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Reminders

• Homework 9: Learning Paradigms
– Out: Fri, Apr. 21
– Due: Thu, Apr. 27 at 11:59pm

(only two grace/late days permitted)

• Exam 3 Practice Problems
– Out: Tue, Apr 25

• Exam 3
– Tue, May 2 (5:30pm – 7:30pm)

• Final Exit Poll (after Exam 3)
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Crowdsourcing Exam Questions
In-Class Exercise
1. Select one of 

lecture-level 
learning objectives
http://mlcourse.org/slides/10601-objectives.pdf

2. Write a question 
that assesses that 
objective

3. Adjust to avoid 
‘trivia style’ 
question
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Answer Here:

http://mlcourse.org/slides/10601-objectives.pdf


EXAM LOGISTICS
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Exam 3
• Time / Location

– Time: Tue, May 2 at 5:30pm – 7:30pm
– Location & Seats: You have all been split across multiple rooms. 

Everyone has an assigned seat in one of these room. 
– Please watch Piazza carefully for announcements.

• Logistics
– Covered material: Lectures 18 – 26 
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and 

back)
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Exam 3

• How to Prepare
– Attend (or watch) this exam review session
– Review practice problems
– Review homework problems
– Review the poll questions from each lecture
– Consider whether you have achieved the 

learning objectives for each lecture / section
– Write your cheat sheets
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Topics for Exam 1
• Foundations
– Probability, Linear 

Algebra, Geometry, 
Calculus

– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– Linear Regression
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Topics for Exam 2
• Classification
– Binary Logistic 

Regression
• Important Concepts
– Stochastic Gradient 

Descent
– Regularization
– Feature Engineering

• Feature Learning
– Neural Networks
– Basic NN Architectures
– Backpropagation

• Learning Theory
– PAC Learning

• Generative Models
– Generative vs. 

Discriminative
– MLE / MAP
– Naïve Bayes

• Regression
– Linear Regression
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Topics for Exam 3
• Graphical Models
– HMMs
– Learning and Inference
– Bayesian Networks

• Reinforcement 
Learning
– Value Iteration
– Policy Iteration
– Q-Learning
– Deep Q-Learning

• Other Learning 
Paradigms
– K-Means
– PCA
– Ensemble Methods
– Recommender Systems
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MATERIAL COVERED ON EXAM 1
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Supervised Binary Classification
• Step 1: training

– Given: labeled training dataset 
– Goal: learn a classifier from the 

training dataset 
• Step 2: prediction

– Given: unlabeled test dataset 
– Given: learned classifier
– Goal: predict a label for each 

instance
• Step 3: evaluation

– Given: predictions from Phase II
– Given: labeled test dataset
– Goal: compute the test error 

rate (i.e. error rate on the test 
dataset)
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error rate = 1/3

Key question in 
Machine Learning: 

How do we learn the 
classifier from data?



Medical Diagnosis
Interview Transcript
Date: Jan. 15, 2022
Parties: Matt Gormley and Doctor S.
Topic: Medical decision making

• Matt: Welcome. Thanks for interviewing with me 
today.

• Dr. S: Interviewing…?
• Matt: Yes. For the record, what type of doctor are 

you?
• Dr. S: Who said I’m a doctor?
• Matt: I thought when we set up this interview you 

said—
• Dr. S: I’m a preschooler.
• Matt: Good enough. Today, I’d like to learn how you 

would determine whether or not your little brother 
is allergic to cats given his symptoms.

• Dr. S: He’s not allergic.
• Matt: We haven’t started yet. Now, suppose he is 

sneezing. Does he have allergies to cats?
• Dr. S: Well, we don’t even have a cat, so that doesn’t 

make any sense. 
• Matt: What if he is itchy;  Does he have allergies?
• Dr. S: No, that’s just a mosquito.
• [Editor’s note: preschoolers unilaterally agree that 

itchiness is always caused by mosquitos, regardless 
of whether mosquitos were/are present.]

• Matt: What if he’s both sneezing and itchy? 
• Dr. S:  Then he’s allergic.
• Matt: Got it. What if your little brother is sneezing 

and itchy, plus he’s a doctor.
• Dr. S: Then, thumbs down, he’s not allergic.
• Matt: How do you know?
• Dr. S:  Doctors don’t get allergies.
• Matt: What if he is not sneezing, but is itchy, and he 

is a fox….
• Matt: …and the fox is in the bottle where the 

tweetle beetles battle with their paddles in a puddle 
on a noodle-eating poodle.

• Dr. S: Then he is must be a tweetle beetle noodle 
poodle bottled paddled muddled duddled fuddled 
wuddled fox in socks, sir. That means he’s definitely 
allergic.

• Matt: Got it. Can I use this conversation in my 
lecture?

• Dr. S: Yes
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Function Approximation
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Quiz: Implement a simple function which returns -sin(x).

