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Reminders

• Homework 9: Learning Paradigms
– Out: Fri, Apr. 21
– Due: Thu, Apr. 27 at 11:59pm

(only two grace/late days permitted)

• Exam 3 Practice Problems
– Out: Tue, Apr 25

• Exam 3
– Tue, May 2 (5:30pm – 7:30pm)

• Final Exit Poll (after Exam 3)
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SIGNIFICANCE TESTING
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Which classifier is better?
Goal: Given two classifiers: hA(x) 
and hB(x) which is better?

Common Approach: Evaluate each 
classifier on a test set and report 
which has higher accuracy.
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Two Sources of Variance

1. Randomness in training
2. Randomness in our test data
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1. Randomness in training
Example: Assume we are training a deep neural network 
with a nonconvex objective function via random restarts

We collect a sequence of classifiers for R random restarts:
vhB(x)(1) ⟵ train(D, seed = time in ms)
vhB(x)(2) ⟵ train(D, seed = time in ms)
v…
vhB(x)(R) ⟵ train(D, seed = time in ms)
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Solution: histogram

hA hB

Solution: confidence interval

report variance of hA and hB

Ex: 
• hA 45%   +/- 5%
• hB 47%   +/- 8%



2. Randomness in our test data
Recall: we assume x(i) ~ p*(·) and y(i) = c*(x(i))

or (x(i), y(i)) ~ p*(·, ·) 
Data: Assume the data is drawn from a generative 
distribution p*(x|y)p*(y) where p*(y) is an even coin 
flip and p*(x|y=red) is the red Gaussian and 
p*(x|y=blue) is the blue Gaussian.
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Significance Testing in ML
“And because any medication or intervention usually has some real 
effect, you can always get a statistically significant result by 
collecting so much data that you detect extremely tiny but 
relatively unimportant differences. As Bruce Thompson wrote, 
Statistical significance testing can involve a tautological logic in 
which tired researchers, having collected data on hundreds of 
subjects, then conduct a statistical test to evaluate whether there 
were a lot of subjects, which the researchers already know, 
because they collected the data and know they are tired. This 
tautology has created considerable damage as regards the 
cumulation of knowledge.”

― Alex Reinhart
Statistics Done Wrong: The Woefully Complete Guide
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For machine learning, significance testing is 
usually still answering an important question:

Did we evaluate our model on enough test 
data to conclude that our improvement over 
the baseline is surprising?



Significance Testing in ML
Paired Bootstrap Test
Key Idea: simulate the resampling of many test sets
Algorithm:

1. Draw B bootstrap samples 
S(b) = {(x(1), y(1)) (x(2), y(2)), …, (x(n), y(n))}
with replacement from test data Dtest

2. Let v = 0
3. For b = 1,…,B

if 𝛿(S(b)) > 2𝛿(Dtest):
v = v + 1

4. Return p-value as v/B

H0 = null hypothesis = performance of hA and hB is the same
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𝛿(D’) = difference in accuracy 
between hA and hB on D’



FAIRNESS IN ML
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13Source: http://content.time.com/time/business/article/0,8599,1954643,00.html

http://content.time.com/time/business/article/0,8599,1954643,00.html
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“A Chinese woman [surname Yan] was 
offered two refunds from Apple for her 
new iPhone X… [it] was unable to tell her 
and her other Chinese colleague apart.”

“Thinking that a faulty camera was to 
blame, the store operator gave [Yan] a 
refund, which she used to purchase 
another iPhone X. But the new phone 
turned out to have the same problem, 
prompting the store worker to offer her 
another refund … It is unclear whether she 
purchased a third phone”

Source: https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263

https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263


15Source: https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender

“As facial recognition systems become 
more common, Amazon has emerged as a 
frontrunner in the field, courting customers 
around the US, including police 
departments and Immigration and Customs 
Enforcement (ICE).”

https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender
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“While it [the algorithm] didn't directly 
consider ethnicity, its emphasis on medical 
costs as bellwethers for health led to the 
code routinely underestimating the needs 
of black patients. A sicker black person 
would receive the same risk score as a 
healthier white person simply because of 
how much they could spend.”

Source: https://science.sciencemag.org/content/366/6464/447

https://science.sciencemag.org/content/366/6464/447


Word 
embeddings 
and analogies

� https://lamyiowce.github.io/word2viz/
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https://lamyiowce.github.io/word2viz/


20Source: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Different Types 
of Errors

True label Predicted label
True positive (TP) +1 +1
False positive (FP) −1 +1
True negative (TN) −1 −1
False negative (FN) +1 −1
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22Source: https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm

This is one possible definition of unfairness. 
We’ll explore a few others and see how they relate to one another. 

