M 10-301/10-601 Introduction to Machine Learning

Machine Learning Department

|r—] School of Computer Science
MACHINE LEARNING Carnegie Mellon University

%

EEEEEEEEEE

k-Nearest Neighbors
=k

Model Selection

Matt Gormley
Lectures
Feb. 1, 2023

Reminders

* Homework 2: Decision Trees
— Out: Wed, Jan. 25
— Due: Fri, Feb. 3 at 11:59pm

* Schedule Note:
— Fri, Feb. 3: Lecture 6: Perceptron
— Wed, Feb. 8: Recitation: HW3

Moss: Code Plagiarism Detection

What is Moss?

* Moss (Measure Of Software Similarity): is an
automatic system for determining the similarity
of programs. To date, the main application of
Moss has been in detecting plagiarism in
programming classes.

* Moss reports:
— The Andrew IDs associated with the file submissions
— The number of lines matched
— The percent lines matched

— Color coded submissions where similarities are
found

What is Moss?

At first glance, the submissions may look different

Python program to find ordered words
import requests

¥.SC

the

"apes the words from the URL below and stores
in a list

def getWords():

contains about 2500 words
url = "http://www.puzzlers.org/pub/wordlists/unixdict. txt"
fetchData = requests.get(url)

extracts the content of the webpage
wordList = fetchData.content

decodes the UTF-8 encoded text and splits the

string to turn it into a list of words

wordList = wordList.decode("utf-8").split()

return wordList

function to deter > whether a word is ordered or not

def isOrdered():

fetching the wordList

collection = getWords()

the
f those

1ce the first

dictionary are ni

numbers by slicing off the
collection = collection[16:]
word =

for word in collection:
result = 'Word is ordered'
i=0
L = len(word) - 1

if (len(word) < 3): # skips the 1 and 2 lettered strings
continue

traverses through all characters of the word in pairs
while i < :
if (ord(word[i]) > ord(word[i+1])):
result = 'Word is not ordered'
break
else:
i+=1

only printing the ordered words
if (result == 'Word is ordered'):
print(word,': ', result)

execute isOrdered() function
if __pame__ == '__main
isOrdered()

import requests

def

def

if

Ordered() :
coll = getWs()
coll = coll[16:]
word = "'
for word in coll:
r = 'Word is ordered'
a=20
length = len(word) - 1
if (len(word) < 3):
continue
while a < length:
if (ord(word[a]) > ord(word[a+1])):
r = 'Word is not ordered'

break
else:
a =]
if (r == 'Word is ordered'):

print(word,': ',r)

getiWs():
url = "http://www.puzzlers.org/pub/wordlists/unixdict. txt"
fetch = requests.get(url)
words = fetch.content
words = words.decode("utf-8").split()
return words
name == "' main_ '
Ordered()

What is Moss?

Moss can quickly find the similarities

>>>> file: bedmundsfandrew.cmu.edu_l_handin.c
Python program to find ordered words
import requests

Scrapes the words from the URL below and stores
them in a list

function to determine whether
def isOrdered():

fetching the wordList
collection = getWords()

since the first few of the elements

dictionary are numbers, getting

numbers by slicing off the fir
collection = collection([16:]
word v

of the
id of those

t 17 elements

for word in collectio
result = 'Word is ordered'
i=0
1 = len(word) - 1

if (len(word) < 3): # skips the 1 and 2 lettered str

continue

traverses through all characters of the word
while i < 1:
if (ord(word[i]) > ord(word[i+l])):
result 'Word is not ordered’
break
else:

only printing the ordered words
if (result 'Word is ordered')
print(word, ', result)

execute isOrdered() function
if _ name__ '
isOrdered()

__main__':

a word is ordered or not

in pairs

>>>> file: dpbird@andrew.cmu.edu_l_handin.c
=]

import requests

def Ordered():
coll getWs()
coll = coll[16:)

word t

for word in coll:
r 'Word is ordered'
a 0

length = len(word) - 1

if (len(word) < 3):
continue

while a < length:

if (ord(word(a])) > ord(word[a+l))):

r Word is not ordered’
break
else:
a += 1
if (x 'Word is ordered'):

print(word,': ',r)

if __name__ == '__main__':
Ordered()

Q:

Q&A

I’m now terrified to collaborate with anyone ever
again. Can you remind me of what sort of
collaboration is allowed?

Yes!

You should collaborate as follows: (1) sketch out
pseudocode on an impermanent surface, e.g., a
whiteboard (2) erase said surface and part ways
with your collaborator and (3) implement your
own code from scratch.

