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Reminders

* Homework 9: Learning Paradigms
— Out: Fri, Apr. 21

— Due: Thu, Apr. 27 at 11:59pm
(only two grace/late days permitted)

* Exam 3 Practice Problems
— Out: Tue, Apr 25

* Exam 3
— Tue, May 2 (5:30pm - 7:30pm)




SIGNIFICANCE TESTING



Which classifier is better?

A
Goal: Given two classifiers: hy(X)

and hg(x) which is better? 1

hg(x)

~

-

Common Approach: Evaluate each
classifier on a test set and report
which has higher accuracy.

>

accuracy




Two Sources of Variance

1. Randomness in training
2. Randomness in our test data



1. Randomness in training

Example: Assume we are training a deep neural network
with a nonconvex objective function via random restarts

We collect a sequence of classifiers for R random restarts:
< hg(x)" « train(D, seed = time in ms)
* hg(x)® « train(D, seed = time in ms)

\/

0’0

* hg(x)®) «— train(D, seed = time in ms)

Solution: histogram
A

Solution: confidence interval

report variance of hy and hg

Ex:
* ha 45% +[- 5%
[ e hg 47% +/- 8%

]

count

accuracy

40% V%



2. Randomness in our test data

Recall: we assume x() ~ p*(-.) and y@ = c*(x®)
or (xO, y) ~ p*(-, -)

Data: Assume the data is draw generative
distribution p*(x|y)p*(y) wher%p*(y) zs an even coin
flip and p*(x|y=red) is the red Gaussian and
p*(x|y=blue)is the blue Gaussian.

3 errrors

5 errrors

ha(x) 1A(x) 5 errors
A hB()(? errors A + <+ ha(x)
++ ++
| 0 "l.+ + @@
+
N__ ++ E@ @ N__ + E—, E
B4 - 52l - -
@ i l EE T P = >
P S |3 > "1 b) '3
Solution:

significance testing



Significance Testing in ML

“And because any medication or intervention usually has some real

effect, you can always get a statistically significant result by STATISTICS
collecting so much data that you detect extremely tiny but DONE WRONG
relatively unimportant differences. As Bruce Thompson wrote,
Statistical significance testing can involve a tautological logic in
which tired researchers, having collected data on hundreds of
subjects, then conduct a statistical test to evaluate whether there
were a lot of subjects, which the researchers already know,
because they collected the data and know they are tired. This
tautology has created considerable damage as regards the
cumulation of knowledge.”

— Alex Reinhart
Statistics Done Wrong: The Woefully Complete Guide

THE WOEFULLY COMPLETE GUIDE

For machine learning, significance testing is
usually still answering an important question:

Did we evaluate our model on enough test
data to conclude that our improvement over
the baseline is surprising?



Significance Testing in ML

Paired Bootstrap Test

Key Idea: simulate the resampling of many test sets

Algorithm:
1.  Draw B bootstrap samE)les 4
S(b) = {(x(ﬂ, y(1)) (x(z), y(2 ), cees (x(”)’ y(n))}

with replacement from test data D,

Letv=0
Forb=1,...,B ; :
. d(D’) = difference in accuracy
b .
if 5(5( )) > 25(Dt€5t)' between h, and hg on D’
V=V+14—

4. Return p-value as v/B

Ho = null hypothesis = performance of h, and hg is the same

11



FAIRNESS IN ML



Are Face-Detection Cameras Racist?

By Adam Rose | Friday, Jan. 22, 2010

When Joz Wang and her brother bought their mom a
Nikon Coolpix S630 digital camera for Mother's Day
last year, they discovered what seemed to be a
malfunction. Every time they took a portrait of each
other smiling, a message flashed across the screen
asking, "Did someone blink?" No one had. "I thought
the camera was broken!" Wang, 33, recalls. But when
her brother posed with his eyes open so wide that he
looked "bug-eyed," the messages stopped.

Wang, a Taiwanese-American strategy consultant
who goes by the Web handle "jozjozjoz," thought it
was funny that the camera had difficulties figuring
out when her family had their eyes open. So she

Source:

Read Later

Did someone blink?

Joz Wang
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http://content.time.com/time/business/article/0,8599,1954643,00.html

IS THE IPHONE X RACIST? APPLE REFUNDS
DEVICE THAT CAN'T TELL CHINESE PEOPLE
APART, WOMAN CLAIMS

BY CHRISTINA ZHAO ON 12/18/17 AT 12:24 PM EST

“A Chinese woman [surname Yan] was
offered two refunds from Apple for her
new iPhone X... [it] was unable to tell her
and her other Chinese colleague apart.”

