M L 10-301/10-601 Introduction to Machine Learning
Machine Learning Department
[——

School of Computer Science

MACHINE LEARNING : S
EEEEEEEEEE Carnegie Mellon University

Linear Regression

Matt Gormley
Lecture 7
Feb. 6, 2023

Reminders

* Homework 3: KNN, Perceptron, Lin.Reg.
— Out: Fri, Feb. 3
— Due: Fri, Feb. 10 at 11:59pm
— (only two grace/late days permitted)

« Exam conflicts form

Q&A

| have a medical emergency or family emergency or disability or
other compelling reason and am unable to attend office hours
in-person this week. Can an exception be made so | can attend

office hours remotely?

Yes. Please email the Education Associate(s) and request a
period of remote office hours. We will reply with instructions on
how to utilize them during the approved time period.

Q&A

How do we build Decision Trees with real-valued features?

Great question! | made a 7 minute video about that.

Is there a more formal statement of the Perceptron Mistake
Bound?

Great question! I’'m going to make a 5 minute video about that
and we’ll cover it in Recitation.

How do we prove the Perceptron Mistake Bound?

Great question! I’'m going to make a 10 minute video about that.

DECISION TREES WITH
REAL-VALUED FEATURES

Q&A

Q: How do we learn a Decision Tree with real-
valued features?

A:
Decision Boundary Example

Dataset: Outputs {+,-}; Features x, and x,

In-Class Exercise

Question:

Question:

A. Can ak-Nearest Neighbor classifier s . "
with k=1achieve zero training error . Cana De.CI.SIOn Tree class'lfler achieve
on this dataset? zero training error on this dataset?

B. If ‘Yes’, draw the learned decision B. If ‘Yes’, draw the learned decision
boundary. If ‘No’, why not? boundary. If ‘No’, why not?

A A
X, + + X5 + +
+ +
+ 4+ = = + + = =
+ - +_ T =+
T o+ T o+

Q&A

Q: How do we learn a Decision Tree with real-
valued features?

A: Make new discrete features out of the real-valued features and
then learn the Decision Tree as normal! Here’s an example...

18, %1 (D Moo i i
Mals -5 qw's-qli)qu 591-—\"-,
@ Vs WL'}E&):J&‘ on
oy butes
: oy
['?:;Z;I?{ €) Ca splid .,N)JYL dias

on encly con"’fhﬂs S

[0 [0t [y [o%,69)
x“b-‘
= 2

[0] fo "=y

Perceptron Exercise

Question: (31 Answer:
Unlike Decision Trees and K-

Nearest Neighbors, the

Perceptron algorithm does

not suffer from overfitting

because it does not have any
hyperparameters that could

be over-tuned on the training

data.

True \/3
B\ False %/
: andFalse “oxc

Perceptron Exercise

Question: Answer:
Unlike Decision Trees and K-

Nearest Neighbors, the
Perceptron algorithm does

not suffer from overfitting A

because it does not have any e 0+

hyperparameters that could

be over-tuned on the training ® o

data. @@ + L
@ |

A. True

B. False

C. Trueand False

PERCEPTRON MISTAKE BOUND

Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R rooted at the origin, then the online
Perceptron algorithm makes < (R/y)* mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

- —
- S

\

Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

-— ’\V
-~ -
e mm == ™

Linear Separability

Def: For a binary classification problem, a set of examples S
is linearly separable if there exists a linear decision boundary
that can separate the points

__

not linearly
separable

Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is
the distance from x to the plane w - x = 0 (or the negative if on
wrong side)

Margin of positive example x4

Slide from Nina Balcan

Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is
the distance from x to the plane w - x = 0 (or the negative if on
wrong side)

Definition: The margin y,, of a set of examples S w.r.t. a linear
separator w is the smallest margin over points x € S.

