. The plot reveals distinct genres, including clusters of
movies with strong female leads, fraternity humor, and quirky independent films.

Figure from Koren et al. (2009)



Matrix Factorization

o O LBFGS
O A SGD
< _ + ALS
Lo
% ALS = alternating least squares
a c%b
L
2 o
3 o
. o
g — %
L
= ! o
o | |\
=3 AN
\ \
+
L +++++++
ol “na SRR I o o O N SR SRR

Figure from Gemulla et al. (2011) epoch



SVD FOR COLLABORATIVE
FILTERING



Singular Value Decomposition
for Collaborative Filtering

For any arbitrary matrix A, SVD gives a decomposition:
A =UAV!

where A is a diagonal matrix, and U and V are orthogonal matrices.

Suppose we have the SVD of our ratings matrix
R=QxPT,

but then we truncate each of ), X, and P s.t. () and P have only &
columnsand X is k£ X k:

Theorem: If R fully
observed and no

R~ kakpg regUIarizatiOn, the
For collaborative filtering, let: optlmal UV from
SVD equals the
U2 Q3 optimal UV' from
Vap, Unconstrained MF

1
= U,V = argmin ~||R — UV'||3
A

s.t. columns of U are mutually orthogonal
s.t. columns of V are mutually orthogonal



NON-NEGATIVE MATRIX
FACTORIZATION



Implicit Feedback Datasets

* What information does a five-star rating contain?

e 3 e e e

* Implicit Feedback Datasets:
— In many settings, users don’t have a way of expressing dislike for an
item (e.g. can’t provide negative ratings)
— The only mechanism for feedback is to “like” something
* Examples:
— Facebook has a “Like” button, but no “Dislike” button
— Google’s “+1” button
— Pinterest pins

— Purchasing an item on Amazon indicates a preference for it, but
there are many reasons you might not purchase an item (besides

dislike)
— Search engines collect click data but don’t have a clear mechanism
for observing dislike of a webpage

Examples from Aggarwal (2016)



Non-negative Matrix Factorization

Constrained Optimization Problem:

1
U,V = argmin ~||R — UV!||3
oy 2

J

Multiplicative Updates: simple iterative
algorithm for solving just involves multiplying a
few entries together



Fighting Fire with Fire: Using Antidote Data to Improve
Polarization and Fairness of Recommender Systems

Bashir Rastegarpanah Krishna P. Gummadi Mark Crovella
Boston University MPI-SWS Boston University
bashir@bu.edu gummadi@mpi-sws.org crovella@bu.edu

where ;= ¥;cq uiu] + 00T + 21,

By using (9) instead of the general formula in (5) we can signif-
icantly reduce the ber of computations required for finding
the gradient of the utility function with respect to the antidote
data. Furthermore, the term g,-"U"SJTl appears in all the partial

P jof X and can
be precomputed in each iteration of the algorithm and reused for
computing partial derivatives with respect to different antidote
users.

derivatives that cori d to el in

5 SOCIAL OBJECTIVE FUNCTIONS

The previous section developed a general framework for improving
various properties of recommender systems; in this section we show
how to apply that framework specifically to issues of polarization
and fairness.

As described in Section 2, polarization is the degree to which
opinions, views, and sentiments diverge within a population. Rec-
ommender systems can capture this effect through the ratings that
they present for items. To formalize this notion, we define polariza-
tion in terms of the variability of predicted ratings when compared
across users. In fact, we note that both very high variability, and
very low variability of ratings may be undesirable. In the case of
high variability, users have strongly divergent opinions, leading to
conflict. Recent analyses of the YouTube recommendation system
have suggested that it can enhance this effect [29, 30]. On the other
hand, the convergence of user preferences, i.e., very low variability
of ratings gn'en to each item across users, corresponds to increased

2 y, an undesirable pk that may occur as users
interact with a recommender system [11]. As a result, in what
follows we consider using antidote data in both ways: to either
increase or decrease polarization.

As also described in Section 2, unfairness is a topic of growing
interest in machine learning. Following the discussion in that sec-
tion, we consider a recommender system fair if it provides equal
quality of service (Le., prediction accuracy) to all users or all groups
of users [36].

Next we formally define the metrics that specify the objective
functions associated with each of the above objectives. Since the
gradient of each objective function is used in the optimization algo-
rithm, for reproducibility we provide the details about derivation
of the gradients in appendix A.2.

5.1 Polarization

To capture polarization, we seek to measure the extent to which the
user ratings disagree. Thus, to measure user polarization we con-
sider the estimated ratings X, and we define the polarization metric
as the normalized sum of pairwise euclidean distances between
estimated user ratings, ie., between rows of X. In particular:

1
Rpol (X d

1 M:

Z -&)e (10)
=

The normalization term ;&7 in (10) makes the polarization metric

identical to the following definition: *
. 1 d
Rpot(X) = Z‘ o an
=

where o? is the variance of estimated user ratings for item j. Thus
this polarization metric can be interpreted either as the average of
the variances of estimated ratings in each item, or equivalently as
the average user disagreement over all items.

