DEPARTMENT

10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Exam 3 Review

Matt Gormley Lecture 27 Apr. 24, 2023

Reminders

- Homework 9: Learning Paradigms
- Out: Fri, Apr. 21
- Due: Thu, Apr. 27 at 11:59pm (only two grace/late days permitted)
- Exam 3 Practice Problems
- Out: Tue, Apr 25
- Exam 3
- Tue, May 2 (5:30pm - 7:30pm)
- Final Exit Poll (after Exam 3)

Crowdsourcing Exam Questions

In-Class Exercise

1. Select one of
lecture-level learning objectives
2. Write a question that assesses that objective
3. Adjust to avoid
'trivia style'
question

Answer Here:

EXAM LOGISTICS

Exam 3

- Time / Location
- Time: Tue, May 2 at 5:30pm - 7:30pm
- Location \& Seats: You have all been split across multiple rooms. Everyone has an assigned seat in one of these room.
- Please watch Piazza carefully for announcements.
- Logistics
- Covered material: Lectures 18 - 26
- Format of questions:
- Multiple choice
- True / False (with justification)
- Derivations
- Short answers
- Interpreting figures
- Implementing algorithms on paper
- No electronic devices
- You are allowed to bring one $81 / 2 \times 11$ sheet of notes (front and back)

Exam 3

- How to Prepare
- Attend (or watch) this exam review session
- Review practice problems
- Review homework problems
- Review the poll questions from each lecture
- Consider whether you have achieved the learning objectives for each lecture / section
- Write your cheat sheets

Topics for Exam 1

- Foundations
- Probability, Linear Algebra, Geometry, Calculus
- Optimization
- Important Concepts
- Overfitting
- Experimental Design
- Classification
- Decision Tree
- KNN
- Perceptron
- Regression
- Linear Regression

Topics for Exam 2

- Classification
- Binary Logistic Regression
- Important Concepts
- Stochastic Gradient Descent
- Regularization
- Feature Engineering
- Feature Learning
- Neural Networks
- Basic NN Architectures
- Backpropagation
- Learning Theory
- PAC Learning
- Generative Models
- Generative vs. Discriminative
- MLE / MAP
- Naïve Bayes
- Regression
- Linear Regression

Topics for Exam 3

- Graphical Models
- HMMs
- Learning and Inference
- Bayesian Networks
- Reinforcement

Learning

- Value Iteration
- Policy Iteration
- Q-Learning
- Deep Q-Learning
- Other Learning

Paradigms

- K-Means
- PCA
- Ensemble Methods
- Recommender Systems

MATERIAL COVERED ON EXAM 1

Supervised Binary Classification

- Step 1: training
- Given: labeled training dataset
- Goal: learn a classifier from the training dataset
- Step 2: prediction
- Given: unlabeled test da : learned classifier
- Goal: predict a label for instance
- Step 3: evaluation
- Given: predictions from
: labeled test datas
- Goal: compute the test e rate (i.e. error rate on th dataset)

Key question in

 Machine Learning:How do we learn the classifier from data?

Medical Diagnosis

Interview Transcript

Date: Jan. 15, 2022
Parties: Matt Gormley and Doctor S.
Topic: Medical decision making

- Matt: Welcome. Thanks for interviewing with me today.
- Dr. S: Interviewing...?
- Matt: Yes. For the record, what type of doctor are you?
- Dr. S: Who said I'm a doctor?
- Matt: I thought when we set up this interview you said-
- Dr. S: I'm a preschooler.
- Matt: Good enough. Today, I'd like to learn how you would determine whether or not your little brother is allergic to cats given his symptoms.
- Dr. S: He's not allergic.
- Matt: We haven't started yet. Now, suppose he is sneezing. Does he have allergies to cats?
- Dr. S: Well, we don't even have a cat, so that doesn't make any sense.
- Matt: What if he is itchy; Does he have allergies?
- Dr. S: No, that's just a mosquito.
- [Editor's note: preschoolers unilaterally agree that itchiness is always caused by mosquitos, regardless of whether mosquitos were/are present.]
- Matt: What if he's both sneezing and itchy?
- Dr. S: Then he's allergic.
- Matt: Got it. What if your little brother is sneezing and itchy, plus he's a doctor.
- Dr. S: Then, thumbs down, he's not allergic.
- Matt: How do you know?
- Dr. S: Doctors don't get allergies.
- Matt: What if he is not sneezing, but is itchy, and he is a fox...
- Matt: ... and the fox is in the bottle where the tweetle beetles battle with their paddles in a puddle on a noodle-eating poodle.
- Dr. S: Then he is must be a tweetle beetle noodle poodle bottled paddled muddled duddled fuddled wuddled fox in socks, sir. That means he's definitely allergic.
- Matt: Got it. Can I use this conversation in my lecture?
- Dr. S: Yes

Function Approximation

Quiz: Implement a simple function which returns $-\sin (\mathrm{x})$.

A few constraints are imposed:

1. You can't call any other trigonometric functions
2. You can call an existing implementation of $\sin (x)$ a few times (e.g. 100) to test your solution
3. You only need to evaluate it for x in [0, 2*pi]

Supervised Machine Learning

Decision Tree Learning Example

Dataset:

Output Y, Attributes A and B

Y	A	B
-	1	0
-	1	0
+	1	0
+	1	0
+	1	1
+	1	1
+	1	1
+	1	1

[6+, 2-]

$$
[0+, 0-][6+, 2-] \quad[2+, 2-] \quad[4+, 0-]
$$

Mutual Information

$H(Y)=-2 / 8 \log (2 / 8)-6 / 8 \log (6 / 8)$
$\mathrm{H}(\mathrm{Y} \mid \mathrm{A}=0)=$ "undefined"
$H(Y \mid A=1)=-2 / 8 \log (2 / 8)-6 / 8 \log (6 / 8)$

$$
=H(Y)
$$

$H(Y \mid A)=P(A=0) H(Y \mid A=0)+P(A=1) H(Y \mid A=1)$
$=0+H(Y \mid A=1)=H(Y)$
$I(Y ; A)=H(Y)-H(Y \mid A=1)=0$
$H(Y \mid B=0)=-2 / 4 \log (2 / 4)-2 / 4 \log (2 / 4)$
$H(Y \mid B=1)=-0 \log (0)-1 \log (1)=0$
$\mathrm{H}(\mathrm{Y} \mid \mathrm{B})=4 / 8(0)+4 / 8(\mathrm{H}(\mathrm{Y} \mid \mathrm{B}=0))$
$\mathrm{I}(\mathrm{Y} ; \mathrm{B})=\mathrm{H}(\mathrm{Y})-4 / 8 \mathrm{H}(\mathrm{Y} \mid \mathrm{B}=0)>0$

Overfitting in Decision Tree Learning

Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7

k-Nearest Neighbors

Suppose we have the training dataset below.