A few constraints are imposed:
1. You can’t call any other trigonometric functions
2. You can call an existing implementation of sin(x) a few times 

(e.g. 100) to test your solution
3. You only need to evaluate it for x in [0, 2*pi]

h(x)

=c*(x)



c*(x)

Supervised Machine Learning
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Decision Tree Learning Example
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Dataset: 
Output Y, Attributes A and B

Y A B

- 1 0

- 1 0

+ 1 0

+ 1 0

+ 1 1

+ 1 1

+ 1 1

+ 1 1

Mutual Information
H(Y) =  – 2/8 log(2/8) – 6/8 log(6/8)

H(Y|A=0) = “undefined”
H(Y|A=1) = – 2/8 log(2/8) – 6/8 log(6/8) 

= H(Y)
H(Y|A) = P(A=0)H(Y|A=0) + P(A=1)H(Y|A=1)

= 0 + H(Y|A=1) = H(Y)
I(Y; A) = H(Y) - H(Y|A=1) = 0

H(Y|B=0) = -2/4 log(2/4) – 2/4 log(2/4)
H(Y|B=1) = -0 log(0) – 1 log(1) = 0
H(Y|B) = 4/8(0) + 4/8(H(Y|B=0))
I(Y; B) = H(Y) – 4/8 H(Y|B=0) > 0

A
0 1

[6+, 2-]

[0+, 0-] [6+, 2-]

B
0 1

[6+, 2-]

[2+, 2-] [4+, 0-]



Overfitting in Decision Tree Learning

21
Figure from Tom Mitchell



Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7
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k-Nearest Neighbors
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3
4

2
8

7
7

xnew

x1

x2

How should we label 
the new point?

It depends on k:
if k=1, h(xnew) = +1
if k=3, h(xnew) = -1
if k=5, h(xnew) = +1

Suppose we have the 
training dataset below.



Hyperparameter Optimization
Question:
True or False: given a finite amount of computation time, grid 
search is more likely to find good values for hyperparameters 
than random search.
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Answer:

BERGSTRA AND BENGIO
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Figure 1: Grid and random search of nine trials for optimizing a function f (x,y) = g(x)+ h(y) ≈
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

given learning algorithm, looking at several relatively similar data sets (from different distributions)
reveals that on different data sets, different subspaces are important, and to different degrees. A grid
with sufficient granularity to optimizing hyper-parameters for all data sets must consequently be
inefficient for each individual data set because of the curse of dimensionality: the number of wasted
grid search trials is exponential in the number of search dimensions that turn out to be irrelevant for
a particular data set. In contrast, random search thrives on low effective dimensionality. Random
search has the same efficiency in the relevant subspace as if it had been used to search only the
relevant dimensions.

This paper is organized as follows. Section 2 looks at the efficiency of random search in practice
vs. grid search as a method for optimizing neural network hyper-parameters. We take the grid search
experiments of Larochelle et al. (2007) as a point of comparison, and repeat similar experiments
using random search. Section 3 uses Gaussian process regression (GPR) to analyze the results of
the neural network trials. The GPR lets us characterize what Ψ looks like for various data sets,
and establish an empirical link between the low effective dimensionality of Ψ and the efficiency
of random search. Section 4 compares random search and grid search with more sophisticated
point sets developed for Quasi Monte-Carlo numerical integration, and argues that in the regime of
interest for hyper-parameter selection grid search is inappropriate and more sophisticated methods
bring little advantage over random search. Section 5 compares random search with the expert-
guided manual sequential optimization employed in Larochelle et al. (2007) to optimize Deep Belief
Networks. Section 6 comments on the role of global optimization algorithms in future work. We
conclude in Section 7 that random search is generally superior to grid search for optimizing hyper-
parameters.

284

Figure from Bergstra & Bengio (2012)



Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

Looking ahead: 
• We’ll see a number of 

commonly used Linear 
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under 

certain conditions)
– Support Vector 

Machines
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Perceptron Mistake Bound

30
Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin 𝛾 and all points lie inside 
a ball of radius 𝑅, then the online Perceptron algorithm 
makes ≤ ⁄𝑅 𝛾 ! mistakes
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+
+
+

+

-

- -

-

-

g
g
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��Def: We say that the (batch) perceptron algorithm has 
converged if it stops making mistakes on the training data 
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the 
perceptron algorithm cycles repeatedly through the data, 
it will converge in a finite # of steps.



Linear Regression by Rand. Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)

31

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

x, amount of sleep

y,
 #

 o
f b

ug
s 

de
bu

gg
ed
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Topographical Maps

Franconia Ridge Trail  by Roy Luck / CC BY

https://flic.kr/p/28UcuN2
https://creativecommons.org/licenses/by/2.0/


Linear Regression by Gradient Desc.
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

iteration, t

m
ea

n 
sq

ua
re

d 
er

ro
r, 

J(
θ 1

, θ
2)



MATERIAL COVERED ON EXAM 2
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Gradient Descent & Convexity
• Gradient 

descent is a 
local 
optimization 
algorithm

• If the function is 
nonconvex, it 
will find a local 
minimum, not 
necessarily a 
global minimum

• If the function is 
convex, it will 
find a global 
minimum
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Probabilistic Learning

Function Approximation
Previously, we assumed that our 
output was generated using a 
deterministic target function:

Our goal was to learn a 
hypothesis h(x) that best 
approximates c*(x)

Probabilistic Learning
Today, we assume that our 
output is sampled from a 
conditional probability 
distribution:

Our goal is to learn a probability 
distribution p(y|x) that best 
approximates p*(y|x)
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MLE

40

Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)



Logistic Regression

41

Learning: finds the parameters that minimize some 
objective function. �� = argmin

�
J(�)

Prediction: Output is the most probable class.
ŷ = �`;K�t

y�{0,1}
p�(y|t)

Model: Logistic function applied to dot product of 
parameters with input vector.

p�(y = 1|t) =
1

1 + 2tT(��T t)

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



Where do features come from?