“Thinking that a faulty camera was to
blame, the store operator gave [Yan] a
refund, which she used to purchase
another iPhone X. But the new phone
turned out to have the same problem,
prompting the store worker to offer her
another refund ... It is unclear whether she

purchased a third phone”

Source: https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263 14



https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263

“As facial recognition systems become
more common, Amazon has emerged as a
frontrunner in the field, courting customers
around the US, including police
departments and Immigration and Customs

Enforcement (ICE).”

Gender and racial bias found in Amazon’s
facial recognition technology (again)

Research shows that Amazon'’s tech has a harder time identifying
gender in darker-skinned and female faces

By James Vincent | Jan 25, 2019, 9:45am EST

Source: https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender 15



https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender

Healthcare risk algorithm had
'significant racial bias'

It reportedly underestimated health needs for black patients.

@,

Jon Fingas, @jonfingas
10.26.19 in Medicine

“While it [the algorithm] didn't directly
consider ethnicity, its emphasis on medical

costs as bellwethers for health led to the
code routinely underestimating the needs
of black patients. A sicker black person
would receive the same risk score as a
healthier white person simply because of
how much they could spend.”

Source: https://science.sciencemag.org/content/366/6464/447
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https://science.sciencemag.org/content/366/6464/447

Word

embeddings
and analogies

* https://lamyiowce.github.io/word2viz/
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https://lamyiowce.github.io/word2viz/

Machine Bias

There's software used across the country to predict future criminals. And it's biased
against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

Two Drug Possession Arrests Two Drug Possession Arrests

DYLAN FUGETT BERNARD PARKER

Prior Offense Prior Offense
1attempted burglary 1resisting arrest
1 ; without violence

Subsequent Offenses
3 drug possessions Subsequent Offenses
None

BERNARD, PARKER

~atihe

LOW RISK 3 HIGH RISK 10 LOW RISK 3 HiGHRrRisk 10

Fugett was rated low risk after being arrested with cocaine and Fugett was rated low risk after being arrested with cocaine and

marijuana. He was arrested three times on drug charges after that. marijuana. He was arrested three times on drug charges after that.

Source: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Different Types

of Errors

True positive (TP)
False positive (FP)
True negative (TN)
False negative (FN)

True label | Predicted label

+1

+1
+1
-1
-1
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How We Analyzed the COMPAS
Recidivism Algorithm

by Jeff Larson, Surya Mattu, Lauren Kirchner and Julia Angwin

May 23, 2016
All Defendants Black Defendants White Defendants
Low High Llow  High Llow  High
Survived 2681 1282 Survived 990 805 Survived 1M39 349
Recidivated 1216 2035 Recidivated 532 1369 Recidivated 461 505
FP rate: 32.35 FP ratie: 44.8 FP rate: 23.45
FN rate: 37.40 FN rate: 27.99 FN rate: 47.72

This is one possible definition of unfairness.

WEe’'ll explore a few others and see how they relate to one another.

Source: https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm



https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

Running

Example

CMU

- Suppose you're an admissions officer for CMU,

deciding which applicants to admit to your program

- x are the features of an applicant (e.g.,

standardized test scores, GPA)

* ais a protected attribute (e.g., gender), usually

categoricali.e.a € {a4, ..., ac}

* h(x,a) is your model’s prediction, which usually

corresponds to some decision or action (e.q.,
+1 = admit to CMU)

* yisthe true, underlying target variable, usually

thought of as some latent or hidden state (e.qg.,
+1 = this applicant would be “successful” at CMU)

23



Three Criteria

for Fairness

* Independence: h(x,a) L a

* Probability of being accepted is the same for
all genders

- Separation: h(x,a) La |y

* All "good” applicants are accepted with the
same probability, regardless of gender

+ Same for all “bad” applicants

- Sufficiency:y L a | h(x,a)

* For the purposes of predicting y, the
information contained in h(x, a) is
“sufficient”, a becomes irrelevant

24



Achieving
Fairness

* Pre-processing data

» Additional constraints during training

* Post-processing predictions

25



Three Criteria

for Fairness

* Independence: h(x,a) L a

* Probability of being accepted is the same for
all genders

- Separation: h(x,a) La |y

* All "good” applicants are accepted with the
same probability, regardless of gender

+ Same for all “bad” applicants

- Sufficiency:y L a | h(x,a)

* For the purposes of predicting y, the
information contained in h(x, a) is
“sufficient”, a becomes irrelevant

- Any two of these criteria are mutually exclusive in

the general case!

26



A Fourth

Criterion for
Fairness

- Causality Bayesian networks to the rescue!

Knowledge

Reference
Letters

27



A Fourth

Criterion for
Fairness

- Causality Bayesian networks to the rescue!

Knowledge

Reference
Letters

- Counterfactual fairness: how would an
applicant’s probability of acceptance change if
they were a different gender?