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm


Running 
Example

� Suppose you’re an admissions officer for CMU, 
deciding which applicants to admit to your program

� 𝒙 are the features of an applicant (e.g., 
standardized test scores, GPA) 

� 𝑎 is a protected attribute (e.g., gender), usually 
categorical i.e. 𝑎 ∈ {𝑎!, … , 𝑎"}

� ℎ(𝒙, 𝑎) is your model’s prediction, which usually 
corresponds to some decision or action (e.g.,      
+1 = admit to CMU) 

� 𝑦 is the true, underlying target variable, usually 
thought of as some latent or hidden state (e.g., 
+1 = this applicant would be “successful” at CMU) 

23



Three Criteria 
for Fairness

� Independence: ℎ 𝒙, 𝑎 ⊥ 𝑎
� Probability of being accepted is the same for 

all genders

� Separation: ℎ 𝒙, 𝑎 ⊥ 𝑎 ∣ 𝑦
� All “good” applicants are accepted with the 

same probability, regardless of gender

� Same for all “bad” applicants

� Sufficiency: 𝑦 ⊥ 𝑎 ∣ ℎ 𝒙, 𝑎
� For the purposes of predicting 𝑦, the 

information contained in ℎ 𝒙, 𝑎 is 
“sufficient”, 𝑎 becomes irrelevant

� Any two of these criteria are mutually exclusive in 
the general case
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Achieving
Fairness

� Pre-processing data

� Additional constraints during training

� Post-processing predictions
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Three Criteria 
for Fairness

� Independence: ℎ 𝒙, 𝑎 ⊥ 𝑎
� Probability of being accepted is the same for 

all genders

� Separation: ℎ 𝒙, 𝑎 ⊥ 𝑎 ∣ 𝑦
� All “good” applicants are accepted with the 

same probability, regardless of gender

� Same for all “bad” applicants

� Sufficiency: 𝑦 ⊥ 𝑎 ∣ ℎ 𝒙, 𝑎
� For the purposes of predicting 𝑦, the 

information contained in ℎ 𝒙, 𝑎 is 
“sufficient”, 𝑎 becomes irrelevant

� Any two of these criteria are mutually exclusive in 
the general case!
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A Fourth 
Criterion for 
Fairness

� Causality Bayesian networks to the rescue!

� Counterfactual fairness: how would an 
applicant’s probability of acceptance change if 
they were a different gender?

27
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A Fourth 
Criterion for 
Fairness

� Causality Bayesian networks to the rescue!

� Counterfactual fairness: how would an 
applicant’s probability of acceptance change if 
they were a different gender?
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Source: Counterfactual fairness, Kusner et al., https://papers.nips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf

https://papers.nips.cc/paper/2017/file/a486cd07e4ac3d270571622f4f316ec5-Paper.pdf


LARGE LANGUAGE MODELS
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What is ChatGPT?

• ChatGPT is a large (in the sense of having many parameters) 
language model, fine-tuned to be a dialogue agent

• The base language model is GPT-3.5 which was trained on a 
large quantity of text 
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Outline
• Task: Language Modeling
– noisy channel models (speech / MT)
– (historical) Large LMs (n-gram models)

• Model: GPT
– Attention (computation graph)
– Transformer-LM (cf. RNN-LM)

• Learning
– Pre-training (unsupervised learning)
– Reinforcement Learning with Human Feedback (deep RL)

• Optimization
– AdamW (cf. SGD)
– Distributed training

• Societal Impacts
31



TASK: LANGUAGE MODELING
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n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
p(w1)
p(w2 | w1)
p(w3 | w2, w1)
p(w4 | w3, w2)
p(w5 | w4, w3)
p(w6 | w5, w4)

Recall…



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
p(w1)
p(w2 | w1)
p(w3 | w2, w1)
p(w4 | w3, w2)
p(w5 | w4, w3)
p(w6 | w5, w4)

Note: This is called a model because we 
made some assumptions about how many 

previous words to condition on 
(i.e. only n-1 words)