Hyperparameter Optimization

Question:

True or False: given a finite amount of computation time, grid search is more likely to find good values for hyperparameters than random search.

Answer:

Figure 1: Grid and random search of nine trials for optimizing a function $f(x, y)=g(x)+h(y) \approx$ $g(x)$ with low effective dimensionality. Above each square $g(x)$ is shown in green, and left of each square $h(y)$ is shown in yellow. With grid search, nine trials only test $g(x)$ in three distinct places. With random search, all nine trials explore distinct values of g. This failure of grid search is the rule rather than the exception in high dimensional hyper-parameter optimization.

Perceptron Mistake Bound

Guarantee: if some data has margin γ and all points lie inside a ball of radius R, then the online Perceptron algorithm makes $\leq(R / \gamma)^{2}$ mistakes
(Normalized margin: multiplying all points by 100, or dividing all points by 100, doesn't change the number of mistakes! The algorithm is invariant to scaling.)

Def: We say that the (batch) perceptron algorithm has converged if it stops making mistakes on the training data (perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the perceptron algorithm cycles repeatedly through the data, it will converge in a finite \# of steps.

Linear Regression by Rand. Guessing

Optimization Method \#0:
 Random Guessing

1. Pick a random $\boldsymbol{\theta}$
2. Evaluate $J(\boldsymbol{\theta})$
3. Repeat steps 1 and 2 many times
4. Return $\boldsymbol{\theta}$ that gives smallest J($\boldsymbol{\theta}$)

$$
\left.\mathrm{J}(\boldsymbol{\theta})=\mathrm{J}\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}
$$

t	θ_{1}	θ_{2}	$J\left(\theta_{1}, \theta_{2}\right)$
1	0.2	0.2	10.4
2	0.3	0.7	7.2
3	0.6	0.4	1.0
4	0.9	0.7	16.2

Topographical Maps

MATERIAL COVERED ON EXAM 2

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm
- If the function is nonconvex, it will find a local minimum, not necessarily a global minimum
- If the function is convex, it will find a global minimum

Probabilistic Learning

Function Approximation

Previously, we assumed that our output was generated using a deterministic target function:

$$
\begin{aligned}
& \mathbf{x}^{(i)} \sim p^{*}(\cdot) \\
& y^{(i)}=c^{*}\left(\mathbf{x}^{(i)}\right)
\end{aligned}
$$

Our goal was to learn a hypothesis $h(x)$ that best approximates $\mathrm{c}^{*}(\mathbf{x})$

Probabilistic Learning

Today, we assume that our output is sampled from a conditional probability distribution:

$$
\begin{aligned}
\mathbf{x}^{(i)} & \sim p^{*}(\cdot) \\
y^{(i)} & \sim p^{*}\left(\cdot \mid \mathbf{x}^{(i)}\right)
\end{aligned}
$$

Our goal is to learn a probability distribution $p(y \mid \mathbf{x})$ that best approximates $\mathrm{p}^{*}(\mathrm{y} \mid \mathbf{x})$

MLE

Suppose we have data $\mathcal{D}=\left\{x^{(i)}\right\}_{i=1}^{N}$

Principle of Maximum Likelihood Estimation:

Choose the parameters that maximize the likelihood of the data.

$$
\boldsymbol{\theta}^{\mathrm{MLE}}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \prod_{i=1} p\left(\mathbf{x}^{(i)} \mid \boldsymbol{\theta}\right)
$$

Maximum Likelihood Estimate (MLE)

Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs are discrete.

$$
\mathcal{D}=\left\{\mathbf{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N} \text { where } \mathbf{x} \in \mathbb{R}^{M} \text { and } y \in\{0,1\}
$$

Model: Logistic function applied to dot product of parameters with input vector.

$$
p_{\boldsymbol{\theta}}(y=1 \mid \mathbf{x})=\frac{1}{1+\exp \left(-\boldsymbol{\theta}^{T} \mathbf{x}\right)}
$$

Learning: finds the parameters that minimize some objective function. $\quad \boldsymbol{\theta}^{*}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})$

Prediction: Output is the most probable class.

$$
\hat{y}=\underset{y \in\{0,1\}}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(y \mid \mathbf{x})
$$

Where do features come from?

Feature Learning

Example: Linear Regression

Goal: Learn $y=\mathbf{w}^{\top} f(\mathbf{x})+b$ where $f($.$) is a polynomial$ basis function

\mathbf{i}	y	x	\ldots	x^{9}
1	2.0	1.2	\ldots	$(1.2)^{9}$
2	1.3	1.7	\ldots	$(1.7)^{9}$
\ldots	\ldots	\ldots	\ldots	\cdots
10	1.1	1.9	\ldots	$(1.9)^{9}$

Linear Regression (poly=9)

Example: Linear Regression

- With just $\mathrm{N}=10$ points we overfit!
- But with $\mathrm{N}=100$ points, the overfitting (mostly) disappears
- Takeaway: more data helps prevent overfitting

Regularization

- Given objective function: $J(\theta)$
- Goal is to find: $\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})+\lambda r(\boldsymbol{\theta})$
- Key idea: Define regularizer r(θ) s.t. we tradeoff between fitting the data and keeping the model simple
- Choose form of $r(\theta)$:
- Example: q-norm (usually p-norm): $\|\boldsymbol{\theta}\|_{q}=\left(\sum_{m=1}^{M}\left|\theta_{m}\right|\right)^{\underline{q}}$

q	$r(\boldsymbol{\theta})$	yields ters that are...	name	optimization notes		
0	$\\|\boldsymbol{\theta}\\|_{0}=\sum \mathbb{1}\left(\theta_{m} \neq 0\right)$	zero values	Lo reg.	no good computa- tional solutions		
1	$\\|\boldsymbol{\theta}\\|_{1}=\sum\left\|\theta_{m}\right\|$	zero values	L1 reg.	subdifferentiable 2		
$\left(\\|\boldsymbol{\theta}\\|_{2}\right)^{2}=\sum \theta_{m}^{2}$	small values	L2 reg.	differentiable			

Decision

Functions

Linear Regression

$$
y=h_{\boldsymbol{\theta}}(\boldsymbol{x})=\sigma\left(\boldsymbol{\theta}^{T} \boldsymbol{x}\right)
$$