K-NEAREST NEIGHBORS

Classification & KNN

Whiteboard:
— Binary classification
— 2D examples
— Decision rules [hypotheses

Nearest Neighbor: Algorithm

def train(D):
Store D

def h(x'):
Let x(Y) = the point in D that is nearest to x’
return y¥

Nearest Neighbor: Example

Nearest Neighbor: Example

* This is a Voronoi
diagram

 Each cell contain .-
one of our

trainin
examples

* All points within
a cell are closer
to that training
example, than -
to any other
training example ., |

* Points on the
Voronoi line -
segments are
equidistant to
one or more
training
examples

v

Nearest Neighbor: Example

1
09
08
07
0.6
0.5
04
0.3
0.2

0.1

0
0 0.1 0.2 03 04 05 06 0.7 08 09 1

15

The Nearest Neighbor Model

* Requires no training!

* Always has zero training error!

— A data point is always its own nearest neighbor

k-Nearest Neighbors: Algorithm

def set_hyperparameters(k, d):
Store k
Store d(+, *)

def train(D):
Store D

def h(x'):
Let S = the set of k points in D nearest to x’
according to distance function
d(u, v)
Let v = majority vote(S)
returnv

k-Nearest Neighbors

Suppose we have the
training dataset below. How should we label

A .
_ the new point?
_ 34 It depends on k:
....... “ Xnew .
e RO 1. it k=1, h(xnew) = +1
o if k=3, h(X,.,,) = -1
p it k=5, h(xnew) = +1

KNN: Remarks

Distance Functions:
* KNN requires a distance function

d: RMxRM 5 R
e The most common choice is Euclidean distance

M
d(u,v) = (U — vm)z
2

* But there are other choices (e.g. Manhattan distance)

M
d(u; ‘U) — Z |um — Uml
m=1

KNN: Remarks

In-Class Exercises

How can we handle ties for
even values of k?

KNN: Remarks

In-Class Exercises Answer(s) Here:
How can we handle ties for
even values of k? — Consider another point
— Remove farthest of k
points
— Weight votes by
distance

— Consider another
distance metric

KNN: Inductive Bias

In-Class Exercise Whatis the inductive bias of KNN?

KNN: Inductive Bias

In-Class Exercise Whatis the inductive bias of KNN?

1. Similar points should have similar labels
2. All dimensions are created equally!

Example: two features for KNN

big problem:
feature scale
A 4 can
o0 on dramatically
influence
O) classification
results!

sepal length
(cm)

sepal length
(cm)

> >
sepal width (cm) sepal width (m)

KNN: Computational Efficiency

Suppose we have N training examples and
each one has M features
Computational complexity when k=1:

T Ihave lkdTee

Train O(1) ~O(M N log N)
Predict O(MN) ~0(2Mlog N) on average

(one test example) &

Problem: Very fast for small M, but
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)

26

KNN: Theoretical Guarantees

Cover & Hart (1967)
Let h(x) be a Nearest Neighbor (k=1) binary very
e . informally,
classifier. As the number of training Bayes Error
examples N goes to infinity... Rate can be
@ thought of as:
errory,.(h) < 2 x Bayes Error Rate ‘the best you
could possibly
“In this sense, it may be said that half the do’

classification information in an infinite
sample set is contained in the nearest
neighbor.”

Decision Boundary Example

Dataset: Outputs {+,-}; Features x, and x,

In-Class Exercise

Question:

Question:
A Ca.n d k-Near.est Ne'gh'”‘f C.IaSS'f'er A. Can a Decision Tree classifier achieve
with k=1 achieve zero training error - :
on this dataset? zero training error on this dataset?
B. If ‘Yes’, draw the learned decision B. If ‘Yes’, draw the learned decision
boundary. If ‘No’, why not? boundary. If ‘No’, why not?
A A
Xy + + X2 + +
+ +
+ - + 7 + = + 7
Ty o+ Ty o+
> >
x1

Decision Boundary Example

Whiteboard:

— Decision Tree boundary with continuous
features (saving this for a short video)

KNN ON FISHER IRIS DATA

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

-

0
0 4.9
0 5.3
1 4.9
1 5.7
1 6.3
1 6.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set

3.6
3.7
2.4
2.8
3-3
3.0

1.4
1.5
3.3
4.1
4.7
5.0

0.1
0.2
1.0

1.3
1.6

1.7

32

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers
from 3 different species: Iris setosa (0), Iris
virginica (1), Iris versicolor (2) collected by

Anderson (1936)

