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Q&A

Q: In our medical diagnosis example, suppose two of
our doctors (i.e. experts) disagree about whether
(+) or not (-) the patient is sick. How would the
decision tree represent this situation?

A. Today we will define decision trees that predict a
" single class by a majority vote at the leaf. More
generally, the leaf could provide a probability

distribution over output classes p(y|x)



Q:

A:

Q&A

How do these In-Class Polls work?

* Signinto Google Form (click [Poll] link on Schedule

page ) using
Andrew Email

* Answer during lecture for full credit, or within 24
hours for half credit

* Avoid the toxic option which gives negative points!

* 8 “free poll points” but can’t use more than 3 free
polls consecutively. All the questions for one lecture

are worth 1 point total.

Latest Poll link:


http://mlcourse.org/schedule.html
http://poll.mlcourse.org/

First In-Class Poll

Question: Answer:

Which of the following
did you bring to class

today?
A. Smartphone I

B. Flip phone

C. Pay phone I{—{

D. No phone




Reminders

* Homework 1: Background
— Out: Fri, Jan 20
— Due: Wed, Jan 25 at 11:59pm

 Homework 2: Decision Trees
— Out: Wed, Jan. 25
— Due: Fri, Feb. 3 at 11:59pm




MAKING PREDICTIONS WITH A
DECISION TREES



Background: Recursion

Def: a binary search

tree (BST) consists of (D
nodes, where each

node: ONNO

— hasavalue,v oG ®

— up to 2 children

— allits left descendants ()
have values less than v,
and its right
descendants have
values greater than v

We like BSTs because
they permit search in
O(log(n)) time,
assuming n nodes in
the tree

Node Data Structure

class Node:
int value
Node left
Node right

Recursive Search

def contains(node, key):
if key < node.value & node.left != null:
return contains(node.left, key)
else if node.value < key & node.right != null:
return contains(node.right, key)
else:
return key == node.value

Iterative Search

def contains(node, key):
cur = node
while true:
if key < cur.value & cur.left != null:
cur = cur.left
else if cur.value < key & cur.right != null:
cur = cur.right
else:
break
return key == cur.value



Decision Tree: Prediction

In-Class Exercise: Let's evaluate our (already
learned) decision tree’s error rate on a real test
dataset.

Features:
— X, : which is better? {green, orange}

— X, : which is better? {consistency, challenge}

— X5 . which is better? {sandals , sheakers}

— X, . which is better? {winter, summer}
Label:

— Yy : are you a beach-person or a mountains-
person?
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Decision Tree: Prediction

def h(x’):
— Let current node = root
— while(true):
* if current node is internal (non-leaf):

— Let m = attribute associated with current node
— Go down branch labeled with value x’_,

* if current node is a leaf:
— return label y stored at that leaf



Decision Tree: Prediction

Algorithm 3 decision tree: recursively walk from root to a leaf,
following the attribute values labeled on the branches, and
return the label at the leaf

y X, X5 X3 X4
predic- allergic? hives? sneezing?  red eye? has cat?
tions

Y N N N

N Y N N

+ + Y Y N N

Y N Y Y

+ + N Y Y N

Zero training error!



Decision Tree: Prediction

def h(x’):
— Let current node =root
— while(true):
* if current node is internal (non-leaf):

— Let m = attribute associated with current node
— Go down branch labeled with value x’_,

* if current node is a leaf:

— return label y stored at that leaf

Question: The above pseudocode is implementing
prediction with a while-loop.

Can you convert it to a recursive implementation?




Decision Trees

Whiteboard

— Example Decision Tree as a hypothesis
— Defining h(x) for a decision tree



Tree to Predict C-Section Risk

Learned from medical records of 1000 women (Sims et al., 2000)

Negative examples are C-sections

[833+,167-] .83+ .17-

Fetal_Presentation = 1: [822+,116-] .88+ .12-
Previous_Csection = 0: [767+,81-] .90+ .10-
Primiparous = 0: [399+,13-] .97+ .03-
Primiparous = 1: [368+,68-] .84+ .16-
Fetal Distress = 0: [334+,47-] .88+ .12-

| Birth_Weight >= 3349: [133+,36.4-] .78+
Fetal_Distress = 1: [34+,21-] .62+ .38-
Previous_Csection = 1: [55+,35-] .61+ .39-
Fetal_Presentation = 2: [3+,29-] .11+ .89-
Fetal_Presentation = 3: [8+,22-] .27+ .73-

