
Special Topics:
Significance Testing

+ Societal Impacts of ML
+ ChatGPT

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 28

Apr. 26, 2023

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 9: Learning Paradigms
– Out: Fri, Apr. 21
– Due: Thu, Apr. 27 at 11:59pm

(only two grace/late days permitted)

• Exam 3 Practice Problems
– Out: Tue, Apr 25

• Exam 3
– Tue, May 2 (5:30pm – 7:30pm)

• Final Exit Poll (after Exam 3)

2

SIGNIFICANCE TESTING

3

Which classifier is better?
Goal: Given two classifiers: hA(x)
and hB(x) which is better?

Common Approach: Evaluate each
classifier on a test set and report
which has higher accuracy.

6

1 2 3

1
2

3

hA(x)

hB(x)

ac
cu

ra
cy

hA hB

Two Sources of Variance

1. Randomness in training
2. Randomness in our test data

7

1. Randomness in training
Example: Assume we are training a deep neural network
with a nonconvex objective function via random restarts

We collect a sequence of classifiers for R random restarts:
vhB(x)(1) ⟵ train(D, seed = time in ms)
vhB(x)(2) ⟵ train(D, seed = time in ms)
v…
vhB(x)(R) ⟵ train(D, seed = time in ms)

8

co
un

t

accuracy

Solution: histogram

hA hB

Solution: confidence interval

report variance of hA and hB

Ex:
• hA 45% +/- 5%
• hB 47% +/- 8%

2. Randomness in our test data
Recall: we assume x(i) ~ p*(·) and y(i) = c*(x(i))

or (x(i), y(i)) ~ p*(·, ·)
Data: Assume the data is drawn from a generative
distribution p*(x|y)p*(y) where p*(y) is an even coin
flip and p*(x|y=red) is the red Gaussian and
p*(x|y=blue) is the blue Gaussian.

9

1 2 3

1
2

3

1 2 3

1
2

3

hA(x)

hB(x)

1 2 3

1
2

3

hA(x)

hB(x)

5 errrors

3 errors

3 errrors

5 errors

Solution:
significance testing

Significance Testing in ML
“And because any medication or intervention usually has some real
effect, you can always get a statistically significant result by
collecting so much data that you detect extremely tiny but
relatively unimportant differences. As Bruce Thompson wrote,
Statistical significance testing can involve a tautological logic in
which tired researchers, having collected data on hundreds of
subjects, then conduct a statistical test to evaluate whether there
were a lot of subjects, which the researchers already know,
because they collected the data and know they are tired. This
tautology has created considerable damage as regards the
cumulation of knowledge.”

― Alex Reinhart
Statistics Done Wrong: The Woefully Complete Guide

10

For machine learning, significance testing is
usually still answering an important question:

Did we evaluate our model on enough test
data to conclude that our improvement over
the baseline is surprising?

Significance Testing in ML
Paired Bootstrap Test
Key Idea: simulate the resampling of many test sets
Algorithm:

1. Draw B bootstrap samples
S(b) = {(x(1), y(1)) (x(2), y(2)), …, (x(n), y(n))}
with replacement from test data Dtest

2. Let v = 0
3. For b = 1,…,B

if 𝛿(S(b)) > 2𝛿(Dtest):
v = v + 1

4. Return p-value as v/B

H0 = null hypothesis = performance of hA and hB is the same

11

𝛿(D’) = difference in accuracy
between hA and hB on D’

FAIRNESS IN ML

12

13Source: http://content.time.com/time/business/article/0,8599,1954643,00.html

http://content.time.com/time/business/article/0,8599,1954643,00.html

14

“A Chinese woman [surname Yan] was
offered two refunds from Apple for her
new iPhone X… [it] was unable to tell her
and her other Chinese colleague apart.”

“Thinking that a faulty camera was to
blame, the store operator gave [Yan] a
refund, which she used to purchase
another iPhone X. But the new phone
turned out to have the same problem,
prompting the store worker to offer her
another refund … It is unclear whether she
purchased a third phone”

Source: https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263

https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263

15Source: https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender

“As facial recognition systems become
more common, Amazon has emerged as a
frontrunner in the field, courting customers
around the US, including police
departments and Immigration and Customs
Enforcement (ICE).”

https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender

16

“While it [the algorithm] didn't directly
consider ethnicity, its emphasis on medical
costs as bellwethers for health led to the
code routinely underestimating the needs
of black patients. A sicker black person
would receive the same risk score as a
healthier white person simply because of
how much they could spend.”

