



#### 10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

# **Decision Trees**

Matt Gormley Lecture 3 Jan. 25, 2023

## Q&A

- Q: In our medical diagnosis example, suppose two of our doctors (i.e. experts) disagree about whether (+) or not (-) the patient is sick. How would the decision tree represent this situation?
- A: Today we will define decision trees that predict a single class by a majority vote at the leaf. More generally, the leaf could provide a probability distribution over output classes p(y|x)

## Q&A

## Q: How do these In-Class Polls work?

- Sign into Google Form (click [Poll] link on Schedule page <a href="http://mlcourse.org/schedule.html">http://mlcourse.org/schedule.html</a>) using Andrew Email
  - Answer during lecture for full credit, or within 24 hours for half credit
  - Avoid the toxic option which gives negative points!
  - 8 "free poll points" but can't use more than 3 free polls consecutively. All the questions for one lecture are worth 1 point total.

Latest Poll link: <a href="http://poll.mlcourse.org">http://poll.mlcourse.org</a>

## First In-Class Poll

Question 1 **Question: Answer:** Which of the following did you bring to class today? A. Smartphone B. Flip phone C. Pay phone D. No phone

## Reminders

- Homework 1: Background
  - Out: Fri, Jan 20
  - Due: Wed, Jan 25 at 11:59pm
  - unique policy for this assignment: we will grant (essentially) any and all extension requests
- Homework 2: Decision Trees
  - Out: Wed, Jan. 25
  - Due: Fri, Feb. 3 at 11:59pm

# MAKING PREDICTIONS WITH A DECISION TREES

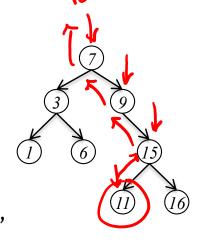
# Background: Recursion

- Def: a binary search tree (BST) consists of nodes, where each node:
  - has a value, v
  - up to 2 children
  - all its left descendants have values less than v, and its right descendants have values greater than v
- We like BSTs because they permit search in O(log(n)) time, assuming n nodes in the tree

#### **Node Data Structure**

class Node:

int value Node left Node right



```
Recursive Search
def contains(node, key):
      if key < node.value & node.left != null:
            return contains (node.left, key)
      else if node.value < key & node.right != null:
            return contains(node.right, key)
      else:
            return key == node.value
```

#### **Iterative Search**

```
def contains(node, key):
      cur = node
      while true:
            if key < cur.value & cur.left != null:
                   cur = cur.left
            else if cur.value < key & cur.right != null:
                   cur = cur.right
            else:
                   break
      return key == cur.value
```

In-Class Exercise: Let's evaluate our (already learned) decision tree's error rate on a real test dataset.

#### **Features:**

- $-x_1$ : which is better? {green, orange}
- x<sub>2</sub>: which is better? {consistency, challenge}
- x<sub>3</sub>: which is better? {sandals, sneakers}
- x<sub>4</sub>: which is better? {winter, summer}

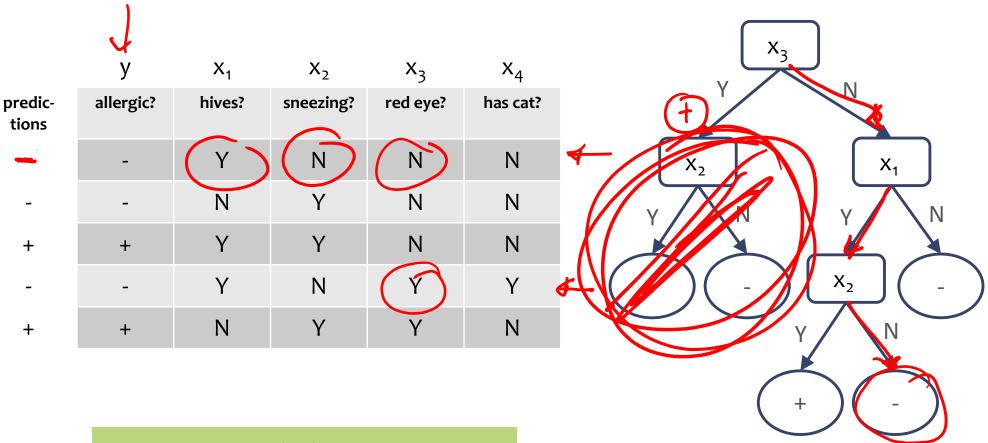
#### Label:

– y : are you a beach-person or a mountainsperson?