Figure from Tom Mitchell

| Birth_Weight < 3349: [201+,10.6-] .95+ .
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LEARNING A DECISION TREE



Decision Trees

Whiteboard
— Decision Tree Learning



Recursive Training for Decision Trees

def train(dataset D’):
— Let p = new Node()

— Base Case: If (1) all labels y() in D’ are identical (2) D’ is empty
(3) for each attribute, all values are identical

— p.type = Leaf /[ The node p is a leaf node
— p.label = majority vote(D’) [/ Store the label
— returnp

— Recursive Step: Otherwise
* Make aninternal node
— p.type = Internal /[ The node p is an internal node

* Pick the best attribute X, according to splitting criterion

— p.attr = argmax, splitting_criterion(D’, X.,)

/[ Store the attribute on which to split

e For each value v of attribute X

— Dym-v ={(x,y)in D’ : x, =V} [/ Select a partition of the data

— child, = train( Dy.-, ) /| Recursively build the child

— p.branches[v] = child, /| Create a branch with label v

— returnp



Decision Tree Learning Example

Dataset: In-Class Exercise
Output Y, Attributes A, B, C

T Using error rate as
1o the splitting criterion,
1 o o what decision tree

£ 00 would be learned?

+ 1 1 0



Decision Trees

Whiteboard

— Example of Decision Tree Learning with Error
Rate as splitting criterion



SPLITTING CRITERION:
ERROR RATE



Decision Tree Learning

* Definition: a splitting criterion is a function that
measures the effectiveness of splitting on a
particular attribute

* Our decision tree learner selects the “best’” attribute
as the one that maximizes the splitting criterion
* Lots of options for a splitting criterion:

— error rate (or accuracy if we want to pick the tree that
maximizes the criterion)

— Gini gain
— Mutual information
— random



Decision Tree Learning Example

Dataset:
Output Y, Attributes Aand B
EERNEE
_ 1 0
1 0
+ 1 0
+ 1 0
+ 1 1

In-Class Exercise

Which attribute would
error rate select for
the next split?

1. A

2. B

3. Aor B (tie)
4. Neither
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Decision Tree Learning Example
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Decision Tree Learning Example

[6"') 2'] [6+, 2-]
Dataset: A B
Output Y, Attributes A and B /y\ 7y\
&= + oLl +
““ [o+,0-] [6+ 2] [2+,2-] [4+, 0-]
— 1 ° Error Rate
1 0
' 1 ° error(h,, D) = 2/8
' 1 ° error(hg, D) = 2/8
+ 1 1
i 1 1 error rate treats
+ ! 1 attributes A and B as

+ 1 1 equally good
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SPLITTING CRITERION:
MUTUAL INFORMATION



Information Theory & DTs

Whiteboard

— Information Theory primer
* Entropy
* (Specific) Conditional Entropy
* Conditional Entropy
* Information Gain / Mutual Information

— Information Gain as DT splitting criterion



Mutual Information

Let X be a random variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — Z P(Y =y)log, P(Y =y)

yeY
Specific Conditional Entropy: H(Y | X = z) Z PY=y|X=2x)logg P(Y =y | X =x)
yeY
Conditional Entropy: H(Y | X) Z P X=z)H(Y | X =x)
zEX

Mutual Information: I(Y; X) =H(Y) - H(Y|X) = H(X) — H(X|Y)

* For a decision tree, we can use P(Y =y) = Ny—,/N
mutual information of the output P(X =z)=Nx_z/N
class Y and some attribute X on —
which to split as a splitting criterion P(Y =y|X =2z) = Ny—y,x=o/Nx=0

* Given a dataset D of training where Ny _,, is the number of examples
examples, we can estimate the for which Y = 4 and so on.

required probabilities as...



Mutual Information

Let X be a random variable with X € X.
Let Y be arandom variable withY € ).