Species Sepal Sepal
Length Width

4.3
4.9
5-3
4.9
5.7
6.3
6.7

3.0
3.6
3.7
2.4
2.8
3-3
3.0

Deleted two of the
four features, so that
input space is 2D

¢

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set

33

sepal length

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

sepal width

35

KNN on Fisher Iris Data

Special Case: Nearest Neighbor

3-Class classification (k = 1, weights = 'uniform’)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0_ | | | | I

39

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 2, weights = 'uniform’)

40

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 3, weights = 'uniform’)

41

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 4, weights = 'uniform’)

42

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 5, weights = 'uniform’)

43

KNN on Fisher Iris Data

3-Class classification (k = 10, weights = 'uniform’)

44

KNN on Fisher Iris Data

3-Class classification (k = 20, weights = 'uniform’)

45

KNN on Fisher Iris Data

3-Class classification (k = 30, weights = 'uniform’)

46

KNN on Fisher Iris Data

3-Class classification (k = 40, weights = 'uniform’)

47

KNN on Fisher Iris Data

3-Class classification (k = 50, weights = 'uniform’)

48

KNN on Fisher Iris Data

3-Class classification (k = 60, weights = ‘uniform')

49

KNN on Fisher Iris Data

3-Class classification (k = 70, weights = 'uniform’)

50

KNN on Fisher Iris Data

3-Class classification (k = 80, weights = 'uniform’)

51

KNN on Fisher Iris Data

3-Class classification (k = 90, weights = 'uniform’)

52

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 100, weights = 'uniform’)

53

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 110, weights = 'uniform’)

54

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 120, weights = 'uniform’)

55

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 130, weights = 'uniform’)

56

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0 -

KNN on Fisher Iris Data

3-Class classification (k = 140, weights = 'uniform’)

57

KNN on Fisher Iris Data

Special Case: Majority Vote

3-Class classification (k = 150, weights = 'uniform’)

5.0 -

4.5 -

4.0 -

3.5 -

3.0 -

2.5 -

2.0 -

1.5 -

1.0_ | | | | |

58

KNN ON GAUSSIAN DATA

KNN on Gaussian Data

60

KNN on Gaussian Data

(k = 1, weights = 'uniform')

Classification with KNN

61

KNN on Gaussian Data

(k = 2, weights = 'uniform')

Classification with KNN

62

KNN on Gaussian Data

(k = 3, weights = 'uniform')

Classification with KNN

63

KNN on Gaussian Data

4, weights = 'uniform’) |

k|=

(

Classification with KNN

64

KNN on Gaussian Data

(k = 5, weights = 'uniform')

Classification with KNN

65

KNN on Gaussian Data

9, weights = 'uniform’)

k|=

(

Classification with KNN

66

KNN on Gaussian Data

‘'uniform*)

(k= 16, weights

Classification with KNN

67

KNN on Gaussian Data

‘'uniform*)

(k= 25, weights

Classification with KNN

68

KNN on Gaussian Data

‘'uniform*)

7_5=

(k = 36, weight

Classification with KNN

69

KNN on Gaussian Data

‘'uniform*)

>

49, weight

(k

Classification with KNN

70

KNN on Gaussian Data

‘'uniform*)

7_5=

(k = 64, weight

Classification with KNN

71

KNN on Gaussian Data

‘'uniform*)

7_5=

81, weight

(k

Classification with KNN

72

KNN on Gaussian Data

‘'uniform’)

= 100, weights

(k

Classification with KNN

73

KNN on Gaussian Data

‘'uniform’)

= 121, weights

(k

Classification with KNN

74

KNN on Gaussian Data

‘'uniform’)

= 144, weights

(k

Classification with KNN

75

KNN on Gaussian Data

‘'uniform’)

= 169, weights

(k

Classification with KNN

76

KNN on Gaussian Data

‘'uniform’)

= 196, weights

(k

Classification with KNN

77

KNN on Gaussian Data

‘'uniform’)

= 225, weights

(k

Classification with KNN

78

KNN on Gaussian Data

‘'uniform’)

= 256, weights

(k

Classification with KNN

79

KNN on Gaussian Data

‘'uniform’)

ts =

, weigh

= 289

(k

Classification with KNN

80

KNN on Gaussian Data

‘'uniform’)

ts =

= 400, weight

(k

Classification with KNN

81

KNN on Gaussian Data

‘'uniform’)

ts =

, weigh

= 529

(k

Classification with KNN

82

KNN on Gaussian Data

‘'uniform’)

= 576, weights

(k

Classification with KNN

83

KNN Learning Objectives

You should be able to...