## def h(x'):

- Let current node = root
- while(true):
  - if current node is internal (non-leaf):
    - Let m = attribute associated with current node
    - Go down branch labeled with value x'<sub>m</sub>
  - if current node is a leaf:
    - return label y stored at that leaf

Algorithm 3 decision tree: recursively walk from root to a leaf, following the attribute values labeled on the branches, and return the label at the leaf



Zero training error!

## def h(x'):

- Let current node = root
- while(true):
  - if current node is internal (non-leaf):
    - Let m = attribute associated with current node
    - Go down branch labeled with value x'<sub>m</sub>
  - if current node is a leaf:
    - return label y stored at that leaf

**Question:** The above pseudocode is implementing prediction with a while-loop.

Can you convert it to a recursive implementation?

## **Decision Trees**

#### Whiteboard

- Example Decision Tree as a hypothesis
- Defining h(x) for a decision tree

## Tree to Predict C-Section Risk

Learned from medical records of 1000 women (Sims et al., 2000)

Negative examples are C-sections [833+,167] .83+ .17-Fetal\_Presentation = 1: [822+,116-] .88+ .12-Previous\_Csection = 0: [767+,81-] .90+ .10-Primiparous = 0: [399+,13-] .97+ .03-| Primiparous = 1: [368+,68-] .84+ .16- $| Fetal_Distress = 0: [334+,47-] .88+ .12-$ | | Birth\_Weight < 3349: [201+,10.6-] .95+ . Birth\_Weight >= 3349: [133+,36.4-] .78+  $| \text{Fetal\_Distress} = 1: [34+,21-] .62+ .38-$ Previous\_Csection = 1: [55+,35-] .61+ .39-Fetal\_Presentation = 2: [3+,29-] .11+ .89-Fetal\_Presentation = 3: [8+,22-] .27+ .73-

## LEARNING A DECISION TREE

## **Decision Trees**

### Whiteboard

Decision Tree Learning

# Recursive Training for Decision Trees

#### def train(dataset D'):

- Let p = new Node()
- Base Case: If (1) all labels y<sup>(i)</sup> in D' are identical (2) D' is empty
   (3) for each attribute, all values are identical

```
    p.type = Leaf // The node p is a leaf node
    p.label = majority_vote(D') // Store the label
    return p
```

- Recursive Step: Otherwise
  - Make an internal node

```
– p.type = Internal // The node p is an internal node
```

• Pick the best attribute X<sub>m</sub> according to splitting criterion

```
– p.attr = argmax<sub>m</sub> splitting_criterion(D', X<sub>m</sub>)
// Store the attribute on which to split
```

• For each value v of attribute X<sub>m</sub>:

```
- D_{Xm=v} = \{(x,y) \text{ in } D': x_m = v\} // Select a partition of the data

- \text{child}_v = \text{train}(D_{Xm=v}) // Recursively build the child

- \text{p.branches}[v] = \text{child}_v // Create a branch with label v

- \text{return } p
```

#### **Dataset:**

Output Y, Attributes A, B, C

| Y | А | В | C |
|---|---|---|---|
| - | 1 | 0 | 0 |
| - | 1 | 0 | 1 |
| - | 1 | 0 | 0 |
| + | 0 | 0 | 1 |
| + | 1 | 1 | 0 |
| + | 1 | 1 | 1 |
| + | 1 | 1 | 0 |
| + | 1 | 1 | 1 |

#### **In-Class Exercise**

Using error rate as the splitting criterion, what decision tree would be learned?