42

word
embeddings

tree
embeddings

word embedding 
featureshand-crafted

features

best of both 
worlds?

string
embeddings

Fe
at

ur
e

En
gi

ne
er

in
g

Feature Learning

Sun et al., 2011

Zhou et al.,
2005

Mikolov et al.,
2013

Collobert & Weston, 
2008

Socher, 2011

Socher et al.,
2013

Turian et al. 
2010

Koo et al. 
2008

Hermann et al.
2014

Hermann & Blunsom, 
2013



Example: Linear Regression

43x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

… … … … …

10 1.1 1.9 … (1.9)9

• With just N = 10 
points we overfit!

• But with N = 100 
points, the 
overfitting 
(mostly) 
disappears

• Takeaway: more 
data helps 
prevent 
overfitting



Example: Linear Regression

44x

y

Goal: Learn y = wT f(x) + b
where f(.) is a polynomial 
basis function

• With just N = 10 
points we overfit!

• But with N = 100 
points, the 
overfitting 
(mostly) 
disappears

• Takeaway: more 
data helps 
prevent 
overfitting

true “unknown” 
target function is 
linear with 
negative slope 
and gaussian
noise

i y x … x9

1 2.0 1.2 … (1.2)9

2 1.3 1.7 … (1.7)9

3 0.1 2.7 … (2.7)9

4 1.1 1.9 … (1.9)9

… … … … …

… … … … …

… … … … …

98 … … … …

99 … … … …

100 0.9 1.5 … (1.5)9



Regularization
• Given objective function: J(θ)
• Goal is to find:

• Key idea: Define regularizer r(θ) s.t. we tradeoff 
between fitting the data and keeping the model 
simple

• Choose form of r(θ):
– Example: q-norm (usually p-norm):

45
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Linear Regression
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Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) = a



Perceptron

47

Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)



y = h�(x) = �(�T x)

where �(a) =
1

1 + 2tT(�a)

Logistic Regression

48

Decision 
Functions

…

Output

Input

θ1 θ2 θ3 θM

1 1 0

x1

x2

y

In-Class Example



Neural Network

49

Decision 
Functions

Output

Input

Hidden Layer

⍺11 ⍺12 ⍺13⍺21 ⍺22
⍺23

β1 β2Weights

Weights



Error Back-Propagation
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y(i)

p(y|x(i))

z

ϴ

Slide from (Stoyanov & Eisner, 2012)



Differentiation Quiz
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Training

A. [42, -72]
B. [72, -42]
C. [100, 127]
D. [127, 100]

E. [1208, 810]
F. [810, 1208]
G. [1505, 94]
H. [94, 1505]

Answer: Answers below are in the form [dy/dx, dy/dz]

Differentiation Quiz #1:
Suppose x = 2 and z = 3, what are dy/dx and dy/dz for the 
function below? Round your answer to the nearest 
integer.

Speed Quiz:

2 minute time limit.



Architecture #2: AlexNet

52

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2012)
15.3% error on ImageNet LSVRC-2012 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax
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RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1) 54

The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END



Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and 
thought That which I am not aps, not a man and 
in fire, To show the reining of the raven and the 
wars To grace my hand reproach within, and 
not a fair are hand, That Caesar and my goodly 
father's world; When I was heaven of presence 
and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy 
master's ready there My power to give thee but 
so much as hell: Some service in the noble 
bondman here, Would show him to her wine. 

KING LEAR: O, if you were a feeble sight, the 
courtesy of your law, Your sight and several 
breath, will wear the gods With his heads, and 
my hands are wonder'd at the deeds, So drop 
upon your lordship's head, and your opinion 
Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to 
acquaint you with a matter. I am given, sir, 
secretly to understand that your younger 
brother Orlando hath a disposition to come in 
disguised against me to try a fall.  To-morrow, 
sir, I wrestle for my credit; and he that escapes 
me without some broken limb shall acquit him 
well. Your brother is but young and tender; and, 
for your love, I would be loath to foil him, as I 
must, for my own honour, if he come in: 
therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might 
stay him from his intendment or brook such 
disgrace well as he shall run into, in that it is a 
thing of his own search and altogether against 
my will.

TOUCHSTONE: For my part, I had rather bear 
with you than bear you; yet I should bear no 
cross if I did bear you, for I think you have no 
money in your purse.

55
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real 
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


PAC-MAN Learning

56

1. True Error

2. Training Error

Question 1:
What is the probability that 
Matt get a Game Over in PAC-
MAN?

A. 90%
B. 50%
C. 10%

Question 2:
What is the expected number 
of PAC-MAN levels Matt will 
complete before a Game-
Over?

A. 1-10
B. 11-20
C. 21-30



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



Learning Theory & Model Selection

58

Q: Is 
Corollary 
4 useful? 

A: Yes!