Recall…



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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p(wt | wt-2 = made, 
wt-1 = noise)

wt p(· | ·, ·)

at 0.020

…

pollution 0.030

…

zebra 0.000

p(wt | wt-2 = The, 
wt-1 = bat)

wt p(· | ·, ·)

ate 0.015

…

flies 0.046

…

zebra 0.000

p(wt | wt-2 = cows, 
wt-1 = eat)

wt p(· | ·, ·)

corn 0.420

…

grass 0.510

…

zebra 0.000

Recall…



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
wt-1 = eat)

Recall…



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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Noisy Channel Models
• Prior to 2017, two tasks relied heavily on language models:

– speech recognition
– machine translation

• Definition: a noisy channel model combines a transduction model (probability of 
converting y to x) with a language model (probability of y)

• Goal: to recover y from x
– For speech: x is acoustic signal, y is transcription
– For machine translation: x is sentence in source language, y is sentence in target language

38

ŷ = argmax
y

p(y | x) = argmax
y

p(x | y)p(y)

transduction 
model

language 
model



Large (n-Gram) Language Models
• The earliest (truly) large language models 

were n-gram models
• Google n-Grams:

– 2006: first release, English n-grams
• trained on 1 trillion tokens of web text (95 billion 

sentences)
• included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

grams

– 2009 – 2010: n-grams in Japanese, Chinese, 
Swedish, Spanish, Romanian, Portuguese, 
Polish, Dutch, Italian, French, German, Czech

39

serve as the incoming 92 
serve as the incubator 99 
serve as the independent 794 
serve as the index 223 
serve as the indication 72 
serve as the indicator 120 
serve as the indicators 45 
serve as the indispensable 111 
serve as the indispensible 40 
serve as the individual 234 
serve as the industrial 52 
serve as the industry 607 
serve as the info 42 

accessoire Accessoires </S> 515 
accessoire Accord i-CTDi 65 
accessoire Accra accu 312 
accessoire Acheter cet 1402 
accessoire Ajouter au 160 
accessoire Amour Beauté 112 
accessoire Annuaire LOEIL 49 
accessoire Architecture artiste 531 
accessoire Attention : 44

Number of unigrams: 13,588,391
Number of bigrams:   314,843,401
Number of trigrams:  977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

English n-gram 
model is ~3 billion 

parameters



Large (n-Gram) Language Models
• The earliest (truly) large language models 

were n-gram models
• Google n-Grams:

– 2006: first release, English n-grams
• trained on 1 trillion tokens of web text (95 billion 

sentences)
• included 1-grams, 2-grams, 3-grams, 4-grams, and 5-

grams

– 2009 – 2010: n-grams in Japanese, Chinese, 
Swedish, Spanish, Romanian, Portuguese, 
Polish, Dutch, Italian, French, German, Czech
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serve as the incoming 92 
serve as the incubator 99 
serve as the independent 794 
serve as the index 223 
serve as the indication 72 
serve as the indicator 120 
serve as the indicators 45 
serve as the indispensable 111 
serve as the indispensible 40 
serve as the individual 234 
serve as the industrial 52 
serve as the industry 607 
serve as the info 42 

accessoire Accessoires </S> 515 
accessoire Accord i-CTDi 65 
accessoire Accra accu 312 
accessoire Acheter cet 1402 
accessoire Ajouter au 160 
accessoire Amour Beauté 112 
accessoire Annuaire LOEIL 49 
accessoire Architecture artiste 531 
accessoire Attention : 44

Number of unigrams: 13,588,391
Number of bigrams:   314,843,401
Number of trigrams:  977,069,902
Number of fourgrams: 1,313,818,354
Number of fivegrams: 1,176,470,663

English n-gram 
model is ~3 billion 

parameters

Q: Is this a large model?
A: Yes!

Q: Is this a large training set?
A: Yes! 



How large are LLMs?

41

Model Creators Year of 
release

Training Data (# 
tokens)

Model Size (# 
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3 
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

GPT-4 OpenAI 2023 ? ?