Output
where $\sigma(a)=a$

Input
X_{1}

Decision

Functions

Perceptron

Decision
Functions

Logistic Regression

Decision

 Functions
Neural Network

$$
\begin{aligned}
& y=\sigma\left(\boldsymbol{\beta}^{T} \mathbf{z}\right) \\
& z_{2}=\sigma\left(\boldsymbol{\alpha}_{2, \cdot \mathbf{x}}^{T}\right) \\
& z_{1}=\sigma\left(\boldsymbol{\alpha}_{1, \cdot}^{T} \mathbf{x}\right)
\end{aligned}
$$

Error Back-Propagation

Slide from (Stoyanov \& Eisner, 2012)

Training

Differentiation Quiz

Differentiation Quiz \#1:

Suppose $x=2$ and $z=3$, what are $\mathrm{dy} / \mathrm{dx}$ and $\mathrm{dy} / \mathrm{dz}$ for the function below? Round your answer to the nearest integer.

$$
y=\exp (x z)+\frac{x z}{\log (x)}+\frac{\sin (\log (x))}{x z}
$$

Answer: Answers below are in the fc Define function
A. $[42,-72]$
B. $[72,-42]$
C. $[100,127]$
D. $[127,100]$
E. [12 : Inouts

Architecture \#2: AlexNet

CNN for Image Classification

(Krizhevsky, Sutskever \& Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution $p\left(w_{t} \mid f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)\right)$ that conditions on the vector $h_{t}=f_{\theta}\left(w_{t-1}, \ldots, w_{1}\right)$

Sampling from an RNN-LM

??

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hourc butcut thv council I am great, Murdered a master's ready there My powe so much as hell: Some service bondman here, Would show

KING LEAR: O, if you w - +eeble sight, the courtesy of your law, Your'sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.
??
CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without comebroken limb shall acquit him Which is the real is but young and tender; and, Shakespeare?! uld be loath to foil him hy love to you, I came hither to acquaint you wi that either you might stay him from his in ent or brook such disgrace well as he sh \geq into, in that it is a thing of his own search and altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you than bear you; yet I should bear no cross if I did bear you, for I think you have no money in your purse.

PAC-MAN Learning

For some hypothesis $h \in \mathcal{H}$:

1. True Error

$$
R(h)
$$

2. Training Error

$$
\hat{R}(h)
$$

Question 2:

What is the expected number of PAC-MAN levels Matt will complete before a GameOver?

A.	$1-10$
B.	$11-20$
C.	$21-30$

Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1).

Four Cases we care about...

Realizable

Thm. $1 \quad N \geq \frac{1}{\epsilon}\left[\log (|\mathcal{H}|)+\log \left(\frac{1}{\delta}\right)\right]$ la-
Finite $|\mathcal{H}|$

Infinite $|\mathcal{H}|$ beled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have $R(h) \leq \epsilon$.

Thm. $3 N=O\left(\frac{1}{\epsilon}\left[\mathrm{VC}(\mathcal{H}) \log \left(\frac{1}{\epsilon}\right)+\log \left(\frac{1}{\delta}\right)\right]\right)$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h)=0$ have $R(h) \leq \epsilon$.

Agnostic

Thm. $2 \quad N \geq \frac{1}{2 \epsilon^{2}}\left[\log (|\mathcal{H}|)+\log \left(\frac{2}{\delta}\right)\right]$ labeled examples are sufficient so that with probability $(1-\delta)$ for all $h \in \mathcal{H}$ we have that $|R(h)-\hat{R}(h)| \leq \epsilon$.

Thm. $4 \quad N=O\left(\frac{1}{\epsilon^{2}}\left[\mathrm{VC}(\mathcal{H})+\log \left(\frac{1}{\delta}\right)\right]\right)$ labeled examples are sufficient so that with probability $(1-\delta)$ for all $h \in \mathcal{H}$ we have that $|R(h)-\hat{R}(h)| \leq \epsilon$.

Learning Theory \& Model Selection

Ex: $\mathrm{H}=$ Linear Separators in R^{M}

Q: Is
Corollary 4 useful? A: Yes!
$\mathrm{VC}(\mathrm{H})=\mathrm{M}+1$
Q: In practice, how do we tradeoff between error and $\mathrm{VC}(\mathrm{H})$?
A: Use a regularizer! That is, reducing the number of (effective) features reduces the VC dimension. More features usually leads to a better fit to the data.

Text Data

| x_{1} |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ("hat") | | x_{2} |
| :---: |
| ("cat") | | x_{3} |
| :---: |
| ("dog") | | x_{4} |
| :---: |
| ("fish") | | x_{5} |
| :---: |
| ("mom") | | x_{6} |
| :---: |
| ("dad") | | y |
| :---: |
| (Dr. Seuss) |

Bag-ofWords Model

Bag-of-
 Words Model

x_{1} ("hat")	x_{2} ("cat")	x_{3} $($ ("dog")	x_{4} ("fish")	x_{5} ("mom")	x_{6} ("dad")	y (Dr. Seuss)
1	1	0	0	0	0	1

The Cat in the Hat (by Dr. Seuss)

Source: https://en.wikipedia.org/wiki/The Cat in the Hat\#/media/File:The Cat in the Hat.png

Bag-of-
 Words Model

x_{1} ("hat")	x_{2} ("cat")	x_{3} ("dog")	x_{4} ("fish")	x_{5} ("mom")	x_{6} ("dad")	y (Dr. Seuss)
1	1	0	0	0	0	1
0	0	1	0	0	0	0

Go, Dog M Go!

Go, Dog. Go!
(by P. D. Eastman)

by P.D.Eastman

Source: https://en.wikipedia.org/wiki/Go, Dog. Go!\#/media/File:Go Dog Go.jpg

Bag-of-
 Words Model

Bag-ofWords Model

$\begin{gathered} x_{1} \\ \text { ("hat") } \end{gathered}$	$\begin{gathered} x_{2} \\ \text { ("cat") } \end{gathered}$	$\begin{gathered} x_{3} \\ \text { ("dog") } \end{gathered}$	$\begin{gathered} x_{4} \\ \text { ("fish") } \end{gathered}$	$\begin{gathered} x_{5} \\ \text { ("mom") } \end{gathered}$	$\begin{gathered} x_{6} \\ \text { ("dad") } \end{gathered}$	$\begin{gathered} y \\ \text { (Dr. Seuss) } \end{gathered}$
1	1	0	0	0	0	1
0	0	1	0	0	0	0
0	0	0	1	0	0	1
0	0	0	0	1	0	0
				Are You MJ Mother?		
	Are You My Mother? (by P. D. Eastman)					

Model 1: Bernoulli Naïve Bayes

Flip weighted coin

If HEADS, flip each red coin

If TAILS, flip
each blue coin

We can generate data in this fashion. Though in practice we never would since our data is given.