VC(H)
(i.e. complexity)

error
(i.e. lower è
good data fit)

train error

part of Corr. 4

true error
bound from Corr. 4

best tradeoff

Ex: H = Linear Separators in RM

VC(H) = M+1
Q: In practice, how do we tradeoff between error and VC(H)? 
A: Use a regularizer! That is, reducing the number of (effective) features 
reduces the VC dimension. More features usually leads to a better fit to the 
data.

Key Point: 
we want 

to tradeoff 
between 

low 
training 

error and 
keeping H 

simple 
(low VC-

Dim)
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Text Data



Bag-of-
Words Model

𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”)

𝑦
(Dr. Seuss)
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Bag-of-
Words Model
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The Cat in the Hat
(by Dr. Seuss)

Source: https://en.wikipedia.org/wiki/The_Cat_in_the_Hat#/media/File:The_Cat_in_the_Hat.png

𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”)

𝑦
(Dr. Seuss)

1 1 0 0 0 0 1

https://en.wikipedia.org/wiki/The_Cat_in_the_Hat
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Go, Dog. Go! 
(by P. D. Eastman)

Source: https://en.wikipedia.org/wiki/Go,_Dog._Go!#/media/File:Go_Dog_Go.jpg

𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”)

𝑦
(Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0

https://en.wikipedia.org/wiki/Go,_Dog._Go!
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Source: 
https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish#/media/File:One_Fish_Two_Fish_Red_Fish_Blue_Fish_(cover_art).jpg

𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”)

𝑦
(Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0
0 0 0 1 0 0 1

One Fish, Two Fish, 
Red Fish, Blue Fish

(by Dr. Seuss)

https://en.wikipedia.org/wiki/One_Fish,_Two_Fish,_Red_Fish,_Blue_Fish
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𝑥!
(“hat”)

𝑥"
(“cat”)

𝑥#
(“dog”)

𝑥$
(“fish”)

𝑥%
(“mom”)

𝑥&
(“dad”)

𝑦
(Dr. Seuss)

1 1 0 0 0 0 1

0 0 1 0 0 0 0
0 0 0 1 0 0 1

0 0 0 0 1 0 0

Are You My Mother?
(by P. D. Eastman)

Source: https://en.wikipedia.org/wiki/Are_You_My_Mother%3F#/media/File:Areyoumymother.gif

https://en.wikipedia.org/wiki/Are_You_My_Mother%3F


Model 1: Bernoulli Naïve Bayes

66

If HEADS, flip 
each red coin

Flip weighted coin

If TAILS, flip 
each blue coin

0 1 0 1 … 1

y x1 x2 x3 … xM

1 0 1 0 … 1

1 1 1 1 … 1

0 0 0 1 … 1

0 1 0 1 … 0

1 1 0 1 … 0
Each red coin 

corresponds to 
an xm

… …

We can generate data in 
this fashion. Though in 

practice we never would 
since our data is given. 

Instead, this provides an 
explanation of how the 

data was generated 
(albeit a terrible one).



Recipe for Closed-form MLE
1. Assume data was generated i.i.d. from some model

(i.e. write the generative story)
x(i) ~ p(x|θ)

2. Write log-likelihood
l(θ) = log p(x(1)|θ) + … + log p(x(N)|θ)

3. Compute partial derivatives (i.e. gradient)
𝜕l(θ)/𝜕θ1 = …
𝜕l(θ)/𝜕θ2 = …
…
𝜕l(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕l(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMLE = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMLE
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Recipe for Closed-form MAP 
Estimation

1. Assume data was generated i.i.d. from some model
(i.e. write the generative story)

θ ~ p(θ) and then for all i: x(i) ~ p(x|θ) 
2. Write log-likelihood

lMAP(θ) = log p(θ) + log p(x(1)|θ) + … + log p(x(N)|θ)
3. Compute partial derivatives (i.e. gradient)

𝜕lMAP(θ)/𝜕θ1 = …
𝜕lMAP(θ)/𝜕θ2 = …
…
𝜕lMAP(θ)/𝜕θM = …

4. Set derivatives to zero and solve for θ
𝜕lMAP(θ)/𝜕θm = 0 for all m ∈ {1, …, M}
θMAP = solution to system of M equations and M variables

5. Compute the second derivative and check that l(θ) is concave down 
at θMAP

68



Classification and Regression: The Big Picture

69



MATERIAL COVERED ON EXAM 3

70



Totoro’s Tunnel

71
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HMM Parameters:

Hidden Markov Model

73

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

O S C
O .9 .08.02
S .2 .7 .1
C .9 0 .1

1m
in

2m
in

3m
in

…

O .1 .2 .3
S .01 .02.03
C 0 0 0

O .8
S .1
C .1



Great Ideas in ML: Message Passing

3 
behind 
you

2 
before
you

there's
1 of me

Belief:
Must be
2 + 1 + 3 = 6 of 
us

only see
my incoming
messages

2 31

Count the soldiers

74
adapted from MacKay (2003) textbook

2 
before
you



Y2 Y3Y1

X3X2X1
find preferred tags

v

n

a

v

n

a

v

n

a

START END

α2(n) = total weight of these
path prefixes

= total weight of these
path suffixes

Forward-Backward Algorithm: Finds Marginals

75

b2(n)
(a + b + c) (x + y + z)