Source: Counterfactual fairness, Kusner et al., https://papers.nips.cc/paper/2017/file/as86cdozesaczd270571622f41316ecs-Paper.pdf
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https://papers.nips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf
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LARGE LANGUAGE MODELS



What is ChatGPT?

* ChatGPT is a large (in the sense of having many parameters)
language model, fine-tuned to be a dialogue agent

* The base language model is GPT-3.5 which was trained on a
large quantity of text



Outline

Task: Language Modeling ’E

— noisy channel models (speech [ MT)

— (historical) Large L Ms (n-gram models)

Model: GPT

— Attention (computation graph)

— Transformer-LM (cf. RNN-LM)

Learning

— Pre-training (unsupervised learning)

— Reinforcement Learning with Human Feedback (deep RL)
Optimization

— Distributed training
Societal Impacts



TASK: LANGUAGE MODELING



n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e ) o e ) (e ) e

W, W, W; W, W Wi
T

n-Gram Model (n=3) p(wi,w, ..., wr) = | [ pwe | we—1, i)
t=1

p(Wv W, W3y cee W6) =

The p(W1)
[ The J( bat ] p(w, [ w,)
[ The ][ bat ][ made] p(W3 W,, W1)
[ bat ][ made ][ noise ] p(W4 W3’ WZ)
[ made ][ noise ][ at ] P(W5 W4, W3)
[ noise ][ at ][ night ] p(W6 WS’ W4)




n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e ) o e ) (e ) e

Wi W, W3 Wy Ws We
T
n-Gram Model (n=3) p(wi,w, ..., wr) = | [ pwe | we—1, i)
=1
p(w,, 3o We) =
The p(W1)

The (=l YAYVEE RVVA
— Note: This is called a model because we

made some assumptions about how many
previous words to condition on
(i.e. only n-1 words)




Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?

p(w; | W, = The, p(w; | w, = made, p(w; | Wy, = cows,

0 Wi, = bat) 0 Wi, = NOIse) 0 Wy, = eat)

we o pCle) we o pCle)

ate 0.015 at 0.020 corn 0.420
flies 0.046 pollution 0.030 grass 0.510

zebra 0.000 zebra 0.000 zebra 0.000

35



Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?
Answer: From data! Just count n-gram frequencies

p(w; | Wy, = cows,

O Wi, = eat)
.the cows eat grass...

... our cows eat hay daily... Wt p(-[+-)
... factory-farm cows eat corn...

corn 411

...0Nn an organic farm, cows eat hay and...
...do your cows eat grass or corn?...
...what do cows eat if they have...
...cows eat corn when there is no... hay 2/11
... which cows eat which foods depends...
...if cows eat grass...

...when cows eat corn their stomachs...
...should we let cows eat corn?...

grass 3/11

if 111

which 1/11

36



Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2.  Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up

4. Repeat




Noisy Channel Models

Prior to 2017, two tasks relied heavily on language models:
— speech recognition
— machine translation

Definition: a noisy channel model combines a transduction model (probability of
converting y to x) with a language model (probability of y)

. N ‘ 3
y = argmaxp(y | x) = argmaxp(x | y)p(y)
Yy Yy | J J
| N\ language
Goal: to recover y from x transduction model
model

— For speech: x is acoustic signal, y is transcription
— For machine translation: x is sentence in source language, y is sentence in target language



Large (n-Gram) Language Models

. . English n-gram
The earliest (truly) large language models model is ~3 billion

were n-gram models parameters

* Google n-Grams:

— 2006: first release, English n-grams

Number of uni : 13,588,391
* trained on 1 trillion tokens of web text (95 billion umber of unigrams 3,566,39

Number of bigrams: 314,843,401
sentences) Number of trigrams: 977,069,902
* included 1-grams, 2-grams, 3-grams, 4-grams, and 5- Number of fourgrams: | 1,313,818,354
grams Number of fivegrams: 1,176,470,663

— 2009 —2010: n-grams in Japanese, Chinese,
Swedish, Spanish, Romanian, Portuguese,
Polish, Dutch, Italian, French, German, Czech

serve as the incoming 92 accessoire Accessoires </S> 515 i H i BIfE 52
serve as the incubator 99 accessoire Accord i-CTDi 65 i H 2 95
serve as the independent 794 accessoire Accra accu 312 il  BHir HRf 49
serve as the index 223 accessoire Acheter cet 1402 i H R A1E 69
serve as the indication 72 accessoire Ajouter au 160 172~ Wi E=E 213
serve as the indicator 120 accessoire Amour Beauté 112 e -k REF R 55
serve as the indicators 45 accessoire Annuaire LOEIL 49 ®EH R ER </s> 183
serve as the indispensable 111 accessoire Architecture artiste 531 e R e E 50
serve as the }nd}spenswle 40 accessoire Attention : 44 ‘e h 50 1 43
serve as the individual 23 Mol % 2R i a
& m g R (=47
serve a< the indiistrv 6007 TEVJ % M% I;L.u 148