Source: https://science.sciencemag.org/content/366/6464/447

https://science.sciencemag.org/content/366/6464/447

Word
embeddings
and analogies

� https://lamyiowce.github.io/word2viz/

17

https://lamyiowce.github.io/word2viz/

20Source: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

Different Types
of Errors

True label Predicted label
True positive (TP) +1 +1
False positive (FP) −1 +1
True negative (TN) −1 −1
False negative (FN) +1 −1

21

22Source: https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

This is one possible definition of unfairness.
We’ll explore a few others and see how they relate to one another.

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

Running
Example

� Suppose you’re an admissions officer for CMU,
deciding which applicants to admit to your program

� 𝒙 are the features of an applicant (e.g.,
standardized test scores, GPA)

� 𝑎 is a protected attribute (e.g., gender), usually
categorical i.e. 𝑎 ∈ {𝑎!, … , 𝑎"}

� ℎ(𝒙, 𝑎) is your model’s prediction, which usually
corresponds to some decision or action (e.g.,
+1 = admit to CMU)

� 𝑦 is the true, underlying target variable, usually
thought of as some latent or hidden state (e.g.,
+1 = this applicant would be “successful” at CMU)

23

Three Criteria
for Fairness

� Independence: ℎ 𝒙, 𝑎 ⊥ 𝑎
� Probability of being accepted is the same for

all genders

� Separation: ℎ 𝒙, 𝑎 ⊥ 𝑎 ∣ 𝑦
� All “good” applicants are accepted with the

same probability, regardless of gender

� Same for all “bad” applicants

� Sufficiency: 𝑦 ⊥ 𝑎 ∣ ℎ 𝒙, 𝑎
� For the purposes of predicting 𝑦, the

information contained in ℎ 𝒙, 𝑎 is
“sufficient”, 𝑎 becomes irrelevant

� Any two of these criteria are mutually exclusive in
the general case

24

Achieving
Fairness

� Pre-processing data

� Additional constraints during training

� Post-processing predictions

25

Three Criteria
for Fairness

� Independence: ℎ 𝒙, 𝑎 ⊥ 𝑎
� Probability of being accepted is the same for

all genders

� Separation: ℎ 𝒙, 𝑎 ⊥ 𝑎 ∣ 𝑦
� All “good” applicants are accepted with the

same probability, regardless of gender

� Same for all “bad” applicants

� Sufficiency: 𝑦 ⊥ 𝑎 ∣ ℎ 𝒙, 𝑎
� For the purposes of predicting 𝑦, the

information contained in ℎ 𝒙, 𝑎 is
“sufficient”, 𝑎 becomes irrelevant

� Any two of these criteria are mutually exclusive in
the general case!

26

A Fourth
Criterion for
Fairness

� Causality Bayesian networks to the rescue!

� Counterfactual fairness: how would an
applicant’s probability of acceptance change if
they were a different gender?

27

Ethnicity

Gender

Test
Scores

GPA

Reference
Letters

Knowledge

Work Ethic

A Fourth
Criterion for
Fairness

� Causality Bayesian networks to the rescue!

� Counterfactual fairness: how would an
applicant’s probability of acceptance change if
they were a different gender?

28

Ethnicity

Gender

Test
Scores

GPA

Reference
Letters

Knowledge

Work Ethic

Source: Counterfactual fairness, Kusner et al., https://papers.nips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf

https://papers.nips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf

LARGE LANGUAGE MODELS

29

What is ChatGPT?

• ChatGPT is a large (in the sense of having many parameters)
language model, fine-tuned to be a dialogue agent

• The base language model is GPT-3.5 which was trained on a
large quantity of text

30

Outline
• Task: Language Modeling
– noisy channel models (speech / MT)
– (historical) Large LMs (n-gram models)

• Model: GPT
– Attention (computation graph)
– Transformer-LM (cf. RNN-LM)

• Learning
– Pre-training (unsupervised learning)
– Reinforcement Learning with Human Feedback (deep RL)

• Optimization
– AdamW (cf. SGD)
– Distributed training

• Societal Impacts
31

TASK: LANGUAGE MODELING

32

n-Gram Language Model
Question: How can we define a probability distribution over a
sequence of length T?