Product gives  ax+ay+az+bx+by+bz+cx+cy+cz = total weight of paths



Viterbi Algorithm

76



Sample Questions

77

1. Given the POS tagging data shown, what are the 
parameter values learned by an HMM?

Verb Noun Verb

see spot run

Verb Noun Verb

run spot run

Adj. Adj. Noun

funny funny spot

4 Hidden Markov Models



Sample Questions

78

1. Given the POS tagging data shown, what are the 
parameter values learned by an HMM?

2. Suppose you a learning an HMM POS Tagger, 
how many POS tag sequences of length 23 are 
there?

3. How does an HMM efficiently search for the 
most probable tag sequence given a 23-word 
sentence?

Verb Noun Verb

see spot run

Verb Noun Verb

run spot run

Adj. Adj. Noun

funny funny spot

4 Hidden Markov Models



Example: CMU Mission Control

79



The “Burglar Alarm” example
• After you get this phone call, 

suppose you learn that there was a 
medium-sized earthquake in your 
neighborhood. Oh, whew! Probably 
not a burglar after all.

• Earthquake “explains away” the 
hypothetical burglar.

• But then it must not be the case 
that 

even though

Burglar Earthquake

Alarm

Phone Call

Slide from William Cohen

Burglar �� Earthquake | PhoneCall

Burglar �� Earthquake



Example: Tornado Alarms
1. Imagine that 

you work at the 
911 call center 
in Dallas

2. You receive six 
calls informing 
you that the 
Emergency 
Weather Sirens 
are going off

3. What do you 
conclude?

81
Figure from https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html



Sample Questions
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10-601: Machine Learning Page 11 of 15 4/27/2016

5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S,E,A 2 {0, 1}.

S

E

R

A

Figure 5: Directed graphical model for problem 5.

All the following questions will be with respect to Figure 5.

(a) [2 pts.] Write the expression for the joint distribution.

(b) [2 pts.] How many parameters, i.e., entries in the CPT tables, are necessary to describe
the joint distribution?

(c) [2 pts.] What is the Markov Blanket of each of the nodes in the network?

(d) [2 pts.] Is S marginally independent of R? Is S conditionally independent of R given
E? Answer yes or no to each questions and provide a brief explanation why.

(e) [2 pts.] Explain when would you use the EM algorithm in learning the parameters for
this joint distribution.
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5 Graphical Models [16 pts.]

We use the following Bayesian network to model the relationship between studying (S),
being well-rested (R), doing well on the exam (E), and getting an A grade (A). All nodes
are binary, i.e., R, S,E,A 2 {0, 1}.

S
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Figure 5: Directed graphical model for problem 5.

All the following questions will be with respect to Figure 5.

(a) [2 pts.] Write the expression for the joint distribution.
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the joint distribution?
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(d) [2 pts.] Is S marginally independent of R? Is S conditionally independent of R given
E? Answer yes or no to each questions and provide a brief explanation why.

(e) [2 pts.] Explain when would you use the EM algorithm in learning the parameters for
this joint distribution.

(b) [2 pts.] How many parameters are necessary to describe the joint distribution?
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Poll



Sample Questions
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(f) [3 pts.] Give two reasons why the graphical models formalism is convenient when com-
pared to learning a full joint distribution.

(g) [3 pts.] Answer each of the following questions with T or F and provide a one line
justification.

(i) T or F: Getting an MLE estimate of the parameters in the fully observed case has
no closed form solution, and therefore it will have to be solved through iterative
optimization methods.

(ii) T or F: The directed graph shown in Figure 5 is a polytree.

(iii) T or F: Continuous and discrete random variables cannot be mixed in graphical
models.
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A Few Problems for Bayes Nets
Suppose we already have the parameters of a Bayesian Network…

1. How do we compute the probability of a specific assignment to the 
variables?
P(T=t, H=h, A=a, C=c)

2. How do we draw a sample from the joint distribution?
t,h,a,c ∼ P(T, H, A, C)

3. How do we compute marginal probabilities?
P(A) = …

4. How do we draw samples from a conditional distribution? 
t,h,a ∼ P(T, H, A | C = c)

5. How do we compute conditional marginal probabilities?
P(H | C = c) = …

86

Can we 
use 

samples
?



Gibbs Sampling
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Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.

370 29 — Monte Carlo Methods

(a)
x1

x2

P (x)

(b)
x1

x2

P (x1 |x(t)
2 )

x(t)

(c)
x1

x2

P (x2 |x1)

(d)
x1

x2

x(t)

x(t+1)

x(t+2)

Figure 29.13. Gibbs sampling.
(a) The joint density P (x) from
which samples are required. (b)
Starting from a state x(t), x1 is
sampled from the conditional
density P (x1 |x(t)

2 ). (c) A sample
is then made from the conditional
density P (x2 |x1). (d) A couple of
iterations of Gibbs sampling.

This is good news and bad news. It is good news because, unlike the
cases of rejection sampling and importance sampling, there is no catastrophic
dependence on the dimensionality N . Our computer will give useful answers
in a time shorter than the age of the universe. But it is bad news all the same,
because this quadratic dependence on the lengthscale-ratio may still force us
to make very lengthy simulations.