5.2 Fairness

Individual fairness. For each user i, we define £;, the loss of user
i, as the mean squared estimation error over known ratings of user
it
[IPgi (&' - x5
—— 12
o (12)
Then we define the individual unfairness as the variance of the user
losses:®

€=

RingoX.X) = < Z D - &) (13)
k=11>k
To improve individual fairness, we seek to minimize R;, ;...
Group fairness. Let I be the set of all users/items and G =
{G ...,Gy} be a partition of users/items into g groups, ie., I =
Uieqn,....q} Gi. We define the loss of group i as the mean squared
estimation error over all known ratings in group f:

IIPag, (X - X)lI3
Li = ————— 14,
' IQGil 09
For a given partition G, we define the group unfairness as the
variance of all group losses:

9

o 1

Ryrp(XX,6) = = 3 3 (g - L) (1s)
9 korisk

Again, to improve group fairness, we seek to minimize Rg,p.

5.3 Accuracy vs. Social Welfare
Adding antidote data to the system to improve a social utility will
also have an effect on the overall prediction accuracy. Previous
works have considered social objectives as regularizers or con-
straints added to the recommender model (eg, [8, 25, 37]), implying
a trade-off between the prediction accuracy and a social objective.
However, in the case of the metrics we define here, the rela-
tionship is not as simple. Considering polarization, we find that in
general, increasing or decreasing polarization will tend to decrease
system accuracy. In either case we find that system accuracy only
declines slightly in our experiments; we report on the specific val-
ues in Section 6. Considering either individual or group unfairness,
the situation is more subtle. Note that our unfairness metrics will
be exactly zero for a system with zero error (perfect accuracy). As a
4 n
“We can desive it by rewsiting (10) as Ryos(R) = % ; nl ) )_‘uk, -
“Note that for a set of equally likely values x;,

Xn
X

without referring to the mean as: --ZZ‘ % —x,y
!

the variance can be expressed
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Summary

 Recommender systems solve many real-world
(*large-scale) problems

* Collaborative filtering by Matrix Factorization
(MF) is an efficient and effective approach

* MF is just another example of a common
recipe:

1.
2.

3.

define a model
define an objective function

optimize with your favorite black box optimizer
(e.g. SGD, Gradient Descent, Block Coordinate Descent aka.
Alternating Least Squares)



Learning Objectives

Recommender Systems
You should be able to...

1. Compare and contrast the properties of various families of
recommender system algorithms: content filtering,
collaborative filtering, neighborhood methods, latent factor
methods

2. Formulate a squared error objective function for the matrix
factorization problem

3. Implement unconstrained matrix factorization with a variety of
different optimization techniques: gradient descent, stochastic
gradient descent, alternating least squares

4. Offerintuitions for why the parameters learned by matrix
factorization can be understood as user factors and item factors



EXTRA SLIDES ON UMF



Unconstrained Matrix Factorization

In-Class Exercise

Derive a block coordinate descent algorithm
for the Unconstrained Matrix Factorization
problem.

* User vectors: * Set of non-missing entries
w, € R" Z = {(u,1) : vy; is observed}
* |tem vectors: * Objective:
T
h, ¢ R argmin Z (Vs — W5h¢)2
wh ez

* Rating prediction:

—
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Matrix Factorization

(with matrices)

* User vectors:
(Wy )t € R

* |tem vectors:
H,, € R"

* Rating prediction:

Vuz’

W H|;

Figures from Koren et al. (2009)

H

ik

V

Figures from Gemulla et al. (2011)g,



Matrix Factorization
(with vectors)

e User vectors:
w, € R"

Figures from Koren et al. (2009)

e |tem vectors:

h, e R"

* Rating prediction:
T
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Matrix Factorization
(with vectors)

* Set of non-missing entries:
Z = {(u, 1) : vy; is observed}

* Objective:
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Matrix Factorization
(with vectors)

* Regularized Objective:

argmin g (Vi — W2 Th;)?
w;h (u,i)eZ

+ A(Z [will® + ) Iha|l*)

|Independente| <=
Day &

Escapist

Figures from Koren et al. (2009)
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Matrix Factorization
(with vectors)

* Regularized Objective: ,
: Ti. \2
argmin Vui — W, hy A
s 2 |

(u,i)eZ Figures from Koren et al. (2009)

+ A(Z [will® + ) Iha|l*)

* SGD update for random (u,i):

|Independen:e| o=y
Day =

Cui < VUyi — Wghz
Wy, — Wy, + v(ewh; — Awy,)
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Matrix Factorization

(with matrices)

* User vectors:
(Wy )t € R

* |tem vectors:
H,, € R"

* Rating prediction:

Vuz’

W H|;

Figures from Koren et al. (2009)

H

ik

V

Figures from Gemulla et al. (2011)



Matrix Factorization
(with matrices)

* SGD

require that the loss can be written as

L= Y U(Vi,Wi, H.;)
(4,7)€Z

Algorithm 1 SGD for Matrix Factorization

Require: A training set Z, initial values W and H
while not converged do {step}

Select a training point (z j) € Z uniformly at random.

W;;* +— W, — enN l(VU, Wz*,H,.,J)
H,; + H,; — anaH,..J l(Vw, Wz,,,,H*J)
W.,;* — W,’L*

end while step size

Figure from Gemulla et al. (2011)

Serious

t Braveheart
The Color Purple Amadeus
- o
@l Lethal Weapon
Senseand |'
- ocais 1] [y o
S P toward
females , males
ﬁ. Dave
The Lion King Dumb and
—ai Dumber
Independente] -~
Diaries Day R
Gus

Escapist

Figures from Koren et al. (2009)
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