33

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) =
p(w1)
p(w2 | w1)
p(w3 | w2, w1)
p(w4 | w3, w2)
p(w5 | w4, w3)
p(w6 | w5, w4)

Recall…

n-Gram Language Model
Question: How can we define a probability distribution over a
sequence of length T?

34

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) =
p(w1)
p(w2 | w1)
p(w3 | w2, w1)
p(w4 | w3, w2)
p(w5 | w4, w3)
p(w6 | w5, w4)

Note: This is called a model because we
made some assumptions about how many

previous words to condition on
(i.e. only n-1 words)

Recall…

Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram
Model?

35

p(wt | wt-2 = made,
wt-1 = noise)

wt p(· | ·, ·)

at 0.020

…

pollution 0.030

…

zebra 0.000

p(wt | wt-2 = The,
wt-1 = bat)

wt p(· | ·, ·)

ate 0.015

…

flies 0.046

…

zebra 0.000

p(wt | wt-2 = cows,
wt-1 = eat)

wt p(· | ·, ·)

corn 0.420

…

grass 0.510

…

zebra 0.000

Recall…

Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram
Model?

36

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows,
wt-1 = eat)

Recall…

Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer:
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat

37

The bat made nightnoise at

p(
· |

ST
ART)

START

p(
· |

ST
ART,

 Th
e)

p(
· |

Th
e,

 b
at

)

p(
· |

ba
t,

m
ad

e)
p(

· |
m

ad
e,

 n
oi

se
)

p(
· |

no
ise

, a
t)

Recall…

Noisy Channel Models
• Prior to 2017, two tasks relied heavily on language models:

– speech recognition
– machine translation

• Definition: a noisy channel model combines a transduction model (probability of
converting y to x) with a language model (probability of y)

• Goal: to recover y from x
– For speech: x is acoustic signal, y is transcription
– For machine translation: x is sentence in source language, y is sentence in target language

38

ŷ = argmax
y

p(y | x) = argmax
y

p(x | y)p(y)

transduction
model

language
model

Large (n-Gram) Language Models
• The earliest (truly) large language models

were n-gram models
• Google n-Grams:

– 2006: first release, English n-grams
• trained on 1 trillion tokens of web text (95 billion

sentences)
• included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

grams

– 2009 – 2010: n-grams in Japanese, Chinese,
Swedish, Spanish, Romanian, Portuguese,
Polish, Dutch, Italian, French, German, Czech

39

serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234
serve as the industrial 52
serve as the industry 607
serve as the info 42

accessoire Accessoires </S> 515
accessoire Accord i-CTDi 65
accessoire Accra accu 312
accessoire Acheter cet 1402
accessoire Ajouter au 160
accessoire Amour Beauté 112
accessoire Annuaire LOEIL 49
accessoire Architecture artiste 531
accessoire Attention : 44

Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

English n-gram
model is ~3 billion

parameters

Large (n-Gram) Language Models
• The earliest (truly) large language models

were n-gram models
• Google n-Grams:

– 2006: first release, English n-grams
• trained on 1 trillion tokens of web text (95 billion

sentences)
• included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

grams

– 2009 – 2010: n-grams in Japanese, Chinese,
Swedish, Spanish, Romanian, Portuguese,
Polish, Dutch, Italian, French, German, Czech

40

serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45
serve as the indispensable 111
serve as the indispensible 40
serve as the individual 234
serve as the industrial 52
serve as the industry 607
serve as the info 42

accessoire Accessoires </S> 515
accessoire Accord i-CTDi 65
accessoire Accra accu 312
accessoire Acheter cet 1402
accessoire Ajouter au 160
accessoire Amour Beauté 112
accessoire Annuaire LOEIL 49
accessoire Architecture artiste 531
accessoire Attention : 44

Number of unigrams: 13,588,391
Number of bigrams: 314,843,401
Number of trigrams: 977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

English n-gram
model is ~3 billion

parameters

Q: Is this a large model?
A: Yes!