Fortunately, there are methods for suppressing random walks in Monte
Carlo simulations, which we will discuss in the next chapter.

29.5 Gibbs sampling

We introduced importance sampling, rejection sampling and the Metropolis
method using one-dimensional examples. Gibbs sampling, also known as the
heat bath method or ‘Glauber dynamics’, is a method for sampling from dis-
tributions over at least two dimensions. Gibbs sampling can be viewed as a
Metropolis method in which a sequence of proposal distributions Q are defined
in terms of the conditional distributions of the joint distribution P (x). It is
assumed that, whilst P (x) is too complex to draw samples from directly, its
conditional distributions P (xi | {xj}j !=i) are tractable to work with. For many
graphical models (but not all) these one-dimensional conditional distributions
are straightforward to sample from. For example, if a Gaussian distribution
for some variables d has an unknown mean m, and the prior distribution of m
is Gaussian, then the conditional distribution of m given d is also Gaussian.
Conditional distributions that are not of standard form may still be sampled
from by adaptive rejection sampling if the conditional distribution satisfies
certain convexity properties (Gilks and Wild, 1992).

Gibbs sampling is illustrated for a case with two variables (x1, x2) = x
in figure 29.13. On each iteration, we start from the current state x(t), and
x1 is sampled from the conditional density P (x1 |x2), with x2 fixed to x(t)

2 .
A sample x2 is then made from the conditional density P (x2 |x1), using the

p(x)

x(t+1)

x(t+2)

p(x2|x(t+1)
1 )

x(t)



RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎 , 𝑅 ∶ 𝒮 × 𝒜 → ℝ
• Transition probabilities, 𝑝 𝑠# 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠# 𝑠, 𝑎) = 11 if 𝛿 𝑠, 𝑎 = 𝑠′
0 otherwise

where 𝛿 𝑠, 𝑎 is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉$: 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and 
executing policy 𝜋

93

Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)



MDP Example: 
Multi-armed bandit

� Single state: 
𝒮 = 1

� Three actions: 
𝒜 = 1, 2, 3

� Rewards are stochastic
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Example: Path Planning
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RL: Value 
Function 
Example

96

7

3

-2

𝑅 𝑠, 𝑎 =

−2 if entering state 0 safety
3 if entering state 5 Jield goal
7 if entering state 6 (touch down)
0 otherwise

0

5

61
2 3 4

𝛾 = 0.9



Learning
𝑄∗(𝑠, 𝑎)

97

� Algorithm 3: 𝜖-greedy online learning of 𝑄∗ (table form) 
� Inputs: discount factor 𝛾, 

an initial state 𝑠,

greediness parameter 𝜖 ∈ 0, 1 ,

learning rate 𝛼 ∈ 0, 1 (“mistrust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0 ∀ 𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜
(𝑄 is a 𝒮 × 𝒜 table or array) 

� While TRUE, do

� With probability 1 − 𝜖, take the greedy action 

𝑎 = argmax
"' ∈𝒜

𝑄 𝑠, 𝑎% . Otherwise (with        

probability 𝜖), take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Observe the new state 𝑠% ∼ 𝑝 𝑆% 𝑠, 𝑎)
� Update 𝑄 and 𝑠

𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
"'

𝑄 𝑠%, 𝑎%

𝑠 ← 𝑠%
Current value Update w/ 

deterministic transitions
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6

Learning
𝑄∗(𝑠, 𝑎): 
Example

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎 represented by 

𝛾 = 0.9

0 1

𝑄 3,→ ← 0 + 0.9 max
"'∈ →,←,↑,↻

𝑄 4, 𝑎% = 2.7

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0



Alpha Go
Game of Go (圍棋)
• 19x19 board
• Players alternately 

play black/white 
stones

• Goal is to fully 
encircle the largest 
region on the board

• Simple rules, but 
extremely complex 
game play

99

AlphaGo (Black) vs. Lee Sedol (White) - Game 2 
Final position (AlphaGo wins in 211 moves) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol



Deep Q-Learning

100

Question: What if our state space S is too large to represent with a 
table?

Examples:
• st = pixels of a video game
• st = continuous values of a sensors in a manufacturing robot
• st = sensor output from a self-driving car

Answer: Use a parametric function to approximate the table entries

Key Idea:
1. Use a neural network Q(s,a; θ) to approximate Q*(s,a)
2. Learn the parameters θ via SGD with training 

examples < st, at, rt, st+1 >



Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot
Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on
joystick, see pixels
and scores

Playing Atari with Deep RL
• Setup:  RL 

system 
observes the 
pixels on the 
screen

• It receives 
rewards as the 
game score

• Actions decide 
how to move 
the joystick / 
buttons

101
Figures from David Silver (Intro RL lecture)



Sample Questions
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10-601 Machine Learning Final Exam - Page 23 of 23 Andrew ID:

7 Removed Questions

7.1 Reinforcement Learning

1. (2 points) Select all that are true:

⇤ Value iteration and policy iteration require the same amount of computation per
iteration.

⇤ Policy iteration requires more computation per iteration than value iteration.

⇤ In practice, value iteration converges in fewer iterations.

⇤ Both value iteration and policy iteration can be solved using dynamic program-
ming techniques.