Slide from Nina Balcan -

Geometric Margin

Definition: The margin of example x w.r.t. a linear separator w is
the distance from x to the plane w - x = 0 (or the negative if on
wrong side)

Definition: The margin y,, of a set of examples S w.r.t. a linear

separator w is the smallest margin over points x € S.
Definition: The margin y of a set of examples § is the maximum y,,
over all linear separators w

Slide from Nina Balcan -

Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R rooted at the origin, then the online
Perceptron algorithm makes < (R/y)* mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Slide adapted from Nina Balcan

Perceptron Mistake Bound

Guarantee: if some data has margin y and all points lie inside
a ball of radius R rooted at the origin, then the online
Perceptron algorithm makes < (R/y)* mistakes

(Normalized margin: multiplying all points by 100, or dividing all points by 100,
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

- —
- S

\

Def: We say that the (batch) perceptron algorithm has
converged if it stops making mistakes on the training data
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the
perceptron algorithm cycles repeatedly through the data,
it will converge in a finite # of steps.

-— ’\V
-~ -
e mm == ™

PROOF OF THE MISTAKE BOUND

Analysis: Perceptron

Perceptron Mistake Bound

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(9), y()I N,

Suppose:
1. Finite size inputs: ||2V|| < R
2. Linearly separable data: 30 s.t. ||0*|| = 1 and

yD(0* - x() >~ Vi and somey > 0
Then: The number of mistakes made by the Perceptron

o

algorithm on this dataset is 2R

k< (R/v)?

Common

Analysis: Percept Misunderstanding:

: The radius is
Perceptron Mistake Boun centered at the

Theorem 0.1 (Block (1962), Novikoff (14 origin, not at the
Given dataset: D = {(x(9), y())} ¥ center of the
Suppose: & points.

1. Finite size inputs: ||z()|| < R
2. Linearly separable data: 30 s.t. ||0*|| = 1 and
yD(0* - x() >~ Vi and somey > 0
Then: The number of mistakes made by the Perceptron

algorithm on this dataset is 2R

k< (R/v)°

Analysis: Perceptron

Analysis: Perceptron

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(x(¥), y() IV

Suppose: ;
1. Finitesizeinputs: ||| < R !
2. Linearly separable data: 30 s.t. ||0*||] = 1and |

\

yD(0* - x(V) >~ Vi and some~y > 0
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k< (R/v)°

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PERCEPTRON(D = {(x1),y(M), (x() 42, ...}

2 0—0,k=1 > Initialize parameters
3 fori € {1,2,...} do > For each example
4: if y(D (0% . x()) < 0 then > If mistake
5 g+ o gk) 4 (D)% (@) > Update parameters
6 E+—k+1
7 return 6

Analysis: Perceptron

Analysis: Perceptron

Analysis: Perceptron

Analysis: Perceptron

What if the data is not linearly separable?

Perceptron will not converge in this case (it can’t!)

2. However, Freund & Schapire (1999) show that by projecting the
points (hypothetically) into a higher dimensional space, we can
achieve a similar bound on the number of mistakes made on
one pass through the sequence of examples

Theorem?2. Let{((Xi, y1), ..., Xm, Ym)) be asequence of labeled examples with ||X;|| < R.
Let u be any vector with ||u|| = 1 and let y > 0. Define the deviation of each example as

d; = max{0, y — y;(u-x;)},

and define D = />, dl.z. Then the number of mistakes of the online perceptron algorithm
on this sequence is bounded by

20y

Summary: Perceptron

Perceptron is a linear classifier

Simple learning algorithm: when a mistake is
made, add [subtract the features

Perceptron will converge if the data are linearly
separable, it will not converge if the data are

linearly inseparable

For linearly separable and inseparable data, we
can bound the number of mistakes (geometric
argument)

Extensions support nonlinear separators and
structured prediction

Perceptron Learning Objectives

y b 5‘\\‘*\5 lc oV \MV‘?
You should be able to... QZ' What qe 1

* Explain the difference between online learning and
batch learning

* Implement the perceptron algorithm for binary
classification [CIML]

* Determine whether the perceptron algorithm will
converge based on properties of the dataset, and
the limitations of the convergence guarantees

* Describe the inductive bias of perceptron and the
imitations of linear models

* Draw the decision boundary of a linear model
* |dentify whether a dataset is linearly separable or not

e Defend the use of a term in perceptron
;%@@L percep

REGRESSION

Regression

National wiLI Forecast

Goal:

— Given a training dataset of
pairs (X,y) where

* Xisavector
* yisascalar 4 o

21 29 37 45 1 9 17

. Epidemiological Week
— Learna functlon (aka. curve

or line) y’ = h(x) that best fits
the training data

Example Applications:
— Stock price prediction
— Forecasting epidemics
— Speech synthesis

— Generation of images (e.g.
Deep Dream)

Weighted %ILI

Regression

Example: Dataset with only
one feature x and one scalar
outputy

Q: What is the function that
est fits these points?