Q: Is this a large training set?
A: Yes!

How large are LLMs?

41

Model Creators Year of
release

Training Data (#
tokens)

Model Size (#
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

GPT-4 OpenAI 2023 ? ?

Comparison of some recent large language models (LLMs)

MODEL: GPT

42

Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable

corresponding to the hidden unit
• For a fully connected feed-forward neural

network, a hidden unit is a nonlinear
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side

note: we should be careful about ascribing
how a matrix can be used to indicate the
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the

intercept term is NOT shown as a node, but
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e.
its weight does NOT appear in the picture
anywhere)

– The diagram does NOT include any nodes
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the

algorithm
• Node is labeled with the function that it

computes (inside the box) and also the
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature

vector should appear in the graph
– It’s perfectly fine to include the loss

43

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

(C’) Parameters

Given βj , ∀j

(A’) Parameters

Given αij , ∀i, j

(E’) Label

Given y
∗

Recall…

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 44

The bat made nightnoise atSTART

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

p(w5|h5)

h5

p(w6|h6)

h6

p(w7|h7)

h7

The bat made nightnoise at END

Recall…

Attention

45

v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Attention

46

v1

a1,1

s1,1

softmax

x′

1 =

1∑

j=1

a1,jvj

Attention

47

v1 v2

a2,1

s2,1 s2,2

softmax

x′

2 =

2∑

j=1

a2,jvj

a2,2

Attention

48

v1 v2 v3

a3,1 a3,1 a3,1

s3,1 s3,2 s3,3

softmax

x′

3 =

3∑

j=1

a3,jvj

Attention

49

v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Attention

50

v1 v2 v3 v4

a4,1 a4,2 a4,3

s4,1 s4,2 s4,3 s4,4

softmax

x′

t =

t∑

j=1

at,jvj

values

scores

attention weights

x1’ x2’ x3’ x4’

a4,4

v1 v2 v3 v4

softmax

Scaled Dot-Product Attention

51

x1 x2 x3 x4

vj = WT
v xj

Wv values

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

52

x1 x2 x3 x4

Wk

vj = WT
v xj

kj = WT
k xj

Wv values

keys

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

53

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

54

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

scoress4,j = kT
j q4/

√

dk

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

55

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

qj = WT
q xj

Scaled Dot-Product Attention

56

x′

t =

t∑

j=1

at,jvj

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

st,j = kT
j qt/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsat = softmax(st)

attention

x1’ x2’ x3’ x4’

Animation of 3D Convolution

57
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

Recall…

http://cs231n.github.io/convolutional-networks/

Multi-headed Attention

58

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer

• Each head gets its own
parameters

• We can concatenate all
the outputs to get a
single vector for each
time step

Multi-headed Attention

59

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer

• Each head gets its own
parameters

• We can concatenate all
the outputs to get a
single vector for each
time step

x1’’ x2’’ x3’’ x4’’

feed-forward neural network

Wff

• To ensure the dimension of the
input embedding xt is the same
as the output embedding xt’’,
add a feed-forward neural
network layer

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 60

The bat made nightnoise atSTART

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

p(w5|h5)

h5

p(w6|h6)

h6

p(w7|h7)

h7

The bat made nightnoise at END

Recall…

Transformer Language Model

61

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM, except that a position
embedding is attached to each
word embeddings.

Important!
• RNN computation

graph grows
linearly with the
number of input
tokens

• Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

GPT-3

• GPT stands for Generative Pre-trained Transformer
• GPT is just a Transformer LM, but with a huge number of

parameters

62

Model # layers dimension
of states

dimension
of inner
states

attention
heads

params

GPT (2018) 12 768 3072 12 117M

GPT-2
(2019)

48 1600 -- -- 1542M

GPT-3
(2020)

96 12288 4*12288 96 175000M

LEARNING FOR LLMS

63

Unsupervised Dimensionality Reduction
Principal Component Analysis (PCA)
• Assumption: the data lies on a low

K-dimensional linear subspace
• Goal: identify the axes of that

subspace, and project each point
onto hyperplane

• Algorithm: find the K eigenvectors
with largest eigenvalue using classic
matrix decomposition tools