⇤ None of the above.

2. (1 point) True or False: In real world applications where the state space is large, value
iteration is typically adopted as opposed to Q-learning.

� True

� False

3. (1 point) Please select one statement that is true for reinforcement learning
and supervised learning.

� Reinforcement learning is a kind of supervised learning problem because you
can treat the reward and next state as the label and each state, action pair as
the training data.

� Reinforcement learning di↵ers from supervised learning because it has a tem-
poral structure in the learning process, whereas, in supervised learning, the
prediction of a data point does not a↵ect the data you would see in the future.

4. (1 point) True or False: Value iteration is better at balancing exploration and ex-
ploitation compared with policy iteration.

� True

� False
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� False

Poll
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iteration is typically adopted as opposed to Q-learning.

� True

� False

3. (1 point) Please select one statement that is true for reinforcement learning
and supervised learning.

� Reinforcement learning is a kind of supervised learning problem because you
can treat the reward and next state as the label and each state, action pair as
the training data.

� Reinforcement learning di↵ers from supervised learning because it has a tem-
poral structure in the learning process, whereas, in supervised learning, the
prediction of a data point does not a↵ect the data you would see in the future.

4. (1 point) True or False: Value iteration is better at balancing exploration and ex-
ploitation compared with policy iteration.

� True

� False
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1. For the R(s,a) values shown on the arrows below, what 
is the corresponding optimal policy? Assume the discount 
factor is 0.1

2. For the R(s,a) values shown on the arrows below, which 
are the corresponding V*(s) values? Assume the discount 
factor is 0.1

3. For the R(s,a) values shown on the arrows below, which 
are the corresponding Q*(s,a) values? Assume the 
discount factor is 0.1

4. Could we change R(s,a) such that all the V*(s) values 
change but the optimal policy stays the same? If so, show 
how and if not, briefly explain why not.  



Shortcut Example
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https://www.youtube.com/watch?v=MlJN9pEfPfE

Photo from https://www.springcarnival.org/booth.shtml

https://www.youtube.com/watch?v=MlJN9pEfPfE


PCA section in one slide…
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1. Dimensionality reduction: 2. Random Projection:

3. Definition of PCA:

Choose the matrix V that either…
1. minimizes reconstruction error
2. consists of the K eigenvectors with 

largest eigenvalue

The above are equivalent definitions.

4. Algorithm for PCA:

The option we’ll focus on: 

Run Singular Value 
Decomposition (SVD) to 
obtain all the eigenvectors. 
Keep just the top-K to form V. 
Play some tricks to keep 
things efficient.

5. An Example



Projecting MNIST digits
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Task Setting:
1. Take 25x25 images of digits and project them down to 2 components
2. Plot the 2 dimensional points



Sample Questions
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4 Principal Component Analysis [16 pts.]

(a) In the following plots, a train set of data points X belonging to two classes on R2

are given, where the original features are the coordinates (x, y). For each, answer the
following questions:

(i) [3 pt.] Draw all the principal components.

(ii) [6 pts.] Can we correctly classify this dataset by using a threshold function after
projecting onto one of the principal components? If so, which principal component
should we project onto? If not, explain in 1–2 sentences why it is not possible.

Dataset 1:

Response to question (ii):

Dataset 2:

Response to question (ii):
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K-Means Algorithm

• Given unlabeled feature vectors
D = {x(1), x(2),…, x(N)}

• Initialize cluster centers c = {c(1),…, c(K)} 
• Repeat until convergence:
– for i in {1,…, N}

z(i) ← index j of cluster center nearest to x(i)

– for j in {1,…,K}
c(j) ←mean of all points assigned to cluster j

110
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Example: K-Means
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Example: K-Means
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Sample Questions
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2.3 “K-Means %%”

The TAs for 10-601 pulled an all nighter and designed a brand new initialization algorithm for
the cluster centers in Lloyd’s algorithm. Below is the algorithm which they called “K-means
%%”.

• Choose the first cluster center, c1, uniformly at random from among the data points.

• For j = 2, . . . , k iteratively choose cj to be one of the data points according to the
following weighted probability

P (cj = x) /

8
<

:

0 if x = c` for ` = 1, . . . , j � 1

min`<j
1

||x � c`||
otherwise

Assume that x 2 R1. Answer the following questions about “K-means %%”:
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Figure 2: Initial data and cluster centers

(a) [3 pts] Circle the image which depicts the cluster center positions after 1 iteration of
Lloyd’s algorithm.

Solution: Circle the 3rd image

Circle the image which depicts 
the cluster center positions after 1 

iteration of Lloyd’s algorithm.

10-601: Machine Learning Page 4 of 16 4/27/2016

2 K-Means Clustering [16 pts.]

2.1 General K-means questions (circle one answer)

(a) [3 pts] We are given n data points, x1, ..., xn and asked to cluster them using K-means.
If we choose the value for k to optimize the objective function how many clusters will
be used (i.e. what value of k will we choose)? No justification required.

(i) 1 (ii) 2 (iii) n (iv) log(n)

Solution: n. Since the objective function would be minimized with k = n since there
is no regularization for the value of k.