Instead, this provides an explanation of how the data was generated (albeit a terrible one).

Recipe for Closed-form MLE

1. Assume data was generated i.i.d. from some model (i.e. write the generative story)

$$
x^{(i)} \sim p(x \mid \theta)
$$

2. Write log-likelihood

$$
\ell(\boldsymbol{\theta})=\log p\left(x^{(1)} \mid \boldsymbol{\theta}\right)+\ldots+\log p\left(x^{(N)} \mid \boldsymbol{\theta}\right)
$$

3. Compute partial derivatives (i.e. gradient)

$$
\begin{aligned}
& \partial \ell(\theta) / \partial \theta_{1}=\ldots \\
& \partial \ell(\theta) / \partial \theta_{2}=\ldots \\
& \ldots \ell(\theta) / \partial \theta_{M}=\ldots
\end{aligned}
$$

4. Set derivatives to zero and solve for $\boldsymbol{\theta}$

$$
\begin{aligned}
& \partial \ell(\theta) / \partial \theta_{m}=o \text { for all } m \in\{1, \ldots, M\} \\
& \boldsymbol{\theta}^{\text {MLE }}=\text { solution to system of } M \text { equations and } M \text { variables }
\end{aligned}
$$

5. Compute the second derivative and check that $\ell(\theta)$ is concave down at $\boldsymbol{\theta}^{\text {MLE }}$

Recipe for Closed-form MAP Estimation

1. Assume data was generated i.i.d. from some model (i.e. write the generative story)
$\boldsymbol{\theta} \sim p(\boldsymbol{\theta})$ and then for all $i: x^{(i)} \sim p(x \mid \boldsymbol{\theta})$
2. Write log-likelihood

$$
\ell_{\mathrm{MAP}}(\boldsymbol{\theta})=\log \mathrm{p}(\boldsymbol{\theta})+\log \mathrm{p}\left(\mathrm{x}^{(1)} \mid \boldsymbol{\theta}\right)+\ldots+\log \mathrm{p}\left(\mathrm{x}^{(\mathrm{N})} \mid \boldsymbol{\theta}\right)
$$

3. Compute partial derivatives (i.e. gradient)

$$
\begin{aligned}
& \partial \dot{l}_{\mathrm{MAP}}(\theta) / \partial \theta_{1}=\ldots \\
& \partial \ell_{\mathrm{MAP}}(\theta) / \partial \theta_{2}=\ldots \\
& \ldots \\
& \partial \ell_{\mathrm{MAP}}(\theta) / \partial \theta_{\mathrm{M}}=\ldots
\end{aligned}
$$

4. Set derivatives to zero and solve for $\boldsymbol{\theta}$
$\partial l_{\text {MAP }}(\theta) / \partial \theta_{m}=0$ for all $m \in\{1, \ldots, M\}$
$\boldsymbol{\theta}^{\text {MAP }}=$ solution to system of M equations and M variables
5. Compute the second derivative and check that $l(\theta)$ is concave down at $\boldsymbol{\theta}^{\text {MAP }}$

Classification and Regression: The Big Picture

Recipe for Machine Learning

1. Given data $\mathcal{D}=\left\{\mathbf{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N}$
2. (a) Choose a decision function $h_{\boldsymbol{\theta}}(\mathbf{x})=\cdots$ (parameterized by $\boldsymbol{\theta}$)
(b) Choose an objective function $J_{\mathcal{D}}(\boldsymbol{\theta})=\cdots$ (relies on data)
3. Learn by choosing parameters that optimize the objective $J_{\mathcal{D}}(\boldsymbol{\theta})$

$$
\hat{\boldsymbol{\theta}} \approx \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J_{\mathcal{D}}(\boldsymbol{\theta})
$$

4. Predict on new test example $\mathbf{x}_{\text {new }}$ using $h_{\boldsymbol{\theta}}(\cdot)$

$$
\hat{y}=h_{\boldsymbol{\theta}}\left(\mathbf{x}_{\text {new }}\right)
$$

Optimization Method

- Gradient Descent: $\boldsymbol{\theta} \rightarrow \boldsymbol{\theta}-\gamma \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
- SGD: $\boldsymbol{\theta} \rightarrow \boldsymbol{\theta}-\gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$ for $i \sim \operatorname{Uniform}(1, \ldots, N)$
where $J(\boldsymbol{\theta})=\frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$
- mini-batch SGD
- closed form

1. compute partial derivatives
2. set equal to zero and solve

Decision Functions

- Perceptron: $h_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\operatorname { s i g n }}\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)$
- Linear Regression: $h_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{T} \mathbf{x}$
- Discriminative Models: $h_{\boldsymbol{\theta}}(\mathbf{x})=\underset{y}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(y \mid \mathbf{x})$
- Logistic Regression: $p_{\boldsymbol{\theta}}(y=1 \mid \mathbf{x})=\sigma\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)$
- Neural Net (classification):

$$
p_{\boldsymbol{\theta}}(y=1 \mid \mathbf{x})=\sigma\left(\left(\mathbf{W}^{(2)}\right)^{T} \sigma\left(\left(\mathbf{W}^{(1)}\right)^{T} \mathbf{x}+\mathbf{b}^{(1)}\right)+\mathbf{b}^{(2)}\right)
$$

- Generative Models: $h_{\boldsymbol{\theta}}(\mathbf{x})=\operatorname{argmax} p_{\boldsymbol{\theta}}(\mathbf{x}, y)$
- Naive Bayes: $p_{\boldsymbol{\theta}}(\mathbf{x}, y)=p_{\boldsymbol{\theta}}(y) \prod_{m=1}^{M} p_{\boldsymbol{\theta}}\left(x_{m} \mid y\right)$

Objective Function

- MLE: $J(\boldsymbol{\theta})=-\sum_{i=1}^{N} \log p\left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\right)$
- MCLE: $J(\boldsymbol{\theta})=-\sum_{i=1}^{N} \log p\left(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}\right)$
- L2 Regularized: $J^{\prime}(\boldsymbol{\theta})=J(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{2}^{2}$
(same as Gaussian prior $p(\boldsymbol{\theta})$ over parameters)
- L1 Regularized: $J^{\prime}(\boldsymbol{\theta})=J(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{1}$ (same as Laplace prior $p(\boldsymbol{\theta})$ over parameters)