64
https://commons.wikimedia.org/wiki/File:Scatter_diagram_for_quality_characteristic_XXX.svg

PCA Example: 2D Gaussian Data

Recall…

The Start of Deep Learning

• The architectures of modern deep
learning have a long history:
– 1960s: Rosenblatt’s 3-layer multi-layer

perceptron, ReLU)
– 1970-80s: RNNs and CNNs
– 1990s: linearized self-attention

• The spark for deep learning came in
2006 thanks to pre-training (e.g.,
Hinton & Salakhutdinov, 2006)

65
Figure from Vargas et al. (2017)

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

67

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

68

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

87

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Idea #3: Unsupervised
Pre-training

1. Unsupervised Pre-training
– Use unlabeled data
– Work bottom-up
• Train hidden layer 1. Then fix its parameters.
• Train hidden layer 2. Then fix its parameters.
• …
• Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning
– Use labeled data to train following “Idea #1”
– Refine the features by backpropagation so that they become

tuned to the end-task
88

� Idea #3: (Two Steps)
� Use our original idea, but pick a better starting point
� Train each level of the model in a greedy way

The solution:
Unsupervised pre-training

89

…

…Input

Hidden Layer

Output

Unsupervised pre-
training of the first layer:
• What should it predict?
• What else do we

observe?
• The input!

This topology defines an
Auto-encoder.

The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer:
• What should it predict?
• What else do we

observe?
• The input!

This topology defines an
Auto-encoder.

90

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
– x’ is the reconstruction of x
– Loss = || x – DECODER(ENCODER(x)) ||2

– Train with the same backpropagation algorithm for 2-layer
Neural Networks with xm as both input and output.

91

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Slide adapted from Raman Arora

DECODER: x’ = h(W’z)

ENCODER: z = h(Wx)

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.

92

…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.

93

…

…Input

Hidden Layer

…Hidden Layer

…’ ’ ’

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.

94

…

…Input

Hidden Layer

…Hidden Layer

…Hidden Layer

…’ ’ ’

The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1.

Then fix its parameters.
– Train hidden layer 2.

Then fix its parameters.
– …
– Train hidden layer n.

Then fix its parameters.
Supervised fine-tuning
Backprop and update all
parameters

95

…

…Input

Hidden Layer

…Hidden Layer

…Hidden Layer

Output

Deep Network Training

96

� Idea #3:
1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #2:
1. Supervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #1:
1. Supervised fine-tuning only

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

97

Training

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

%
Er

ro
r

98

Training

• Results from Bengio et al. (2006) on
MNIST digit classification task

• Percent error (lower is better)

Transformer Language Model

99

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Generative pre-training for a deep
language model:
• each training example is an

(unlabeled) sentence
• the objective function is the

likelihood of the observed
sentence

Practically, we can batch together
many such training examples to
make training more efficient

Training Data for LLMs

100

GPT-3 Training Data:

Table from http://arxiv.org/abs/2005.14165

http://arxiv.org/abs/2005.14165

Training Data for LLMs

101

The Pile:
• An open source dataset for

training language models
• Comprised of 22 smaller

datasets
• Favors high quality text
• 825 Gb ≈ 1.2 trillion tokens

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot
Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on
joystick, see pixels
and scores

Playing Atari with Deep RL
• Setup: RL

system
observes the
pixels on the
screen

• It receives
rewards as the
game score

• Actions decide
how to move
the joystick /
buttons

102
Figures from David Silver (Intro RL lecture)

Recall…

Deep
Q-learning

� Algorithm 4: Online learning of 𝑄∗ (parametric form)
� Inputs: discount factor 𝛾,

an initial state 𝑠",
learning rate 𝛼

� Initialize parameters Θ "

� For 𝑡 = 0, 1, 2, …

� Gather training sample 𝑠# , 𝑎# , 𝑟# , 𝑠#$%
� Update Θ # by taking a step opposite the

gradient

� Θ &'()# ← Θ #

Θ #$% ← Θ # − 𝛼∇* ! ℓ Θ &'()# , Θ #

103

where

∇*ℓ Θ &'()# , Θ # = 2 𝑦 − 𝑄 𝑠, 𝑎; Θ # ∇* ! 𝑄 𝑠, 𝑎; Θ #

= 2 𝑟 + 𝛾max
+"