Entropy: H(Y) = — ) _ P(Y =y)log, P(Y =y)

LL

yeY
Specific Conditional Entropy: H(Y | X = z) Z PY=y|X=2x)logg P(Y =y | X =x)
yeY
Conditional Entropy: H(Y | X) Z P X=z)H(Y | X =x)
zEX

Mutual Information: I(Y; X) =H(Y) - H(Y|X) = H(X) — H(X|Y)

{L{}

* Entropy measures the expected # of bits to code one random draw from X.

* Foradecision tree, we want to reduce the entropy of the random variable we
are trying to predict!

Conditional entropy is the expected value of specific conditional entropy
Epx=x)[H(Y | X = x)]

Informally, we say that mutual information is a measure of the following:
If we know X, how much does this reduce our uncertainty about Y?




Decision Tree Learning Example

Dataset:
Output Y, Attributes Aand B

EEENEE

In-Class Exercise

Which attribute would
mutual information
select for the next
split?

1. A

2. B

3. AorB(tie)

4. Neither



Decision Tree Learning Example
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Decision Tree Learning Example

Dataset:

Output Y, Attributes Aand B

EEENEE
- 1 0o

1

+ 1
+ 1
+ 1
+ 1
+ 1
+ 1

0

[6+, 2-] [6+, 2-]
A B
PN PN
[0+, 0-] [6+,2-] [2+,2-] [4+, 0-]

Mutual Information
H(Y) = -2/8 log(2/8) - 6/8 log(6/8)

H(Y|A=0) = “undefined”

H(Y|A=1) = - 2/&)3 log(2/8) - 6/8 log(6/8)

= H(Y

H(Y|A) = P(A(=0)H(Y|A=0) + P(A=1)H(Y]|A=1)
= 0 + H(Y|A=1) = H(Y)

I(Y; A) = H(Y) - H(Y|A=1) = 0

H(Y|B=0) = -2/4 log(2/4) - 2/4 log(2/4)
H(Y|B=1) =-0log(o) - 1log(1) =0
H(Y|B) = 4/8(0) + 4/8(H(Y|B=0))

I(Y; B) = H(Y) - 4/8 H(Y|B=0) > 0



Dataset:

Day Outlook Temperature Humidity Wind PlayTennis?

Tennis Example

D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11

D14

Sunny
Sunny

Overcast

Rain
Rain
Rain

Overcast

Sunny
Sunny
Rain

Sunny

D12 Overcast
D13 Overcast

Rain

Hot

Hot

Hot

Mild
Cool
Cool
Cool
Mild
Cool
Mild
Mild
Mild
Hot

Mild

High
High
High
High
Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High

Weak
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Strong

No
No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No

Figure from Tom Mitchell
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S: [9+,5-] S: [9+,5-]

Humidity Wind

Normal Weak

[3+4-] [6+,1-] [6+.2-] [3+.3]

Figure from Tom Mitchell



S [9+,5-]
H=0.940

Humidity

Normal

[3+.4-] [6+,1-]
H=0.985 H=0.592

Figure from Tom Mitchell

S [9+,5-]
H=0.940

Wind

Weak

[6+,2-] [3+.,3-]
H=0.811 H=1.0



S [9+,5-]
H=0.940

Humidity

Normal

[3+.4-] [6+,1-]
H=0.985 H=0.592

Gain (S, Humidity )

940 -(7/14).985 - (7/14).592
151

Figure from Tom Mitchell

S [9+,5-]
H=0.940

Wind

Weak

[6+,2-] [3+.3-]
H=0.811 H=1.0
Gain (S, Wind)

940 -(8/14).811 - (6/14)1.0
048



Tennis Example

{D1,D2, .., D14}

[9+.5-]
Outlook
Sunny Overcast Rain
{D1.D2.D8.D9.D11} {D3.D7.D12,D13} {D4,.D5.D6,D10,D 14}
[2+.,3-] [4+,0-] [3+.,2—

A

: & :
/

Which attribute should be tested here?

Ssunny ={D1,.D2,D8.D9.D11}
Gain (Sgyppy » Humidity) = 970 - (3/5)0.0 — (2/5)0.0 = .970

Gain (Ssyppy » Temperature) = 970 — (2/5)0.0 — (2/5)1.0 — (1/5)0.0 = .570

Gain (Ssynny Wind) = 970 - (2/5)1.0 - (3/5).918 = .019
Figure from Tom Mitchell