Comparison of some recent large language models (LLMs)



MODEL: GPT
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Ways of Drawing Neural Networks
Neural Network Diagram
• The diagram represents a neural network
• Nodes are circles
• One node per hidden unit
• Node is labeled with the variable 

corresponding to the hidden unit
• For a fully connected feed-forward neural 

network, a hidden unit is a nonlinear 
function of nodes in the previous layer

• Edges are directed
• Each edge is labeled with its weight (side 

note: we should be careful about ascribing 
how a matrix can be used to indicate the 
labels of the edges and pitfalls there)

• Other details:
– Following standard convention, the 

intercept term is NOT shown as a node, but 
rather is assumed to be part of the non-
linear function that yields a hidden unit. (i.e. 
its weight does NOT appear in the picture 
anywhere)

– The diagram does NOT include any nodes 
related to the loss computation

Computation Graph
• The diagram represents an algorithm
• Nodes are rectangles
• One node per intermediate variable in the 

algorithm
• Node is labeled with the function that it 

computes (inside the box) and also the 
variable name (outside the box)

• Edges are directed
• Edges do not have labels (since they don’t 

need them)
• For neural networks:

– Each intercept term should appear as a node
(if it’s not folded in somewhere)

– Each parameter should appear as a node
– Each constant, e.g. a true label or a feature 

vector should appear in the graph
– It’s perfectly fine to include the loss

43

(F) Loss
J = 1

2 (y � y�)2

(E) Output (sigmoid)
y = 1

1+2tT(�b)

(D) Output (linear)
b =

�D
j=0 �jzj

(C) Hidden (sigmoid)
zj = 1

1+2tT(�aj)
, �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

(C’) Parameters

Given βj , ∀j

(A’) Parameters

Given αij , ∀i, j

(E’) Label

Given y
∗

Recall…



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1) 44

The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END

Recall…



Attention

45

v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



Attention
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v1

a1,1

s1,1

softmax

x′

1 =

1∑

j=1

a1,jvj



Attention
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v1 v2

a2,1

s2,1 s2,2

softmax

x′

2 =

2∑

j=1

a2,jvj

a2,2



Attention
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v1 v2 v3

a3,1 a3,1 a3,1

s3,1 s3,2 s3,3

softmax

x′

3 =

3∑

j=1

a3,jvj



Attention
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v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



Attention

50

v1 v2 v3 v4

a4,1 a4,2 a4,3

s4,1 s4,2 s4,3 s4,4

softmax

x′

t =

t∑

j=1

at,jvj

values

scores

attention weights

x1’ x2’ x3’ x4’

a4,4



v1 v2 v3 v4

softmax

Scaled Dot-Product Attention
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x1 x2 x3 x4

vj = WT
v xj

Wv values

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

vj = WT
v xj

kj = WT
k xj

Wv values

keys

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

scoress4,j = kT
j q4/

√

dk

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



qj = WT
q xj

Scaled Dot-Product Attention
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x′

t =

t∑

j=1

at,jvj

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

st,j = kT
j qt/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsat = softmax(st)

attention

x1’ x2’ x3’ x4’



Animation of 3D Convolution

57
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

http://cs231n.github.io/convolutional-networks/

Recall…

http://cs231n.github.io/convolutional-networks/


Multi-headed Attention

58

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step



Multi-headed Attention

59

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step

x1’’ x2’’ x3’’ x4’’

feed-forward neural network

Wff

• To ensure the dimension of the 
input embedding xt is the same 
as the output embedding xt’’, 
add a feed-forward neural 
network layer



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1) 60

The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END

Recall…



Transformer Language Model

61

x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM, except that a position 
embedding is attached to each 
word embeddings.

Important!
• RNN computation 

graph grows 
linearly with the 
number of input 
tokens

• Transformer-LM 
computation graph 
grows quadratically
with the number of 
input tokens



GPT-3

• GPT stands for Generative Pre-trained Transformer
• GPT is just a Transformer LM, but with a huge number of 

parameters

62

Model # layers dimension 
of states

dimension 
of inner 
states

# attention 
heads

# params

GPT (2018) 12 768 3072 12 117M

GPT-2 
(2019)

48 1600 -- -- 1542M

GPT-3 
(2020)

96 12288 4*12288 96 175000M



LEARNING FOR LLMS
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Unsupervised Dimensionality Reduction
Principal Component Analysis (PCA)
• Assumption: the data lies on a low 

K-dimensional linear subspace 
• Goal: identify the axes of that 

subspace, and project each point 
onto hyperplane

• Algorithm: find the K eigenvectors 
with largest eigenvalue using classic 
matrix decomposition tools

64
https://commons.wikimedia.org/wiki/File:Scatter_diagram_for_quality_characteristic_XXX.svg

PCA Example: 2D Gaussian Data

Recall…



The Start of Deep Learning

• The architectures of modern deep 
learning have a long history:
– 1960s: Rosenblatt’s 3-layer multi-layer 

perceptron, ReLU )
– 1970-80s: RNNs and CNNs
– 1990s: linearized self-attention

• The spark for deep learning came in 
2006 thanks to pre-training (e.g., 
Hinton & Salakhutdinov, 2006)

65
Figure from Vargas et al. (2017) 



Comparison on MNIST
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• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
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• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
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• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 



Idea #3: Unsupervised
Pre-training

1. Unsupervised Pre-training
– Use unlabeled data
– Work bottom-up
• Train hidden layer 1. Then fix its parameters.
• Train hidden layer 2. Then fix its parameters.
• …
• Train hidden layer n. Then fix its parameters.