Large (n-Gram) Language Models

. English n-gram
The earliest (truly) large language models model is ~3 billion
were n-gram models

parameters
Google n-Grams:
— 2006: first release, English n-grams _
_ . . Number of unigrams: 13,588,391
* trained on 1 trillion tokens of web text (95 billion Number of bigrams: 314,843,401
sentences) Number of trigrams: 977,069,902

* included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

Number of fourgrams: 1,313,818,354
grams

Number of fivegrams: 1,176,470,663
— 2009 —2010: n-grams in Japanese, Chinese,

Swedish, Spanish, Romanian, Portuguese,
Polish, Dutch, Italian, French, German, Czech

1re Accessoi
Q: Is this a large training set? pi:xciod  Q: Is this a large model?
1re Acheter
1re Ajouter
A: Yes! - i A: Yes!
B s

> : AGL o T N 2K b 44
serve as the industrial 52 WE R R (B4 148
serve a< the indistrv 607 e liel ST T



How large are LLMs?

Comparison of some recent large language models (LLMs)

Creators Year of | Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10 ~10 billion (40Gb) 1.5 billion
——————

GPT-3 OpenAl 2020 300 b|II|on 175 billion

(cf. ChatGPT — =

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion:

LaMDA Google 2022 1.56 trillion 137 billion

(cf. Bard)

LLa Meta 2023 1.4 trillion gsﬁll_ip_n

GPT-4 OpenAl 2023 ? ?



MODEL: GPT



Ways of Drawing Neural Networks

(F) Loss Computation Graph
J=35(y—y*)? :

(E) Output (sigmoid) (E’) Label
. Given y* )
b= 370557

Y= Thexp(=n)
f .

?
[ (C) Hidden (sigmoid)

[ (D) Output (linear)

(C’) Parameters

T+exp(—a;)’ Given (3;,V)

\

f

[ (B) Hidden (linear)

Given x;, V1

] (A’) Parameters
Given Qg V’L,]

The diagram represents an algorithm
Nodes are rectangles

One node per intermediate variable in the
algorithm

Node is labeled with the function that it
computes (inside the box) and also the
variable name (outside the box)

Edges are directed

(since they don’t
need them)
For neural networks:
— Each intercept term should appear as a node
(if it’s not folded in somewhere)
— Each parameter should appear as a node

— Each constant, e.g. a true label or a feature
vector should appear in the graph
— It’s perfectly fine to include the loss



RNN Language Model

[The ][ bat ][made][noise][ at ][night] [ END]

[ N A I I
Tp(w1|h1) Tp(wzlhz) Tp(w3|h3) TP(W4Ih4) Tv(wslhs) T(W6Ih6) Tp(w7lh7)
, > | > > > > > >

h, h, gh;‘) ’/I hs he h,
[T 1+—{T1 BT [—[T1T]—[T1]

[STARTJ [ The ] [ bat ]@E‘E\e_x [noise][ at ][night}

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




Attention

[
4l s s$3 Sy
[l L] [l
\'Z A Vs v,
|

45



Attention

1

/ — . .

X = ai,5Vy
j=1

aJ

|
E,oftmax
s

[

[TT]



Attention

2

/ — . .

Xo = a2,5Vj
j=1

[ / softinax ]
S

0 ul

\A \'p




Attention

1
(0 O e O




Attention

!
[ soﬁéaxg /
S S S43 S4 T
O O O S%S = \/4 VJ

1 2 4
(rri1 [CrrJ1 Cerf Gt
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Attention

) ) / _
X; X4 Xy = E Qg V4

) )
1 2
1 O I I I A B I

attention weights

scores S

T [T [T OO values




Scaled Dot-Product Attention

v, T
TT1] Vj:WXj

(

1 2 V3
crri1 CErr CEfd
X X, X5 X4
|

LT T bt el
CJ\XV 9 O\

values



Scaled Dot-Product Attention

a 4,2 d

[ softmax/ / / ]

S$ 2 513 5$4

] ]
ki > k, T
1/ OO [T11 [T ki = Wi x; keys
Vi Vv, / V, T
1 O O s o A e i v, = Wy X; values
X X X3 X4

2
CrrrJ ey ey tiffd




Scaled Dot-Product Attention

/
X4 = A4,5V;j
j=1
a1 a
W, s$
]
A 9 W7 queries
Wi [(T1T1 O | q; = W Xj
k
1 _ xxrT
o1/ | | ki = Wi x; keys
Wv Vv Vv T
X