MATERIAL COVERED ON EXAM 3

Totoro's Tunnel

Hidden Markov Model

HMM Parameters:

Emission matrix, A, where $P\left(X_{t}=k \mid Y_{t}=j\right)=A_{j, k}, \forall t, k$
Transition matrix, B, where $P\left(Y_{t}=k \mid Y_{t-1}=j\right)=B_{j, k}, \forall t, k$ Initial probs, \mathbf{C}, where $P\left(Y_{1}=k\right)=C_{k}, \forall k$

| O | .8 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| S | .1 | | | |
| C | .1 | | | |
| O | | | | |
| O | .9 | S | C | |
| S | .2 | .08 | .7 | .02 |
| C | .9 | 0 | .1 | |

Great Ideas in ML: Message Passing

Count the soldiers

Forward-Backward Algorithm: Finds Marginals

Product gives $a x+a y+a z+b x+b y+b z+c x+c y+c z=$ total weight of ${ }^{35}$ aths

Viterbi Algorithm
Viterbi Alyo:

for $t-1, \ldots, T$:
for $k=1, \ldots, k$.

$$
\omega_{t}(v)=\max \left(\frac{\omega_{t-1}(v)}{\omega_{t-1}}(u) s_{v v t},\right.
$$

$\omega_{t-1}(n) s_{n v t}$,
ω_{b-1} (a) Sat)

$$
\begin{aligned}
& \begin{array}{l}
\omega_{t}(k)=\max _{j \in\{1, \ldots, k\}} \omega_{t-1}(j) s_{k_{j} t} \int S_{1 / j t^{-}} p\left(y_{t}=k \mid y_{t-1}=j\right) \\
b_{t}(k)=\operatorname{argmax} H M M:
\end{array} \\
& b_{t}(k)=\underset{j \in\{1, \ldots, k\}}{\operatorname{argmax}} \omega_{t-1}(j) s_{k j t} \\
& p\left(x_{b} \mid y_{t}=k\right)
\end{aligned}
$$

bakpointer: tas at trustep $t-1$ that yicldoed the max whaht path into node (t, k)

Sample Questions

4 Hidden Markov Models

1. Given the POS tagging data shown, what are the parameter values learned by an HMM?

Verb	Noun	Verb
see	spot	run

Verb	Noun	Verb
run	spot	run

Adj.	Adj.	Noun
funny	funny	spot

Sample Questions

4 Hidden Markov Models

1. Given the POS tagging data shown, what are the parameter values learned by an HMM?
2. Suppose you a learning an HMM POS Tagger, how many POS tag sequences of length 23 are there?
3. How does an HMM efficiently search for the most probable tag sequence given a 23 -word sentence?

Verb	Noun	Verb
see	spot	run

Verb	Noun	Verb
run	spot	run

Adj.	Adj.	Noun
funny	funny	spot

Example: CMU Mission Control

Bloomberg
Businessweek|Technology
College Students Are About to Put a Robot on the Moon Before NASA

A commercial spaceflight in May will take a Carnegie Mellon-designed rover, named Iris, to the lunar surface.

[^0]
The "Burglar Alarm" example

- After you get this phone call, suppose you learn that there was a medium-sized earthquake in your neighborhood. Oh, whew! Probably not a burglar after all.
- Earthquake "explains away" the hypothetical burglar.

- But then it must not be the case that

$$
\text { Burglar } \Perp \text { Earthquake } \mid \text { PhoneCall }
$$

even though
Burglar \Perp Earthquake

Example: Tornado Alarms

Hacking Attack Woke Up Dallas With Emergency Sirens, Officials Say

By ELI ROSENBERG and MAYA SALAM APRIL 8, 2017

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C. Curry for The New York Times

1. Imagine that you work at the 911 call center in Dallas
2. You receive six calls informing you that the Emergency Weather Sirens are going off
3. What do you conclude?

Sample Questions

(a) [2 pts.] Write the expression for the joint distribution.

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S), being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes are binary, i.e., $R, S, E, A \in\{0,1\}$.

Figure 5: Directed graphical model for problem 5.

Sample Questions

(b) [2 pts.] How many parameters are necessary to describe the joint distribution?

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S), being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes are binary, i.e., $R, S, E, A \in\{0,1\}$.

Figure 5: Directed graphical model for problem 5.

Sample Questions

(d) [2 pts.] Is S marginally independent of R ? Is S conditionally independent of R given E ? Answer yes or no to each questions and provide a brief explanation why.

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S), being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes are binary, i.e., $R, S, E, A \in\{0,1\}$.

Figure 5: Directed graphical model for problem 5.

Sample Questions

5 Graphical Models

(f) [3 pts.] Give two reasons why the graphical models formalism is convenient when compared to learning a full joint distribution.

A Few Problems for Bayes Nets

Suppose we already have the parameters of a Bayesian Network...

1. How do we compute the probability of a specific assignment to the variables?
$P(T=t, H=h, A=a, C=c)$
2. How do we draw a sample from the joint distribution? $\mathrm{t}, \mathrm{h}, \mathrm{a}, \mathrm{c} \sim \mathrm{P}(\mathrm{T}, \mathrm{H}, \mathrm{A}, \mathrm{C})$
3. How do we compute marginal probabilities? $P(A)=\ldots$
4. How do we draw samples from a conditional distribution? $\mathrm{t}, \mathrm{h}, \mathrm{a} \sim \mathrm{P}(\mathrm{T}, \mathrm{H}, \mathrm{A} \mid \mathrm{C}=\mathrm{c})$
5. How do we compute conditional marginal probabilities? $P(H \mid C=c)=\ldots$

Can we
use
samples
?