2. Supervised Fine-tuning
– Use labeled data to train following “Idea #1”
– Refine the features by backpropagation so that they become 

tuned to the end-task
88

� Idea #3: (Two Steps)
� Use our original idea, but pick a better starting point
� Train each level of the model in a greedy way



The solution:
Unsupervised pre-training
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…

…Input

Hidden Layer

Output

Unsupervised pre-
training of the first layer: 
• What should it predict?
• What else do we 

observe? 
• The input!

This topology defines an 
Auto-encoder.



The solution:
Unsupervised pre-training

Unsupervised pre-
training of the first layer: 
• What should it predict?
• What else do we 

observe? 
• The input!

This topology defines an 
Auto-encoder.
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…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’



Auto-Encoders

Key idea: Encourage z to give small reconstruction error:
– x’ is the reconstruction of x
– Loss = || x – DECODER(ENCODER(x)) ||2

– Train with the same backpropagation algorithm for 2-layer 
Neural Networks with xm as both input and output.
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…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’

Slide adapted from Raman Arora

DECODER:  x’ = h(W’z)

ENCODER:  z = h(Wx)



The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
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…

…Input

Hidden Layer

…“Input” ’ ’ ’ ’



The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
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…

…Input

Hidden Layer

…Hidden Layer

…’ ’ ’



The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
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The solution:
Unsupervised pre-training

Unsupervised pre-
training
• Work bottom-up
– Train hidden layer 1. 

Then fix its parameters.
– Train hidden layer 2. 

Then fix its parameters.
– …
– Train hidden layer n. 

Then fix its parameters.
Supervised fine-tuning
Backprop and update all 
parameters
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…

…Input

Hidden Layer

…Hidden Layer

…Hidden Layer

Output



Deep Network Training 
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� Idea #3:
1. Unsupervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #2:
1. Supervised layer-wise pre-training
2. Supervised fine-tuning

� Idea #1:
1. Supervised fine-tuning only



Comparison on MNIST

1.0

1.5

2.0

2.5

Shallow Net Idea #1
(Deep Net, no-

pretraining)

Idea #2
(Deep Net,

supervised pre-
training)

Idea #3
(Deep Net,

unsupervised pre-
training)

% 
Er

ro
r

97

Training

• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 
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Training

• Results from Bengio et al. (2006) on 
MNIST digit classification task

• Percent error (lower is better) 



Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Generative pre-training for a deep 
language model:
• each training example is an 

(unlabeled) sentence 
• the objective function is the 

likelihood of the observed 
sentence

Practically, we can batch together 
many such training examples to 
make training more efficient



Training Data for LLMs
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GPT-3 Training Data:

Table from http://arxiv.org/abs/2005.14165

http://arxiv.org/abs/2005.14165


Training Data for LLMs
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The Pile:
• An open source dataset for 

training language models
• Comprised of 22 smaller 

datasets
• Favors high quality text
• 825 Gb ≈ 1.2 trillion tokens 



Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Atari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot
Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on
joystick, see pixels
and scores

Playing Atari with Deep RL
• Setup:  RL 

system 
observes the 
pixels on the 
screen

• It receives 
rewards as the 
game score

• Actions decide 
how to move 
the joystick / 
buttons

102
Figures from David Silver (Intro RL lecture)

Recall…



Deep 
Q-learning

� Algorithm 4: Online learning of 𝑄∗ (parametric form)
� Inputs: discount factor 𝛾, 

an initial state 𝑠",
learning rate 𝛼

� Initialize parameters Θ "

� For 𝑡 = 0, 1, 2, …

� Gather training sample 𝑠# , 𝑎# , 𝑟# , 𝑠#$%
� Update Θ # by taking a step opposite the 

gradient

� Θ &'()# ← Θ #

Θ #$% ← Θ # − 𝛼∇* ! ℓ Θ &'()# , Θ #

103

where

∇*ℓ Θ &'()# , Θ # = 2 𝑦 − 𝑄 𝑠, 𝑎; Θ # ∇* ! 𝑄 𝑠, 𝑎; Θ #

= 2 𝑟 + 𝛾max
+"