## **Decision Trees**

### Whiteboard

Example of Decision Tree Learning with Error
 Rate as splitting criterion

# SPLITTING CRITERION: ERROR RATE

# Decision Tree Learning

- Definition: a splitting criterion is a function that measures the effectiveness of splitting on a particular attribute
- Our decision tree learner selects the "best" attribute as the one that maximizes the splitting criterion
- Lots of options for a splitting criterion:
  - error rate (or accuracy if we want to pick the tree that maximizes the criterion)
  - Gini gain
  - Mutual information
  - random

**–** ...

#### **Dataset:**

Output Y, Attributes A and B

| Υ | А | В |
|---|---|---|
| - | 1 | 0 |
| - | 1 | 0 |
| + | 1 | 0 |
| + | 1 | 0 |
| + | 1 | 1 |
| + | 1 | 1 |
| + | 1 | 1 |
| + | 1 | 1 |

### **In-Class Exercise**

Questron 2

Which attribute would error rate select for the next split?

- 1. A
- 2. B
- 3. A or B (tie)
- 4. Neither toxic

#### **Dataset:**

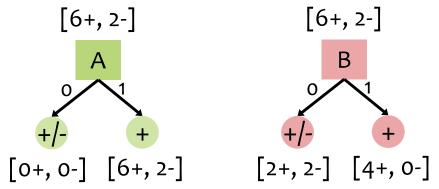
Output Y, Attributes A and B

| Y | Α | В |
|---|---|---|
| - | 1 | 0 |
| - | 1 | 0 |
| + | 1 | 0 |
| + | 1 | 0 |
| + | 1 | 1 |
| + | 1 | 1 |
| + | 1 | 1 |
| + | 1 | 1 |

#### **Dataset:**

Output Y, Attributes A and B

| Y | Α | В |
|---|---|---|
| - | 1 | 0 |
| - | 1 | 0 |
| + | 1 | 0 |
| + | 1 | 0 |
| + | 1 | 1 |
| + | 1 | 1 |
| + | 1 | 1 |
| + | 1 | 1 |



#### **Error Rate**

error(
$$h_A$$
, D) = 2/8  
error( $h_B$ , D) = 2/8

error rate treats attributes A and B as equally good

# SPLITTING CRITERION: MUTUAL INFORMATION

# Information Theory & DTs

#### Whiteboard

- Information Theory primer
  - Entropy
  - (Specific) Conditional Entropy
  - Conditional Entropy
  - Information Gain / Mutual Information
- Information Gain as DT splitting criterion

## Mutual Information

Let X be a random variable with  $X \in \mathcal{X}$ . Let Y be a random variable with  $Y \in \mathcal{Y}$ .

Entropy: 
$$H(Y) = -\sum_{y \in \mathcal{Y}} P(Y = y) \log_2 P(Y = y)$$

Specific Conditional Entropy: 
$$H(Y \mid X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x)$$

Conditional Entropy: 
$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y \mid X = x)$$

Mutual Information: 
$$I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)$$

- For a decision tree, we can use mutual information of the output class Y and some attribute X on which to split as a splitting criterion
- Given a dataset D of training examples, we can estimate the required probabilities as...

$$P(Y = y) = N_{Y=y}/N$$

$$P(X = x) = N_{X=x}/N$$

$$P(Y = y|X = x) = N_{Y=y,X=x}/N_{X=x}$$

where  $N_{Y=y}$  is the number of examples for which Y=y and so on.

## Mutual Information

Let X be a random variable with  $X \in \mathcal{X}$ .

Let Y be a random variable with  $Y \in \mathcal{Y}$ .



Entropy: 
$$H(Y) = -\sum_{y \in \mathcal{Y}} P(Y = y) \log_2 P(Y = y)$$

Specific Conditional Entropy:  $H(Y \mid X = x) = -\sum_{y \in \mathcal{Y}} P(Y = y \mid X = x) \log_2 P(Y = y \mid X = x)$ 



Conditional Entropy: 
$$H(Y \mid X) = \sum_{x \in \mathcal{X}} P(X = x) H(Y \mid X = x)$$

Mutual Information: I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)

- Entropy measures the expected # of bits to code one random draw from X.
- For a decision tree, we want to reduce the entropy of the random variable we are trying to predict!