𝑄 𝑠,, 𝑎,; Θ &'()# − 𝑄 𝑠, 𝑎; Θ # ∇* ! 𝑄 𝑠, 𝑎; Θ #

Recall…

RLHF
• InstructGPT uses

Reinforcement
Learning with Human
Feedback (RLHF) to
fine-tune a pre-
trained GPT model

• From the paper:
“In human
evaluations on our
prompt distribution,
outputs from the 1.3B
parameter
InstructGPT model are
preferred to outputs
from the 175B GPT-3,
despite having 100x
fewer parameters.”

104
Figure from https://arxiv.org/pdf/2203.02155.pdf

https://arxiv.org/pdf/2203.02155.pdf

OPTIMIZATION FOR LLMS

105

Stochastic Gradient Descent (SGD)

106

In practice, it is common
to implement SGD using

sampling without
replacement (i.e.

shuffle({1,2,…N}), even
though most of the

theory is for sampling
with replacement (i.e.

Uniform({1,2,…N}).

per-example objective:

original objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Recall…

107
Figure from https://imgur.com/a/Hqolp#2dKCQHh

https://imgur.com/a/Hqolp

Adam

• Adam combines elements of two popular algorithms:
1. AdaGrad

each parameter gets its own learning rate
2. RMSProp

keeps a moving average of recent gradients

108

Adam

109

Memory Usage of LLMs
How to store a large language
model in memory?
– full precision: 32-bit floats
– half precision: 16-bit floats
– Using half precision not only

reduces memory, it also speeds
up GPU computation

– “Peak float16 matrix multiplication
and convolution performance is 16x
faster than peak float32
performance on A100 GPUs.”
from Pytorch docs

110

Model Megatron-LM GPT-3

parameters 8.3 billion 175 billion

full precision 30 Gb 651 Gb

half precision 15 Gb 325 Gb

GPU / TPU Max Memory

TPU v2 16 Gb

TPU v3/v4 32 Gb

Tesla V100 GPU 32 Gb

NVIDIA RTX A6000 48 Gb

Tesla A100 GPU 80 Gb

https://pytorch.org/blog/what-every-user-should-know-about-mixed-precision-training-in-pytorch/
https://pytorch.org/blog/what-every-user-should-know-about-mixed-precision-training-in-pytorch/

Two Types of Distributed Training

Data Parallel
• key idea: (almost trivial) parallelism

achieved by distributing the batches
across multiple GPUs

• key challenge: sharing / updating a
single set of parameters across all
devices

Model Parallel
• key idea: (very tricky) parallelism

achieved by dividing the model
parameters/computation across
multiple GPUs

• key challenge: maintaining high
speedup even though some of the
model computation must be done
sequentially (e.g. the backward
computation must happen after the
forward computation)

111

Distributed Training: Model Parallel

112
Figure from https://arxiv.org/pdf/2102.07988.pdf

There are a variety of
different options for
how to distribute the
model computation /
parameters across
multiple devices.

Matrix multiplication
comprises most
Transformer LM
computation and can be
divided along rows/columns
of the respective matrices.

The most natural division is
by layer: each device
computes a subset of the
layers, only that device
stores the parameters and
computation graph for
those layers.

A more efficient solution is
to divide computation by
token and layer. This
requires careful division of
work and is specific to the
Transformer LM.

https://arxiv.org/pdf/2102.07988.pdf

Cost to train

113
Figure from https://arxiv.org/pdf/2203.15556.pdf

SOCIETAL IMPACTS OF LLMS

114

Societal Impacts of ChatGPT

In-class exercise:
What are the potential societal impacts of ChatGPT?

115

Summary
• Task: Language Modeling
– noisy channel models (speech / MT)
– (historical) Large LMs (n-gram models)

• Model: GPT
– Attention (computation graph)
– Transformer-LM (cf. RNN-LM)

• Learning for LLMs
– Pre-training (unsupervised learning)
– Reinforcement Learning with Human Feedback (deep RL)

• Optimization for LLMs
– Adam (cf. SGD)
– Distributed training

• Societal Impacts of LLMs
117