(b) [3 pts] Why do we use Lloyds algorithm to find the K-means clustering assignments
instead of the brute force algorithm? Recall that the brute force algorithm for some
value k requires searching over all possible assignments of the data points into k clusters.
No justification required.

(i) Lloyd’s algorithm is guaranteed to find a clustering assignment.

(ii) Lloyd’s algorithm is guaranteed to converge in a linear number of steps.

(iii) The brute force algorithm can take an exponential number of steps (in worst case).

(iv) The brute force algorithm can take a polynomial number of steps (in worst case).

Solution: (c) The brute force algorithm can take an exponential number of steps (in
worst case).

2.2 Lloyd’s algorithm

We are given data drawn from two independent multivariate Gaussian distributions. The
data are shown in Figure 2 with the initial cluster centers as red crosses.

Poll



Recommender Systems
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Weighted Majority Algorithm
• Given: pool A of binary classifiers (that 

you know nothing about)
• Data: stream of examples (i.e. online 

learning setting)
• Goal: design a new learner that uses 

the predictions of the pool to make 
new predictions

• Algorithm: 
– Initially weight all classifiers equally
– Receive a training example and predict 

the (weighted) majority vote of the 
classifiers in the pool

– Down-weight classifiers that contribute 
to a mistake by a factor of β

116

(Littlestone & Warmuth, 1994)



Weighted Majority Algorithm
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Theorems (Littlestone & Warmuth, 1994)

These are 
“mistake 

bounds” of the 
variety we saw 

for the 
Perceptron 
algorithm



Final ClassifierFinal ClassifierFinal ClassifierFinal ClassifierFinal Classifier

H
final

+ 0.92+ 0.650.42sign=

=

AdaBoost: Toy Example

118
Slide from Schapire NIPS Tutorial 



Two Types of Collaborative Filtering
2. Latent Factor Methods

119
Figures from Koren et al. (2009)

• Assume that both 
movies and users 
live in some low-
dimensional space 
describing their 
properties

• Recommend a 
movie based on its 
proximity to the 
user in the latent 
space

• Example Algorithm: 
Matrix Factorization



Example: MF for Netflix Problem

120
Figures from Aggarwal (2016)
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(a) Example of rank-2 matrix factorization

(b) Residual matrix

Figure 3.7: Example of a matrix factorization and its residual matrix
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(a) Example of rank-2 matrix factorization

(b) Residual matrix

Figure 3.7: Example of a matrix factorization and its residual matrix
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Recommending Movies
Question:
Suppose you want to build a system that combines 
elements of collaborative filtering with content filtering, 
which of the following pieces of information about user 
behavior could be used to improve such a system?
Select all that apply
A. # of times a user watched a given movie
B. Total # of movies a user has watched
C. How often a user turns on subtitles
D. # of times a user paused a given movie
E. How many accounts a user is associated with
F. # of DVDs a user can rent at a time
G. None of the above

121

Poll



Classification and Regression: The Big Picture

122



Learning Paradigms
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ML Big Picture
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Learning Paradigms:
What data is available and 
when? What form of prediction?
• supervised learning
• unsupervised learning
• semi-supervised learning
• reinforcement learning
• active learning
• imitation learning
• domain adaptation
• online learning
• density estimation
• recommender systems
• feature learning
• manifold learning
• dimensionality reduction
• ensemble learning
• distant supervision
• hyperparameter optimization

Problem Formulation:
What is the structure of our output prediction?
boolean Binary Classification
categorical Multiclass Classification
ordinal Ordinal Classification
real Regression
ordering Ranking
multiple discrete Structured Prediction
multiple continuous (e.g. dynamical systems)
both discrete &
cont.

(e.g. mixed graphical models)

Theoretical Foundations:
What principles guide learning?
q probabilistic
q information theoretic
q evolutionary search
q ML as optimization

Facets of Building ML 
Systems:
How to build systems that are 
robust, efficient, adaptive, 
effective?
1. Data prep 
2. Model selection
3. Training (optimization / 

search)
4. Hyperparameter tuning on 

validation data
5. (Blind) Assessment on test 

data

Big Ideas in ML:
Which are the ideas driving 
development of the field?
• inductive bias
• generalization / overfitting
• bias-variance decomposition
• generative vs. discriminative
• deep nets, graphical models
• PAC learning
• distant rewards
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Course Level Objectives
You should be able to…
1. Implement and analyze existing learning algorithms, including well-studied 

methods for classification, regression, structured prediction, clustering, and 
representation learning

2. Integrate multiple facets of practical machine learning in a single system: data 
preprocessing, learning, regularization and model selection

3. Describe the the formal properties of models and algorithms for learning and 
explain the practical implications of those results

4. Compare and contrast different paradigms for learning (supervised, 
unsupervised, etc.)

5. Design experiments to evaluate and compare different machine learning 
techniques on real-world problems

6. Employ probability, statistics, calculus, linear algebra, and optimization in 
order to develop new predictive models or learning methods

7. Given a description of a ML technique, analyze it to identify (1) the expressive 
power of the formalism; (2) the inductive bias implicit in the algorithm; (3) the 
size and complexity of the search space; (4) the computational properties of 
the algorithm: (5) any guarantees (or lack thereof) regarding termination, 
convergence, correctness, accuracy or generalization power.
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