FOLA DECISION TEE WE (ALLINE TO THE TOTAL OF THE TAX - 21 TO T

**Conditional entropy** is the expected value of specific conditional entropy  $E_{P(X=x)}[H(Y \mid X=x)]$ 

**Informally**, we say that **mutual information** is a measure of the following: If we know X, how much does this reduce our uncertainty about Y?

#### **Dataset:**

Output Y, Attributes A and B

| Y | A B |   |
|---|-----|---|
| - | 1   | 0 |
| - | 1   | 0 |
| + | 1   | 0 |
| + | 1   | 0 |
| + | 1   | 1 |
| + | 1   | 1 |
| + | 1   | 1 |
| + | 1   | 1 |

## In-Class Exercise

Which attribute would mutual information select for the next split?

- 1. A
- 2. B  $\checkmark$
- 3. A or B (tie)
- 4. Neither

#### **Dataset:**

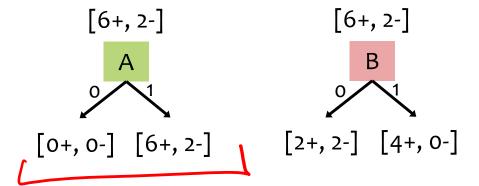
Output Y, Attributes A and B

| Υ | Α | В |
|---|---|---|
| - | 1 | 0 |
| - | 1 | 0 |
| + | 1 | 0 |
| + | 1 | 0 |
| + | 1 | 1 |
| + | 1 | 1 |
| + | 1 | 1 |
| + | 1 | 1 |

#### **Dataset:**

Output Y, Attributes A and B

| Y | А | В |
|---|---|---|
| - | 1 | 0 |
| - | 1 | 0 |
| + | 1 | 0 |
| + | 1 | 0 |
| + | 1 | 1 |
| + | 1 | 1 |
| + | 1 | 1 |
| + | 1 | 1 |



#### **Mutual Information**

$$H(Y) = -2/8 \log(2/8) - 6/8 \log(6/8)$$

$$H(Y|A=0) =$$
 "undefined"  
 $H(Y|A=1) = -2/8 \log(2/8) - 6/8 \log(6/8)$   
 $= H(Y)$   
 $H(Y|A) = P(A=0)H(Y|A=0) + P(A=1)H(Y|A=1)$   
 $= 0 + H(Y|A=1) = H(Y)$   
 $I(Y; A) = H(Y) - H(Y|A=1) = 0$ 

$$H(Y|B=0) = -2/4 \log(2/4) - 2/4 \log(2/4)$$
  
 $H(Y|B=1) = -0 \log(0) - 1 \log(1) = 0$   
 $H(Y|B) = 4/8(0) + 4/8(H(Y|B=0))$   
 $I(Y;B) = H(Y) - 4/8 H(Y|B=0) > 0$ 

PlayTennis?
No

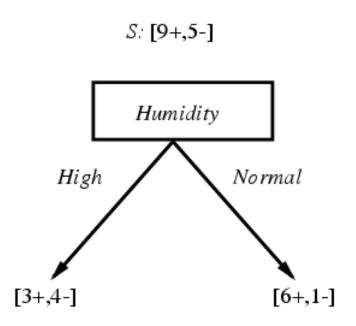
#### Dataset:

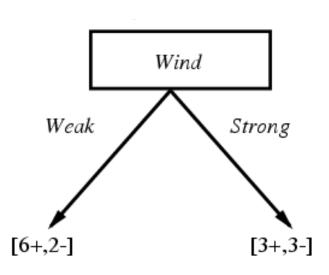
Day Outlook Temperature Humidity Wind PlayTennis?