35

K-NEAREST NEIGHBOR
REGRESSION

K-NN Regression

Example: Dataset with only
one feature x and one scalar
outputy

Algorithm 1: k=1 Nearest
Neighbor Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
in training data and return
its 'y

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x("2)
in training data and return
the weighted average of
their y values

K-NN Regression

Example: Dataset with only
one feature x and one scalar
outputy

Algorithm 1: k=1 Nearest
Neighbor Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
in training data and return
its 'y

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x("2)
in training data and return
the weighted average of
their y values

K-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest
output y Neighbor Regression

NM)(WY Train: store all (x, y) pairs
fhs

| W . ol

N)w&m_?/ Fredtg:t: pick the nearest x
Pl o in training data and return

its 'y

\

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest

two instances x(™ and x("2)
_ in training data and return
KM x(2) the weighted average of
their y values

____________________“

40

DECISION TREE REGRESSION

Decision Tree Regression

Decision Tree for Classification

B
/\
A A
/\1 (/\
& C C
/N 7\
+ + +

Decision Tree for Regression

B
/\
A A
/\j ?/\
/5 21 C C

Decision Tree Regression

Dataset for Regression

Decision Tree for Regression

{471;377)5; 6;879}
B

0 1
{413, 7}/\i5'6’8’9}

A

/\{4, 1,3} {6} {5,8 o]
{5,8}/\{9}
6.5 9

During learning, choose the attribute that

minimizes an appropriate splitting
criterion (e.g. mean squared error, mean

absolute error)

43

LINEAR FUNCTIONS, RESIDUALS,
AND MEAN SQUARED ERROR

Linear Functions

Def: Regression is predicting real-valued outputs

D = {(x©,yO)" withx® € RM,y® € R

Y1 y=wx+b

/

>

45

Linear Functions

Def: Regression is predicting real-valued outputs

D = {(x©,yO)" withx® € RM,y® € R

A
y Yy =wix; +wyxy, + b

* Ageneral linear functionis
y=wIx+b

* Ageneral linear decision boundary is
y = sign(w’x + b)

Wx+b =D

46

Regression Problems

Chalkboard

— Residuals
— Mean squared error

OPTIMIZATION FOR ML

Unconstrained Optimization

* Def: In unconstrained optimization, we try
minimize (or maximize) a function with no
constraints on the inputs to the function

Given a function J(0), J : RM R

A

Our goal is to find @ = argmin J(0)
0 cRM

For ML, these are For ML, this is the
the parameters objective function

Optimization for ML

Not quite the same setting as other fields...

— Function we are optimizing might not be the
true goal
(e.g. likelihood vs generalization error)

— Precision might not matter
(e.g. data is noisy, so optimal up to 1e-16 might
not help)

— Stopping early can help generalization error
(i.e. “early stopping” is a technique for
regularization — discussed more next time)

50

min vs. argmin

v¥* = min, f(x)

x* = argmin, f(x)
y = f(x) =x2 + 1

<

>

<nuw\ , <oy

51

min vs.

argmin

v¥* = min, f(x)

x* = argmin, f(x)
S —

52

OPTIMIZATION METHOD #o:
RANDOM GUESSING

Notation Trick:
Folding in the Intercept Term

X/
‘ 6
hwo(X) =w!x+b

hg (X,) — OTX,

| T
1,21,22,..., 7]

: T
b, w1, ..., W]

This convenience trick allows us to more compactly talk
about linear functions as a simple dot product (without
explicitly writing out the intercept term every time). 55

Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : ho(x) = 07,0 ¢ RM}

Contour Plots

Contour Plots
1. Each level curve labeled

e Jie) =J(6,,0,)=(10(6,-0.5))* + (6(6, - 0.4))?
2. Value label indicates the 107 >
value of the function for 0000
all points lying on that .
level curve | \
3. Just like a topographical ,
map, but for a function 064 I S =N
£ S @ 33y
0, |sg ?
—
0.4 A
0.0 Y T T {
0.0 0.2 0.4 0.6 0.8 1.0

59

Optimization by Random Guessing

J =) = —0.5)) —0.4))?
Optimization Method #o: (6)=J(8,, 8,) = (10(8, - 0.5)) + (6(8, - 0.4))

. 1.0
Random Guessing 0.000
1. Pickarandom 6
2. Evaluate J(0) %
3. Repeat steps1and 2 many I\
times 0.6 _g S 8 U; oo N
4. Return 0 that gives 0, fs] TV
smallest J(0) 0.4 @
0.2 »
0.0 Y T T f
0.0 0.2 0.4 0.6 0.8 1.0
0,
t e1 e2 J(e17 e2)
1| 0.2 | 0.2 10.4
2 | 0.3 | 0.7 7.2
3| 0.6 | 04 1.0
4| 0.9 | 0.7 16.2 o0

Optimization by Random Guessing

J(e) = J(ev ez) =

Optimization Method #o:

Random Guessing

1. Pickarandom©

2. Evaluate J(0)

3. Repeat steps 1and 2 many
times

4. Return 6 that gives 0,
smallest J(0)

For Linear Regression:

* objective function is Mean

Squared Error (MSE)
* MSE =J(w,Db)

= (8, 6,) = v 2 (1 -0’
* contour plot: each line labeled with
MSE - lower means a better fit

* minimum corresponds to
parameters (w,b) = (8,, 6,) that
best fit some training dataset

1.0

0.8

0.6

0.4

0.2

0.0

0.000
1ls G 3
59 28}
] O
S
S
- Lf).
0.0 0j2 014 Oi6 0j8
0,
t e1 ez J(ev ez)
1] 0.2 | 0.2 10.4
2 | 0.3 | 0.7 7.2
3| 0.6 | 04 1.0
4 | 0.9 | 0.7 16.2

N

1 3 (yu) _ ngu))) 2

1.0

Counting Butterflies

y = h*(x)
A (unknown)
’
7)) h(x; 63))
£
9
| -
1Y)
c
S
S
Y
’
° s
* |
>/
>

X, # of mountains

69

Linear Regression in High Dimensions

* Inourdiscussions of linear regression, we
will always assume there is just one output,

y
* But ourinputs will usually have many

features:
X = [Xv er-- 7XN\]T
* For example:

— suppose we had a drone take pictures of
each section of forest

— each feature could correspond to a pixel in
this image such that x,,, = 1if the pixel is
orange and x,, = 0 otherwise

— the output y would be the number of
butterflies in each picture

Q: How would you obtain ground truth
data?

70

1.
2.

3.

Linear Regression by Rand. Guessing

Optimization Method #o:
Random Guessing

Pick a random ©
Evaluate J(0)

Repeat steps 1 and 2 many
times

4. Return 0 that gives

smallest J(0)

y=h*(x)
(unknown)
z/ .
Ppr<d
o i :
2
, [

For Linear Regression:

target function h*(x) is unknown
only have access to h*(x) through
training examples (x(),y()

want h(x;) that best
approximates h*(x)

enable generalization w/inductive
bias that restricts hypothesis class
to linear functions

Linear Regression by Rand. Guessing

J(0)=J(8,8,) = + 3 (s - 67x»))’
Optimization Method #o: ()=)= ¥ ;@)

Random Guessing v 0.000
1. Pickarandom 6
2. Evaluate J(0)]
3. Repeat steps 1and 2 many
times 0-61 : :