Gibbs Sampling

RL: Components

From the Environment (i.e. the MDP)

- State space, \mathcal{S}
- Action space, \mathcal{A}
- Reward function, $R(s, a), R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
- Transition probabilities, $p\left(s^{\prime} \mid s, a\right)$
- Deterministic transitions:

$$
\begin{aligned}
& \text { Markov Assumption } \\
& \begin{array}{r}
p\left(s_{t+1} \mid s_{t}, a_{t}, \ldots, s_{1}, a_{1}\right) \\
\quad=p\left(s_{t+1} \mid s_{t}, a_{t}\right)
\end{array}
\end{aligned}
$$

$$
p\left(s^{\prime} \mid s, a\right)=\left\{\begin{array}{l}
1 \text { if } \delta(s, a)=s^{\prime} \\
0 \text { otherwise }
\end{array}\right.
$$

where $\delta(s, a)$ is a transition function

From the Model

- Policy, $\pi: \mathcal{S} \rightarrow \mathcal{A}$
- Value function, $V^{\pi}: \mathcal{S} \rightarrow \mathbb{R}$
- Measures the expected total payoff of starting in some state s and executing policy π

MDP Example:

Multi-armed bandit

- Single state:

$$
|\mathcal{S}|=1
$$

- Three actions:

$$
\mathcal{A}=\{1,2,3\}
$$

- Rewards are stochastic

Example: Path Planning

RL: Value

 Function

$$
\begin{aligned}
& R(s, a)=\left\{\begin{array}{r}
-2 \text { if entering state } 0 \text { (safety) } \\
3 \text { if entering state } 5 \text { (field goal) } \\
7 \text { if entering state } 6 \text { (touch down) } \\
0 \text { otherwise }
\end{array}\right. \\
& \gamma=0.9
\end{aligned}
$$

- Algorithm 3: ϵ-greedy online learning of Q^{*} (table form)
- Inputs: discount factor γ,
an initial state s,
greediness parameter $\epsilon \in[0,1]$,
learning rate $\alpha \in[0,1]$ ("mistrust parameter")

Learning
 $Q^{*}(s, a)$

- Initialize $Q(s, a)=0 \forall s \in \mathcal{S}, a \in \mathcal{A}$ (Q is a $|\mathcal{S}| \times|\mathcal{A}|$ table or array)
- While TRUE, do
- With probability $1-\epsilon$, take the greedy action $a=\underset{a^{\prime} \in \mathcal{A}}{\operatorname{argmax}} Q\left(s, a^{\prime}\right)$. Otherwise (with probability ϵ), take a random action a
- Receive reward $r=R(s, a)$
- Observe the new state $s^{\prime} \sim p\left(S^{\prime} \mid s, a\right)$
- Update Q and s

Learning

 $Q^{*}(s, a)$: Example

$$
Q(3, \rightarrow) \leftarrow 0+(0.9) \max _{a^{\prime} \in\{\rightarrow, \leftarrow, \uparrow, \circlearrowright\}} Q\left(4, a^{\prime}\right)=2.7
$$

$Q(s, a)$	\rightarrow	\leftarrow	\uparrow	U
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	2.7	0	0	0
4	0	0	3	0
5	0	0	0	0
6	0	0	0	0

Alpha Go

Game of Go (圍棋)

- 19x19 board
- Players alternately play black/white stones
- Goal is to fully encircle the largest region on the board
- Simple rules, but extremely complex game play

AlphaGo (Black) vs. Lee Sedol (White) - Game 2
Final position (AlphaGo wins in 211 moves)

Deep Q-Learning

Question: What if our state space S is too large to represent with a table?

Examples:

- $s_{t}=$ pixels of a video game
- $s_{t}=$ continuous values of a sensors in a manufacturing robot
- $s_{t}=$ sensor output from a self-driving car

Answer: Use a parametric function to approximate the table entries

Key Idea:

1. Use a neural network $\mathrm{Q}(\mathrm{s}, \mathrm{a} ; \theta)$ to approximate $\mathrm{Q}^{*}(\mathrm{~s}, \mathrm{a})$
2. Learn the parameters θ via SGD with training examples $\left\langle s_{t}, a_{t}, r_{t}, s_{t+1}\right.$ >

Playing Atari with Deep RL

- Setup: RL system observes the pixels on the screen
- It receives rewards as the game score
- Actions decide how to move the joystick / buttons

Sample Questions

7.1 Reinforcement Learning

3. (1 point) Please select one statement that is true for reinforcement learning and supervised learning.Reinforcement learning is a kind of supervised learning problem because you can treat the reward and next state as the label and each state, action pair as the training data.
Reinforcement learning differs from supervised learning because it has a temporal structure in the learning process, whereas, in supervised learning, the prediction of a data point does not affect the data you would see in the future.

Sample Questions

7.1 Reinforcement Learning

3. (1 point) Please select one statement that is true for reinforcement learning and supervised learning.Reinforcement learning is a kind of supervised learning problem because you can treat the reward and next state as the label and each state, action pair as the training data.
Reinforcement learning differs from supervised learning because it has a temporal structure in the learning process, whereas, in supervised learning, the prediction of a data point does not affect the data you would see in the future.
4. (1 point) True or False: Value iteration is better at balancing exploration and exploitation compared with policy iteration.TrueFalse

Sample Questions

7.1 Reinforcement Learning

1. For the $\mathrm{R}(\mathrm{s}, \mathrm{a})$ values shown on the arrows below, what is the corresponding optimal policy? Assume the discount factor is 0.1
2. For the $R(s, a)$ values shown on the arrows below, which are the corresponding $\mathrm{V}^{*}(\mathrm{~s})$ values? Assume the discount factor is 0.1
3. For the $R(s, a)$ values shown on the arrows below, which are the corresponding $Q^{*}(\mathrm{~s}, \mathrm{a})$ values? Assume the
 discount factor is 0.1
4. Could we change $R(s, a)$ such that all the $V^{*}(s)$ values change but the optimal policy stays the same? If so, show how and if not, briefly explain why not.

Shortcut Example

https://www.youtube.com/watch?v=MIJNgpEfPfE

PCA section in one slide...

1. Dimensionality reduction:

3. Definition of PCA:

Choose the matrix V that either...

1. minimizes reconstruction error
2. consists of the K eigenvectors with largest eigenvalue

The above are equivalent definitions.
2. Random Projection:

4. Algorithm for PCA:

The option we'll focus on:
Run Singular Value Decomposition (SVD) to obtain all the eigenvectors. Keep just the top-K to form V. Play some tricks to keep things efficient.
5. An Example

Projecting MNIST digits

Task Setting:

1. Take 25×25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points

Sample Questions

4 Principal Component Analysis [16 pts.]

(a) In the following plots, a train set of data points X belonging to two classes on \mathbb{R}^{2} are given, where the original features are the coordinates (x, y). For each, answer the following questions:
(i) [3 pt.] Draw all the principal components.
(ii) [6 pts.] Can we correctly classify this dataset by using a threshold function after projecting onto one of the principal components? If so, which principal component should we project onto? If not, explain in 1-2 sentences why it is not possible.