X3 X,

2
CrrrJ ey ey tiffd




Scaled Dot-Product Attention

/ —
Xy = A4,5V

j=1

Q\Z O s4,; = kI qu/+/dyScores

- q; = ngj queries
k, 2 k; k, T
T/ Oy [ [ kj = Wi x; keys
"2 vz/ A v, T
1 O O s o A e i v, = Wy X; values
X

X3 X,

2
CrrrJ ey ey tiffd




Scaled Dot-Product Attention

/ —
Xy = A4,5V

j=1

a, = softmax(sy)attention weights

Q\Z O s4,; = kI qu/+/dyScores

- q; = ngj queries
k, 2 k; k, T
T/ Oy [ [ kj = Wi x; keys
"2 vz/ A v, T
1 O O s o A e i v, = Wy X; values
X

X3 X,

2
CrrrJ ey ey tiffd




Scaled Dot-Product Attention

X)

X )

X )

1
LI 1]

2
LLT]

)
X4

/ — . .
X = E :atJVJ

3
LLT]

=)

a; = softmax(s;) attention weights

si,; = k; qi/+/dj, scores

} qQj = ngj queries

X3

\[ attention

_//X1 Xz

X4

k;, = Wix, keys

_ wlo
v, = Wlx; values




Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Iter WO (3x3x3) Hilter W1 (3x3x Output Volume (3x3x2)
X[:,:,0] 0[:,:,0] 1[:,:,0] o[:,:,0]
0 0 0 0 0 0 O -1 1 T ([ 1 5 -3 -3
0 2 0 0 2 -1 -1 11 j-1 3 -10-7 T
0 0 |21 ff2]0 O 1 0 -1 11 |-1 1 -3 -2
)O 1 |20 fo |0 O wO[s:,: t,:,1] o[:,:,1]
0 2 [0 L] -1 — -1 [10_ft= 2 -1 1 —
T T 1 1 -1 -1 - 1o |I-1 -5 |-11 -6
00 000 0 0 <1 0 1 (-1]l0 3 -2 4
x[:,:,1] wl[:77%,2] wl[:,252]
00000 00 N Dl
0 1 1 5 2 -1 1 1 1)1
o 2 22z 1 -1 Ofojt
/O 0 [2]° ]2 Bjasb0 (1x1 Bias b1 (1x1x1)
0 2 |0 ﬂfl 0[:,:, [:,:,0]
001000 O L 0
0 0 0 0 0 O
X[:,:,2] | t/{gglemovement
0 0 0 O 0 0
0 0 00 2 070
/6 2 |11 |1 0
0o 2 [of2l0]0 O
0o o 241 |2 0
01 2 0 0 2 O
0 0 0 0 0 0 O
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Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)


http://cs231n.github.io/convolutional-networks/

Multi-headed Attention

multi-headed attention

X1

X,

X3

X4

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

58



 To ensure the dimension of the

input embedding x, is the same M U Iti_h ead ed AttentiOn

as the output embedding x.”,

add a feed-forward neural "
network layer ” ” ” ” X = GHL/*&‘LLA (X + X

Xq X, X3 X,
' Crrr] i firy tiffl]
w, 9 [TT17 : : :
feed-forward neural network * Justaswe can have
multiple channels in a
W, ] convolution layer, we
x| x’ Xs’ X, can use multiple heads
0 /m [ O o o 1 O o in an attention layer
: : Il : : : LLL] CLL * Each head gets its own

[ |
Wi = parameters
/I * We can concatenate all

the outputs to get a

W, multi-headed attention single vector for each
time step

1 > X3 X4
@IIIIIIIIIIIIII




RNN Language Model

[The ][ bat ][made][noise][ at ][night] [ END]

[ N A I I
Tp(w1|h1) TP(WZIhZ) Tp(w3|h3) TP(W4Ih4) Tv(wslhs) T(W6Ih6) Tp(w7lh7)
, > | > > > > > >

A

h, h, h, hs h,
I e I B I e o [ [>T T T T]1—1 1]

A /A N A

[STARTJ [ The ] [ bat ] [made] [noise] [ at ] [ night]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)




Transformer Language Model

A : Each layer of a Transformer LM
[ The [ bat ] [ made ] [ noise ] .
| r—y consists of several sublayers:
mportant. . T T T T 1. attention
* RNN computation o) AP Apwsln) 4pwalhy) 2. feed-forwarq neural network
graph groyvs T 3. layer normalization —
linearly with the > > > > 4@
number of input ) AWT 1 X
token | Each hidden vector looks back at
okens [T 1]
MA v, the hidden vectors of the current
* Transformer-LMsf) = 4 brevious timestens in th
computation graph o an Prew|ous imesteps in the
. revious layer.
grows quadraticall m—%‘% [T |%| | g g
W'th the num -© The language model part is just like
input tokens an RNN-LM,/éxcept T iti
RL ) ( M embedding is attached to each
w{U — / word embeddings.
3 X [ )
I