* Describe a dataset as points in a high dimensional
space [CIML]

* Implement k-Nearest Neighbors with O(N) prediction

e Describe the inductive bias of a k-NN classifier and
relate it to feature scale [a la. CIML]

* Sketch the decision boundary for a learning
algorithm (compare k-NN and DT)

 State Cover & Hart (1967)'s large sample analysis of a
nearest neighbor classifier

* Invent "new" k-NN learning algorithms capable of
dealing with even k

MODEL SELECTION

Model Selection

WARNING:

* [n some sense, our discussion of model
selection is premature.

* The models we have considered thus far are
fairly simple.

* The models and the many decisions available
to the data scientist wielding them will grow
to be much more complex than what we’ve
seen so far.

Model Selection

Example: Decision Tree

model = set of all possible
trees, possibly restricted by
some hyperparameters (e.g.
max depth)

parameters = structure of a
specific decision tree

learning algorithm = 1D3,
CART, etc.

hyperparameters = max-
depth, threshold for splitting
criterion, etc.

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select

Model Selection

Example: k-Nearest Neighbors

model = set of all possible
nearest neighbors classifiers

parameters = none
(KNN is an instance-based or
non-parametric method)

learning algorithm = for naive
setting, just storing the data

hyperparameters =k, the
number of neighbors to
consider

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select

Model Selection

Example: Perceptron

model = set of all linear
separators

parameters = vector of
weights (one for each
feature)

learning algorithm = mistake
based updates to the
parameters

hyperparameters = none
(unless using some variant
such as averaged perceptron)

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select

Model Selection

Statistics

Def: a model defines the data
eneration process (i.e. a set or
amily of parametric probability

distributions)

De{: model parameters are the
values that give rise to a
particular probability
distribution in the model family

Def: learning gaka. estimation) is
the process of finding the
parameters that best fit the data

Def: hyperparameters are the
parameters of a prior
distribution over parameters

Machine Learning

Def: (loosely) a model defines the
hypothesis space over which
learning performs its search

Def: model parameters are the
numeric values or structure
selected by the learning algorithm
that give rise to a hypothesis

Def: the learning algorithm
defines the data-driven search
over the hypothesis space (i.e.
search for good parameters)

Def: hyperparameters are the
tunable aspects of the model, that
the learning algorithm does not
select

Statistics
Def: a model defines the data * Def: (loosely) a model defines the

Model Selection

Machine Learning

eneration pry
amily of parar
distributions)

Deec model pa
values that gi

particular prok
distribution in

pace over which
orms its search

If “learning” is all about

piCking the best arameters are the
parameters how do we |es or structure
; he learning algorithm
pick the best to 3 h .
ypothesis
hyperparameters?

ning algorithm
efines the -driven search
over the hyp sis space (i.e.

ka. estimation) is

Def: learni !
the pro inding the -
parame] & that best fit the data SERITEN O o ameters)

* Def: hyperparameters are the

Def: hyperparameters are the tunable aspects of the model, that

parameters of a prior the learning algorithm does not
distribution over parameters select

Model Selection

* Two very similar definitions:
— Def: model selection is the process by which we choose
the “best” model from among a set of candidates
— Def: hyperparameter optimization is the process by
which we choose the “best” hyperparameters from
among a set of candidates (could be called a special
case of model selection)

* Both assume access to a function capable of
measuring the quality of a model

* Both are typically done “outside” the main training

algorithm - typically training is treated as a black
box

EXPERIMENTAL DESIGN

Experimental Design

Training training dataset * best model parameters We pick the best model

hvpberparameter parameters by learning on the
yperpara S training dataset for a fixed set

of hyperparameters

Hyperparameter training dataset * best hyperparameters We pick the best

. . . . hyperparameters by learning
Optimization validation dataset e

evaluating error on the
validation error

Testing test dataset * testerror We evaluate a hypothesis

. e . corresponding to a decision
hypOthESlS ("e‘ fixed rule with fixed model

model parameters) parameters on a test dataset
to obtain test error

95

Example of Hyperparameter Opt.

Whiteboard:
— Special cases of k-Nearest Neighbors
— Choosing k with validation data
— Choosing k with cross-validation

Cross-Validation

Cross validation is a method of estimating loss on held out data
Input: training data, learning algorithm, loss function (e.g. 0/1 error)
Output: an estimate of loss function on held-out data

Key idea: rather than just a single “validation” set, use many!
(Error is more stable. Slower computation.)