Dataset 1:

Dataset 2:

K-Means Algorithm

- Given unlabeled feature vectors
$\mathrm{D}=\left\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots, \mathbf{x}^{(\mathrm{N})}\right\}$
- Initialize cluster centers $\mathbf{c}=\left\{\mathbf{c}^{(1)}, \ldots, \mathbf{c}^{(K)}\right\}$
- Repeat until convergence:
- for i in $\{1, \ldots, N\}$
$\mathrm{z}^{(\mathrm{i})} \leftarrow$ index j of cluster center nearest to $\mathbf{x}^{(\mathrm{i})}$
- for j in $\{1, \ldots, K\}$
$\mathbf{c}^{(\mathrm{j})} \leftarrow$ mean of all points assigned to cluster j

$$
\begin{aligned}
& \text { bedime } \uparrow \\
& \text { 3:00 } \\
& \text { 1200- 巨 『 } \\
& 9.00-\equiv 0^{0} \\
& 20 \\
& 40
\end{aligned}
$$

Example: K-Means

Example: K-Means

Sample Questions

2.2 Lloyd's algorithm

Circle the image which depicts the cluster center positions after 1 iteration of Lloyd's algorithm.

Figure 2: Initial data and cluster centers

Recommender Systems

NETFLIX

Netfilix Prize

 COMPLETEDHome | Rules | Leaderboard | Update |
| :--- | :--- | :--- |

Leaderboard

Showing Test Score. Click here to show quiz score

Rank	Team Name	Best Test Score	\% Improvement	Best Submit Time
Grand Prize - RMSE $=0.8567$ - Winning Team: BellKor's Pragmatic Chaos				
1	BellKor's Pragmatic Chaos	0.8567	10.06	2009-07-26 18:18:28
2	The Ensemble	0.8567	10.06	2009-07-26 18:38:22
3	Grand Prize Team	0.8582	9.90	2009-07-10 21:24:40
4	Opera Solutions and Vandelay United	0.8588	9.84	2009-07-10 01:12:31
5	Vandelay Industries !	0.8591	9.81	2009-07-10 00:32:20
6	PragmaticTheory	0.8594	9.77	2009-06-24 12:06:56
7	BellKor in BigChaos	0.8601	9.70	2009-05-13 08:14:09
8	Dace	0.8612	9.59	2009-07-24 17:18:43
9	Feeds2	0.8622	9.48	2009-07-12 13:11:51
10	BigChaos	0.8623	9.47	2009-04-07 12:33:59
11	Opera Solutions	0.8623	9.47	2009-07-24 00:34:07
12	BellKor	0.8624	9.46	2009-07-26 17:19:11

Weighted Majority Algorithm

 (Littlestone \& Warmuth, 1994)- Given: pool A of binary classifiers (that you know nothing about)
- Data: stream of examples (i.e. online learning setting)
- Goal: design a new learner that uses the predictions of the pool to make
- Goal: design a ne
the predictions of
new predictions
- Algorithm:
- Initially weight all classifiers equally
- Receive a training example and predict the (weighted) majority vote of the classifiers in the pool
- Down-weight classifiers that contribute to a mistake by a factor of β

Weighted Majority Algorithm

Theorems (Littlestone \& Warmuth, 1994)
For the general case where $W M$ is applied to a pool \mathcal{A} of algorithms we show the following upper bounds on the number of mistakes made in a given sequence of trials:

1. $O(\log |\mathcal{A}|+m)$, if one algorithm of \mathcal{A} makes at most m mistakes.
2. $O\left(\log \frac{|\mathcal{A}|}{k}+m\right)$, if each of a subpool of k algorithms of \mathcal{A} makes at most m mistakes.
3. $O\left(\log \frac{|A|}{k}+\frac{m}{k}\right)$, if the total number of mistakes of a subpool of k algorithms of \mathcal{A} is

These are
"mistake bounds" of the variety we saw for the
Perceptron algorithm at most m.

AdaBoost: Toy Example

Two Types of Collaborative Filtering

2. Latent Factor Methods

- Assume that both movies and users live in some lowdimensional space describing their properties
- Recommend a movie based on its proximity to the user in the latent space
- Example Algorithm: Matrix Factorization

Example: MF for Netflix Problem

(a) Example of rank-2 matrix factorization

(b) Residual matrix

Recommending Movies

Question:

Suppose you want to build a system that combines elements of collaborative filtering with content filtering, which of the following pieces of information about user behavior could be used to improve such a system?

Select all that apply

A. \# of times a user watched a given movie
B. Total \# of movies a user has watched
C. How often a user turns on subtitles
D. \# of times a user paused a given movie
E. How many accounts a user is associated with
F. \# of DVDs a user can rent at a time
G. None of the above

Classification and Regression: The Big Picture

Recipe for Machine Learning

1. Given data $\mathcal{D}=\left\{\mathbf{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N}$
2. (a) Choose a decision function $h_{\boldsymbol{\theta}}(\mathbf{x})=\cdots$ (parameterized by $\boldsymbol{\theta}$)
(b) Choose an objective function $J_{\mathcal{D}}(\boldsymbol{\theta})=\cdots$ (relies on data)
3. Learn by choosing parameters that optimize the objective $J_{\mathcal{D}}(\boldsymbol{\theta})$

$$
\hat{\boldsymbol{\theta}} \approx \underset{\boldsymbol{\theta}}{\operatorname{argmin}} J_{\mathcal{D}}(\boldsymbol{\theta})
$$

4. Predict on new test example $\mathbf{x}_{\text {new }}$ using $h_{\boldsymbol{\theta}}(\cdot)$

$$
\hat{y}=h_{\boldsymbol{\theta}}\left(\mathbf{x}_{\text {new }}\right)
$$

Optimization Method

- Gradient Descent: $\boldsymbol{\theta} \rightarrow \boldsymbol{\theta}-\gamma \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$
- SGD: $\boldsymbol{\theta} \rightarrow \boldsymbol{\theta}-\gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta})$ for $i \sim \operatorname{Uniform}(1, \ldots, N)$
where $J(\boldsymbol{\theta})=\frac{1}{N} \sum_{i=1}^{N} J^{(i)}(\boldsymbol{\theta})$
- mini-batch SGD
- closed form