FECNE




GPT-3

e GPT stands for Generative Pre-trained Transformer

* GPTisjust a Transformer LM, but with a huge number of
parameters

# layers dimension | dimension |# attention |# params
of states of inner heads
states

GPT (2018) 12 3072 117M
GPT-2 48 1600 - - 1542M
(2019)

GPT-3 96 12288 4%12288 96 175000M

(2020)



LEARNING FOR LLMS



Unsupervised Dimensionality Reduction

Principal Component Analysis (PCA)
* Assumption: the data lies on a low

K-dimensional linear subspace

Goal: identify the axes of that
subspace, and project each point
onto hyperplane

* Algorithm: find the K eigenvectors

with largest eigenvalue using classic
matrix decomposition tools

1st principal |
component

2nd principal
component
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The Start of Deep Learning

* The architectures of modern deep
learning have a long history:

— 1960s: Rosenblatt’s 3-layer multi-layer
perceptron, ReLU )

— 1970-80s: RNNs and CNNs
— 1990s: linearized self-attention
* The spark for deep learning came in

2006 thanks to pre-training (e.g.,
Hinton & Salakhutdinov, 2006)

Figure from Vargas et al. (2017)
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Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
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training) training)

67



Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
L 2.0
o
-
Ll
¥ 15 -

1.0 - T | T

Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)

68



Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)

2.5
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o
-
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- j I

1.0 - T | T

Shallow Net Idea #1 Idea #2 Idea #3
(Deep Net, no- (Deep Net, (Deep Net,
pretraining) supervised pre- unsupervised pre-

training) training)
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1.

2.

ldea #3: Unsupervised
Pre-training

Idea #3: (Two Steps)
® Use our original idea, but pick a better starting point

® Train each level of the model in a greedy way

Unsupervised Pre-training
— Use unlabeled data

—  Work bottom-up
Train hidden layer 1. Then fix its parameters.
Train hidden layer 2. Then fix its parameters.

Train hidden layer n. Then fix its parameters.
Supervised Fine-tuning
— Use labeled data to train following “Idea #1”

— Refine the features by backpropagation so that they become
tuned to the end-task
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The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input!
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The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:

* What should it predict?

e What else do we
observe?

* The input!

This topology defines an
Auto-encoder.




Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
— X’ is the reconstruction of x

— Loss = || x -~ DECODER(ENCODER(x)) ||
— Train with the same Backpropagation algorithm for 2-layer

Neural Networks with x;, as both input and output.

DECODER: x’=h(W’z)

ENCODER: z = h(Wx)

Slide adapted from Raman Arora

01



The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2.
Then fix its parameters.

nput”

Hidden Layer

— Train hidden layer n.
Then fix its parameters.

Input




The solution:
Unsupervised pre-training

Unsupervised pre-
training
* Work bottom-up

— Train hidden layer 1.
Then fix its parameters.

— Train hidden layer 2. B
Then fix its parameters.

Hidden Layer

— Train hidden layer n.
Then fix its parameters.

_ ' y - <
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The sol
Unsupervised

Unsupervised pre-
training
* Work bottom-up

Train hidden layer 1.
Then fix its parameters.

Train hidden layer 2.
Then fix its parameters.

Train hidden layer n.
Then fix its parameters.

ution:
pre-training

Hidden Layer
Hidden Layer

Hidden Layer

94



Unsupervised pre-
training
* Work bottom-up

Supervised fine-tuning
Backprop and update all -

The solution:
Unsupervised pre-training

Hidden Layer

Train hidden layer 1.
Then fix its parameters.

Train hidden layer 2.  centoyer
Then fix its parameters.

Train hidden layern.  weenwyer
Then fix its parameters.

parameters
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Deep Network Training
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Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
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Training Comparison on MNIST

* Results from Bengio et al. (2006) on
MNIST digit classification task

* Percent error (lower is better)
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(Deep Net, no- (Deep Net, (Deep Net,
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Transformer Language Model

)\

[ The [ bat ] [ made ] [ noise ]

P AT

T p(wilh,) p(wa|h,) p(ws|h;) p(w,|h,)
>

Generative pre-training for a deep

language model:

* each training example is an
(unlabeled) sentence

* the objective function is the
likelihood of the observed
sentence

Practically, we can batch together
many such training examples to
make training more efficient