| D1  | Sunny    | Hot                  | High                  | Weak   | No  |
|-----|----------|----------------------|-----------------------|--------|-----|
| D2  | Sunny    | $\operatorname{Hot}$ | $\operatorname{High}$ | Strong | No  |
| D3  | Overcast | Hot                  | $\operatorname{High}$ | Weak   | Yes |
| D4  | Rain     | Mild                 | $\operatorname{High}$ | Weak   | Yes |
| D5  | Rain     | Cool                 | Normal                | Weak   | Yes |
| D6  | Rain     | Cool                 | Normal                | Strong | No  |
| D7  | Overcast | Cool                 | Normal                | Strong | Yes |
| D8  | Sunny    | Mild                 | $\operatorname{High}$ | Weak   | No  |
| D9  | Sunny    | Cool                 | Normal                | Weak   | Yes |
| D10 | Rain     | Mild                 | Normal                | Weak   | Yes |
| D11 | Sunny    | Mild                 | Normal                | Strong | Yes |
| D12 | Overcast | Mild                 | $\operatorname{High}$ | Strong | Yes |
| D13 | Overcast | Hot                  | Normal                | Weak   | Yes |
| D14 | Rain     | Mild                 | $\operatorname{High}$ | Strong | No  |

Which attribute yields the best classifier?

Test vour understanding.

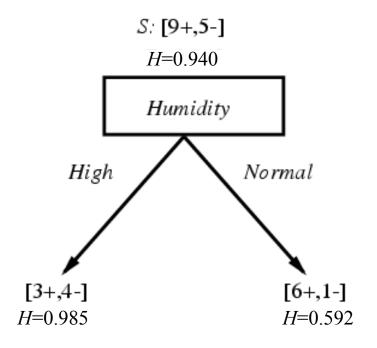


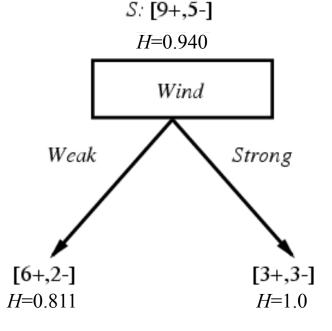


S: [9+,5-]

Which attribute yields the best classifier?

Test Nour understanding.





sifier? standing.

Which attribute yields the best classifier?

S: [9+,5-]

H=0.940

Humidity

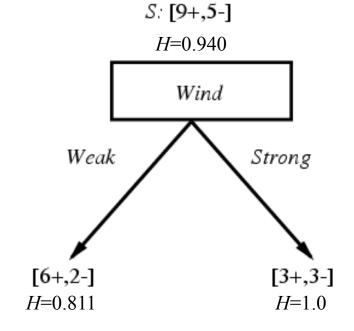
Normal

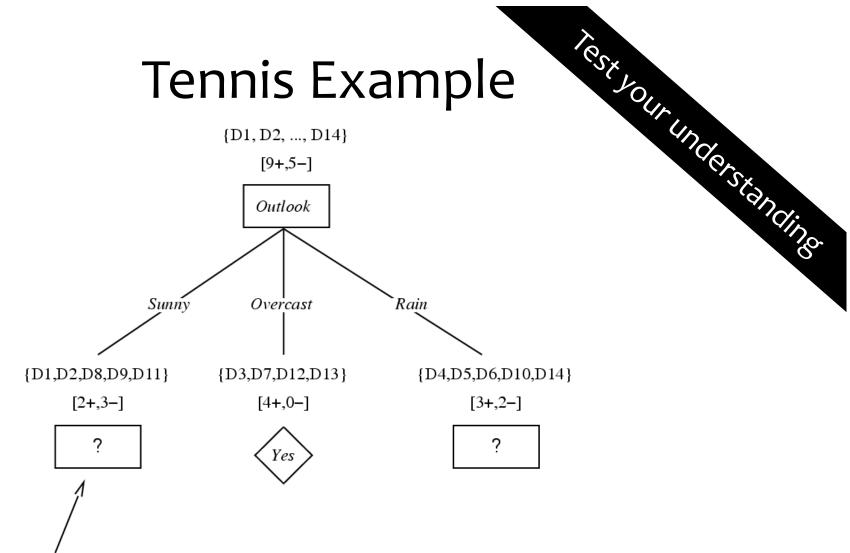
[3+,4-]

H=0.985

[6+,1-]

H=0.592





Which attribute should be tested here?

 $S_{sunnv} = \{D1,D2,D8,D9,D11\}$  $Gain(S_{sunny}, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970$  $Gain(S_{sunnv}, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570$  $Gain(S_{sunny}, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019$