- Algorithm:

D = Fold 1 Divide data into folds (e.g. 4)
| 1. Train on folds {1,2,3} and
- predict on {4}

Fold 2 2. Train on folds {1,2,4} and
| predict on {3}
) 3. Train on folds {1,3,4} and
Fold 3 predict on {2}
il 4. Train on folds {2,3,4} and
predict on {1}
] Fold 4 Concatenate all the predictions
and evaluate loss (almost

equivalent to averaging loss

Definition:
N-fold cross validation = cross validation with N folds

hover the folds)

98

Experimental Design

Input

Output

Notes

Training

Hyperparameter
Optimization

Cross-Validation

Testing

training dataset
hyperparameters

training dataset
validation dataset

training dataset
validation dataset

test dataset
hypothesis (i.e. fixed
model parameters)

best model parameters

best hyperparameters

cross-validation error

test error

We pick the best model
parameters by learning on the
training dataset for a fixed set
of hyperparameters

We pick the best
hyperparameters by learning
on the training data and
evaluating error on the
validation error

We estimate the error on held
out data by repeatedly training
on N-1folds and predicting on
the held-out fold

We evaluate a hypothesis
corresponding to a decision
rule with fixed model
parameters on a test dataset
to obtain test error

Experimental Design

No!

A:

Let's assume that {train-original} is the original training data and {test} is the
provided test dataset.

Split {train-original} into {train-subset} and {validation}.

2. Pick the hyperparameters that when training on {train-subset} give the lowest
error on {validation}. Call these hyperparameters {best-hyper}.

3. Retrain a new model using {best-hyper} on {train-original} = {train-
subset} U {validation}.

4. Report test error by evaluating on {test}.

Alternatively, you could replace Steps 1-2 with the following:

1. Pick the hyperparameters that give the lowest cross-validation error on {train-
original}. Call these hyperparameters {best-hyper}.

100

Classification with KNN (k = 1, weights = 'uniform’) Classification with KNN (k = 144, weights = 'uniform')
- 5.0 -
hd 45
: ° 5-
-—
: o 4.0-
_ 3.5~

vvvvvvv

Train / Test Errors with k-NN

07- ® train
v validation

0.6 -
0.5-

0.4 -

error

0.3-

0.2 -

0.1-

10° 10! 102

Fisher Iris Data: varying the value of k

101

. Classification with KNN (k = 1, weights = 'uniform') Classification with KNN (k = 225, weights = 'uniform')

o e e
Y 0o 8 %0 R
: K-NN: Choosingk .«
’ Train / Test Errors with k-NN o
- ; ® train
- -2 0 v validation 0 2 a
0.20 -
0.15 -
S
Y 0.10-
0.05 -
0.00 -
109 101 1CI)2

Gaussian Data: varying the value of k

102

HYPERPARAMETER
OPTIMIZATION

Model Selection

WARNING (again):
— This section is only scratching the surface!
— Lots of methods for hyperparameter

optimization: (to talk about later)
e Grid search
e Random search
* Bayesian optimization
e Graduate-student descent

Main Takeaway:
— Model selection [hyperparameter optimization
is just another form of learning

Hyperparameter Optimization

Setting: suppose we have hyperparameters a, {3, and x and
we wish to pick the “best” values for each one

Algorithm 1: Grid Search
— Pick a set of values for each hyperparameter
@€ {31, dyy eeey an}) (3 = {bv bz: A bn}; and X € {Cv Cyyeee Cn}
— Run a grid search

fora€{a,a,...,ak
for e{b,b,,..., b}
fory € {c, ¢, ..., . }:
0= train(Dtrain; a, (3) X)
€rror = prediCt(Dvalidation; e)

— return a, 3, and x with lowest validation error

Hyperparameter Optimization

Setting: suppose we have hyperparameters a, (3, and x and
we wish to pick the “best” values for each one

Hyperparameter Optimization

Question:

True or False: given a finite amount of computation time, grid
search is more likely to find good values for hyperparameters
than random search.

Answer:

Hyperparameter Optimization

Question:

True or False: given a finite amount of computation time, grid
search is more likely to find good values for hyperparameters
than random search.

An Swer: Grid Layout Random Layout

Unimportant parameter

Unimportant parameter

Important parameter Important parameter

Figure 1: Grid and random search of nine trials for optimizing a function f(x,y) = g(x) +h(y) ~
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square A(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

Model Selection Learning Objectives

You should be able to...

* Plan an experiment that uses training, validation, and
test datasets to predict the performance of a
classifier on unseen data (without cheating)

 Explain the difference between (1) training error, (2)
validation error, (3) cross-validation error, (4) test
error, and (5) true error

* For a given learning technique, identify the model,
learning algorithm, parameters, and hyperparamters

* Define "instance-based learning" or ""nonparametric
methods"

* Select an appropriate algorithm for optimizing (aka.
learning) hyperparameters