Table from

Training Data for LLMs

GPT-3 Training Data:
Quantity Weight in Epochs elapsed when
Dataset (tokens) training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34
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http://arxiv.org/abs/2005.14165

Training Data for LLMs

Composition of the Pile by Category

= Academic * Internet = Prose * Dialogue * Misc

Bibliotik
Pile-CC g
ArXiv

The Pile:

* An open source dataset for
training language models

* Comprised of 22 smaller
datasets

* Favors high quality text

* 825 Gb = 1.2 trillion tokens

PubMed Central

BC2
StackExchange
PMA
FreeLaw USPTO NIH [OpenWebText2 Wikipedia DM Math I
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Playing Atari with Deep RL

* Setup: RL P e =
system L AN
observes the YN L)

pixels on the
screen

e |treceives
rewards as the
game score

 Actions decide
how to move
the joystick /
buttons

102
Figures from David Silver (Intro RL lecture)



* Algorithm 4: Online learning of Q™ (parametric form)
* Inputs: discount factory,
an initial state s,
learning rate a

Dee p _ * Initialize parameters ©(®)
Q-learning Fort=0,1.2, .

* Gather training sample (s;, ag, 14, S¢41)

- Update 0 by taking a step opposite the
gradient

. @(const) - @(t)
@(t+1) - @(t) _ avg(t)f(e)(const)’ @(t))

where
Vot(0lonst), o)) = 2 ()’ - Q(s, a; G)(t))) Vo Q(s,a;01)

—2(r 4y mpr(s' 05060 - 0(5,0:0) ) V005, 0)
a
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InstructGPT uses
Reinforcement
Learning with Human
Feedback (RLHF) to
fine-tune a pre-
trained GPT model

From the paper:
“In human
evaluations on our
prompt distribution,
outputs from the 1.3B
parameter S
InstructGP[/model are
Y preferred to outputs

Figure from

from the 175B GPT-3
despite having 100X
fewer parameters.”

RLHF

Step 1 Step 2 Step 3
Collect demonstration data, Collect comparison data, Optimize a policy against
and train a supervised policy. and train a reward model. the reward model using

reinforcement learning.

A promptis A prompt and A new prompt »
sampled from our o e oo several model o e moon is sampled from T
prompt dataset. landing to a 6 year old outputs are landing to a 6 year old the dataset. about frogs
sampled.
. P 0 0 . Y
A labeler By QEtase The policy e
.0
demonstrates the @ “Q - Q generates 22 W -
desired output 7 saeiiee thamose.. an output. 2
behavior. Some pec;plewenl ; v
o the moon.. A labeler ranks
; the OUtpUtS from @ Once upon a time..,
This data is used - best to worst. 0-60-0-0 '
to fine-tune GPT-3 M The reward model .
with supervised \\5’2(/' calculates a 2R
e ‘ e e "o
learning. 2 Thi ) reward for N
4 is c%ata is used .RM. the output.
RRB to train our .//?.;Q. Y
reward model. W The reward is
r -/
0-0-0-0 used t(? update k
the policy
using PPO.

Figure 2: A diagram illustrating the three steps of our method: (1) supervised fine-tuning (SFT), (2)
reward model (RM) training, and (3) reinforcement learning via proximal policy optimization (PPO)
on this reward model. Blue arrows indicate that this data is used to train one of our models. In Step 2,
boxes A-D are samples from our models that get ranked by labelers. See Section 3 for more details
on our method.
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https://arxiv.org/pdf/2203.02155.pdf

OPTIMIZATION FOR LLMS



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

i: procedure SGD(D, ')
2z 6+ 6 :
3: while not converged do :
4: for i € shuffle({1,2,...,N}) do
5 0 < 0 —-YVeJW(0) °
6 return %
In practice, it is common
_ A etivar to implement SGD using
per-example objective: e with(out
(7) replacement (i.e.
J(0) shuffle({1,2,... N}), even
original objective: though most of the
N theory is for sampl(lng
_ (7) with replacement (i.e.
J(H) Zi:l J (9) Uniform({1,2,... N}).