1. compute partial derivatives
2. set equal to zero and solve

Decision Functions

- Perceptron: $h_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\operatorname { s i g n }}\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)$
- Linear Regression: $h_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{T} \mathbf{x}$
- Discriminative Models: $h_{\boldsymbol{\theta}}(\mathbf{x})=\underset{y}{\operatorname{argmax}} p_{\boldsymbol{\theta}}(y \mid \mathbf{x})$
- Logistic Regression: $p_{\boldsymbol{\theta}}(y=1 \mid \mathbf{x})=\sigma\left(\boldsymbol{\theta}^{T} \mathbf{x}\right)$
- Neural Net (classification):

$$
p_{\boldsymbol{\theta}}(y=1 \mid \mathbf{x})=\sigma\left(\left(\mathbf{W}^{(2)}\right)^{T} \sigma\left(\left(\mathbf{W}^{(1)}\right)^{T} \mathbf{x}+\mathbf{b}^{(1)}\right)+\mathbf{b}^{(2)}\right)
$$

- Generative Models: $h_{\boldsymbol{\theta}}(\mathbf{x})=\operatorname{argmax} p_{\boldsymbol{\theta}}(\mathbf{x}, y)$
- Naive Bayes: $p_{\boldsymbol{\theta}}(\mathbf{x}, y)=p_{\boldsymbol{\theta}}(y) \prod_{m=1}^{M} p_{\boldsymbol{\theta}}\left(x_{m} \mid y\right)$

Objective Function

- MLE: $J(\boldsymbol{\theta})=-\sum_{i=1}^{N} \log p\left(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\right)$
- MCLE: $J(\boldsymbol{\theta})=-\sum_{i=1}^{N} \log p\left(\mathbf{y}^{(i)} \mid \mathbf{x}^{(i)}\right)$
- L2 Regularized: $J^{\prime}(\boldsymbol{\theta})=J(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{2}^{2}$
(same as Gaussian prior $p(\boldsymbol{\theta})$ over parameters)
- L1 Regularized: $J^{\prime}(\boldsymbol{\theta})=J(\boldsymbol{\theta})+\lambda\|\boldsymbol{\theta}\|_{1}$ (same as Laplace prior $p(\boldsymbol{\theta})$ over parameters)

Learning Paradigms

Paradigm

Data

Supervised
\hookrightarrow Regression
\hookrightarrow Classification
\hookrightarrow Binary classification
\hookrightarrow Structured Prediction
Unsupervised
Semi-supervised
Online
Active Learning
Imitation Learning
Reinforcement Learning
$\mathcal{D}=\left\{\mathbf{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N}$
$\mathbf{x} \sim p^{*}(\cdot)$ and $y=c^{*}(\cdot)$
$y^{(i)} \in \mathbb{R}$
$y^{(i)} \in\{1, \ldots, K\}$
$y^{(i)} \in\{+1,-1\}$
$\mathbf{y}^{(i)}$ is a vector
$\mathcal{D}=\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N} \quad \mathbf{x} \sim p^{*}(\cdot)$
$\mathcal{D}=\left\{\mathbf{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N_{1}} \cup\left\{\mathbf{x}^{(j)}\right\}_{j=1}^{N_{2}}$
$\mathcal{D}=\left\{\left(\mathbf{x}^{(1)}, y^{(1)}\right),\left(\mathbf{x}^{(2)}, y^{(2)}\right),\left(\mathbf{x}^{(3)}, y^{(3)}\right), \ldots\right\}$
$\mathcal{D}=\left\{\mathbf{x}^{(i)}\right\}_{i=1}^{N}$ and can query $y^{(i)}=c^{*}(\cdot)$ at a cost
$\mathcal{D}=\left\{\left(s^{(1)}, a^{(1)}\right),\left(s^{(2)}, a^{(2)}\right), \ldots\right\}$
$\mathcal{D}=\left\{\left(s^{(1)}, a^{(1)}, r^{(1)}\right),\left(s^{(2)}, a^{(2)}, r^{(2)}\right), \ldots\right\}$

ML Big Picture

Learning Paradigms:

What data is available and when? What form of prediction?

- supervised learning
- unsupervised learning
- semi-supervised learning
- reinforcement learning
- active learning
- imitation learning
- domain adaptation
- online learning
- density estimation
- recommender systems
- feature learning
- manifold learning
- dimensionality reduction
- ensemble learning
- distant supervision
- hyperparameter optimization

Theoretical Foundations:

What principles guide learning?
\square probabilistic
\square information theoretic
[evolutionary search

- ML as optimization

Problem Formulation:

What is the structure of our output prediction?
boolean
categorical ordinal real ordering multiple discrete multiple continuous both discrete \& cont.

Binary Classification
Multiclass Classification
Ordinal Classification
Regression
Ranking
Structured Prediction (e.g. dynamical systems) (e.g. mixed graphical models)

Facets of Building ML Systems:

How to build systems that are robust, efficient, adaptive, effective?

1. Data prep
2. Model selection
3. Training (optimization / search)
4. Hyperparameter tuning on validation data
5. (Blind) Assessment on test data

Big Ideas in ML:

Which are the ideas driving development of the field?

- inductive bias
- generalization / overfitting
- bias-variance decomposition
- generative vs. discriminative
- deep nets, graphical models
- PAC learning
- distant rewards

Course Level Objectives

You should be able to...

1. Implement and analyze existing learning algorithms, including well-studied methods for classification, regression, structured prediction, clustering, and representation learning
2. Integrate multiple facets of practical machine learning in a single system: data preprocessing, learning, regularization and model selection
3. Describe the the formal properties of models and algorithms for learning and explain the practical implications of those results
4. Compare and contrast different paradigms for learning (supervised, unsupervised, etc.)
5. Design experiments to evaluate and compare different machine learning techniques on real-world problems
6. Employ probability, statistics, calculus, linear algebra, and optimization in order to develop new predictive models or learning methods
7. Given a description of a ML technique, analyze it to identify (1) the expressive power of the formalism; (2) the inductive bias implicit in the algorithm; (3) the size and complexity of the search space; (4) the computational properties of the algorithm: (5) any guarantees (or lack thereof) regarding termination, convergence, correctness, accuracy or generalization power.

Team A (HW2, HW6)

Sami Kale

Aditya Bansal

Abuzar Khan

Erin Gao

Bhargav Hadya

Course Staff

Team B (HW3, HW7)

Monica Geng

Asmita Hajra

Dishani Lahiri

Team D (HW5, HW9)

Abhishek Vijayakumar

(Ads) Advaith Sridhar

Tara Lakdawala

Poorvi Hebbar

[^0]: An engineering model of the Iris rover at Carnegie Mellon University's Robotics Institute. Source: Carnegie Mellon University

 By Katrina Manson
 March 29, 2023 at 8:00 AM EDT