𝑄 𝑠,, 𝑎,; Θ &'()# − 𝑄 𝑠, 𝑎; Θ # ∇* ! 𝑄 𝑠, 𝑎; Θ #

Recall…



RLHF
• InstructGPT uses 

Reinforcement 
Learning with Human 
Feedback (RLHF) to 
fine-tune a pre-
trained GPT model

• From the paper: 
“In human 
evaluations on our 
prompt distribution, 
outputs from the 1.3B 
parameter 
InstructGPT model are 
preferred to outputs 
from the 175B GPT-3, 
despite having 100x 
fewer parameters.”

104
Figure from https://arxiv.org/pdf/2203.02155.pdf

https://arxiv.org/pdf/2203.02155.pdf


OPTIMIZATION FOR LLMS
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Stochastic Gradient Descent (SGD)

106

In practice, it is common 
to implement SGD using 

sampling without
replacement (i.e. 

shuffle({1,2,…N}), even 
though most of the 

theory is for sampling 
with replacement (i.e. 

Uniform({1,2,…N}).

per-example objective:

original objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Recall…



107
Figure from https://imgur.com/a/Hqolp#2dKCQHh

https://imgur.com/a/Hqolp


Adam

• Adam combines elements of two popular algorithms:
1. AdaGrad

each parameter gets its own learning rate
2. RMSProp

keeps a moving average of recent gradients

108



Adam
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Memory Usage of LLMs
How to store a large language 
model in memory?
– full precision: 32-bit floats
– half precision: 16-bit floats
– Using half precision not only

reduces memory, it also speeds 
up GPU computation

– “Peak float16 matrix multiplication 
and convolution performance is 16x 
faster than peak float32 
performance on A100 GPUs.” 
from Pytorch docs
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Model Megatron-LM GPT-3

# parameters 8.3 billion 175 billion

full precision 30 Gb 651 Gb

half precision 15 Gb 325 Gb

GPU / TPU Max Memory

TPU v2 16 Gb

TPU v3/v4 32 Gb

Tesla V100 GPU 32 Gb

NVIDIA RTX A6000 48 Gb

Tesla A100 GPU 80 Gb

https://pytorch.org/blog/what-every-user-should-know-about-mixed-precision-training-in-pytorch/
https://pytorch.org/blog/what-every-user-should-know-about-mixed-precision-training-in-pytorch/


Two Types of Distributed Training

Data Parallel
• key idea: (almost trivial) parallelism 

achieved by distributing the batches 
across multiple GPUs

• key challenge: sharing / updating a 
single set of parameters across all 
devices

Model Parallel
• key idea: (very tricky) parallelism 

achieved by dividing the model 
parameters/computation across 
multiple GPUs

• key challenge: maintaining high 
speedup even though some of the 
model computation must be done 
sequentially (e.g. the backward 
computation must happen after the 
forward computation)
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Distributed Training: Model Parallel

112
Figure from https://arxiv.org/pdf/2102.07988.pdf

There are a variety of 
different options for 
how to distribute the 
model computation / 
parameters across 
multiple devices.

Matrix multiplication 
comprises most 
Transformer LM 
computation and can be 
divided along rows/columns 
of the respective matrices.

The most natural division is 
by layer: each device 
computes a subset of the 
layers, only that device 
stores the parameters and
computation graph for
those layers.

A more efficient solution is 
to divide computation by 
token and layer. This 
requires careful division of 
work and is specific to the 
Transformer LM.

https://arxiv.org/pdf/2102.07988.pdf


Cost to train

113
Figure from https://arxiv.org/pdf/2203.15556.pdf 



SOCIETAL IMPACTS OF LLMS
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Societal Impacts of ChatGPT

In-class exercise: 
What are the potential societal impacts of ChatGPT?
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Summary
• Task: Language Modeling
– noisy channel models (speech / MT)
– (historical) Large LMs (n-gram models)

• Model: GPT
– Attention (computation graph)
– Transformer-LM (cf. RNN-LM)

• Learning for LLMs
– Pre-training (unsupervised learning)
– Reinforcement Learning with Human Feedback (deep RL)

• Optimization for LLMs
– Adam (cf. SGD)
– Distributed training

• Societal Impacts of LLMs
117