- Momentum

— SGD
- NAG

Adagrac

Adadelta
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Figure from https


https://imgur.com/a/Hqolp

Adam

ﬁdaﬂcombines elements of two popular algorithms:
1. AdaGrad

each parameter gets its own learning rate
2. RMSProp

keeps a moving average of recent gradients




Adam

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g? indicates the elementwise
square g; © g¢. Good default settings for the tested machine learning problems are o = 0.001,
B1 =0.9, B2 = 0.999 and ¢ = 10~8. All operations on vectors are element-wise. With 3 and 3%
we denote 3; and 35 to the power t.
Require: «: Stepsize
Require: [, 3> € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6
Require: 0: Initial parameter vector
mg < 0 (Initialize 1** moment vector)
vo < 0 (Initialize 2"¢ moment vector)
t <— 0 (Initialize timestep)
while 6; not converged do
t+«1t4+1
9: < Vo fi(6;—1) (Get gradients w.r.t. stochastic objective at timestep t)
m¢ < B1-mi—1 + (1 — B1) - g« (Update biased first moment estimate)
v; < B2 -vi_1 + (1 — B2) - g7 (Update biased second raw moment estimate
me < me /(1 — ) (Compute bias-corrected first moment estimate)
Uy < v/ (1 — B%) (Compute bias-corrected second raw moment estimate)
Or < 611 — - my/ (\/%Tt + €) (Update parameters)
end while
return 6; (Resulting parameters)
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Memory Usage of LLMs

How to store a large language
model in memory?

— full precision: 32-bit floats

— half precision: 16-bit floats

— Using half precision not only
reduces memory, it also speeds
up GPU computation

— “Peak float16 matrix multiplication
and convolution performance is 16x
faster than peak float32
performance on A100 GPUs.”

Wodel | Megatronim |G

# parameters 8.3 billion 175 billion
full precision 30 Gb 651 Gb
half precision 15 Gb 325 Gb

GPU) TPy

TPU v2 16 Gb
TPU v3/v4 32 Gb
Tesla V100 GPU 32Gb
NVIDIA RTX A6000 48 Gb
Tesla A100 GPU 80 Gb
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https://pytorch.org/blog/what-every-user-should-know-about-mixed-precision-training-in-pytorch/
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Two Types of Distributed Training

Data Parallel Model Parallel

* key idea: (almost trivial) parallelism * key idea: (very tricky) parallelism
achieved by distributing the batches achieved by dividing the model
across multiple GPUs parameters/computation across

« key challenge: sharing / updating a multiple GPUs
single set of parameters across all * key challenge: maintaining high
devices speedup even though some of the

model computation must be done
sequentially (e.g. the backward
computation must happen after the
forward computation)



Distributed Trammg Model Parallel

Cats are the  best <eoc>
[ | Transformer layer N |
[ I Transformer layer N-1 ]
| __ Transformer layer 2 J
( Transformer layer 1 )

I )

é’” o i [
— 1 f [ 1]

<coe> Cats are the best

(a) Transformer-based LM

There are a variety of
different options for
how to distribute the
model computation /
parameters across
multiple devices.

Figure from

Device 1 I Device 2
|
|

,,,//”f'"‘”“-~\\\

[ Layer 3 part 1 J

\:/V
[

P i

[ Layer 2 part 1 |

/v:\

[ Layer 1 part 1 J

|
|

(b) Operation partitioning
(Megatron-LM)

Matrix multiplication
comprises most
Transformer LM
computation and can be

divided along rows/columns
of the respective matrices.

| Layer 3 part 1 J:

Layer 2 part 1 ] [

Layer 1 part1 | |

! Devrce5 [ Transfonner layer5 ] -

' Deviced [

Transformer layer 4 ]

(c) Microbatch-based pipeline
parallelism (GPipe)

The most natural division is
by layer: each device
computes a subset of the
layers, only that device
stores the parameters and
computation graph for
those layers.

‘ Device 5 [ Transformer layer 5 ] |
4 I
Device 4 [ Transformer layer 4 ]

. Device 2 [ Transformer layer 2 ] /
|

e I
Transformer layer 1 ] |
I

Device 1 |

—

(d) Token-based pipeline
parallelism (TeraPipe)

A more efficient solution is
to divide computation by
token and layer. This
requires careful division of
work and is specific to the
Transformer LM.
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https://arxiv.org/pdf/2102.07988.pdf

Cost to train

1T

100B

=
o
o

Parameters

X% X %

100M

10M .-~

1017 1019 1023 1025

Figure from https://arxiv.org/pdf/2203.15556.pdf

—— Approach 1
—— Approach 2
—— Approach 3

Kaplan et al (2020)

Chinchilla (70B)

Gopher (280B)

GPT-3 (175B)
Megatron-Turing NLG (530B)
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SOCIETAL IMPACTS OF LLMS



Societal Impacts of ChatGPT

In-class exercise:
What are the potential societal impacts of ChatGPT?



Summary

Task: Language Modeling

— noisy channel models (speech [ MT)

— (historical) Large LMs (n-gram models)
Model: GPT

— Attention (computation graph)

— Transformer-LM (cf. RNN-LM)
Learning for LLMs

— Pre-training (unsupervised learning)

— Reinforcement Learning with Human Feedback (deep RL)
Optimization for LLMs

— Adam (cf. SGD)

— Distributed training

Societal Impacts of LLMs