4. Return 6 that gives 0, |[¢

O

wn
016

00p

000'0¢
c7

0005t
ani

20.000
15

smallest J(0) 0.4 -

y = h*(x)
(unknown) |

S
h(x; 6@®) S
L/

h(X;EE)_)

h(x; 9(3))
- 0.0 ' : l
0.0 0.2 0.4 . 0.8 1.0
W) b 6,

o "-,l t 0, 0, J(6, 6,)
/ o 1| 0.2 | 0.2 10.4
Ooq;’ h(x; 9< 2 | 0.3 | 0.7 7.2
o 3| 06 | 04 1.0
X > 4 | 0.9 | 0.7 16.2

72

OPTIMIZATION METHOD #1:
GRADIENT DESCENT

Optimization for ML
Chalkboard

— Derivatives
— Gradient

ht?'t'ps://peakvi‘sor..com/adm/uzbekistan.html

https://peakvisor.com/adm/uzbekistan.html

by JeffP/

https://flic.kr/p/azSZZG
https://creativecommons.org/licenses/by/2.0/

\"- -

e — - .
Franconia Ridge day hike

T(A S

s — s — 1 — i W— s W— |
1000 FEET 0 1000m
.

[= mam mem s]
i Printed frora TOPO! @2000 Wildflower Productions {wrww.topo.corn)

5 /,\\\\

https://flic.kr/p/28UcuN2
https://creativecommons.org/licenses/by/2.0/

J(e) = J(ev ez)
1.0 .

0.8}

0.6 -

0.4

0.2

Gradients

Lo
0 2%

0
200
Q /
\ Y00 O
= A p
‘0 ,LQQ/
.0 0.2 0.4 0.6 0.8 1.0
O,

/79

Gradients

J(6)=J(6,6,)
x NI~~~
N K~
WY N O
0.8-\ - = -
o6l | R
-— - - - a
-— -—| - - == S s n w
- o \— - ~N S M A w0 w
04l « « « A D " R N N
PV N N NN
s K X XN NN X
Ve ///'/% NN \QQ RN
N D CoA s v
¥ QO/ Py / I' ‘¥ \ AN I N NN \00\/
A A s R R WA VR S N NN AT
o.o\</ 2RSS NN y(x N
0.0 0.2 0.4 0.6 0.8 1.0
O,

These are the gradients that
Gradient Ascent would follow.

Gradients

0 J(e) = J(ev ez)

0.8}

0.6

0.4

0.2

ey

I k \ T
0 2%

In this picture, each arrow is a 2D
vector consisting of two partial

derivatives. _
- 90J 9]

001
VJ(01,0:) =
0 aJ
| 90, 1)

The vector is evaluated at the
point [6,, 6,]" and plotted with its

0.400 origin there as well.

< 7

QO
1
A

pal

0.2 0.4 0.6 0.8 1.0
O,

These are the gradients that
Gradient Ascent would follow.

J(O) = J(61, 5
0

0.8 |
0.6
0.4}

0.2}

gatlve) Gradients

In this picture, each arrow is a 2D
vector consisting of two partial

0J

~ 90,

oJ

90,

point [6,, 6,]" and plotted with its

These are the negative gradients that
Gradient Descent would follow.

derivatives.
0.900 —VJ((91,92) =
The vector is evaluated at the
0.400 origin there as well.
.o\ 0.2 0.4 0.6 0.8 1.0
0,

lents

»,

v

>

gative) Grad

J(6,, 0

ST S

(Ne

N
N
- = - >

J(6)

AN N N S T
A O NN >

[~ S e 5 >

B
[~

A
A

A} Q/QQ A\
A
AN

N
X

A}
/
X

0.8

¥ ¥ A

¥~

y 4 #

A4\ \\ o/ L7 7X
AN , \\\\\

/ ~ A \\\\L\
N T LﬂV\\R

N e— . —
4@///4/4/

[//«/04/ N NN N

v : ///,/Hx\m
WL L UL\ G N V7 NN

/////10//

,///\A
LA N YA

= - - —

1.0 =
0.8

|
© %
o

83

1.0

0.6

0.4
Gradient Descent would follow.

These are the negative gradients that

0.2

(Negative) Gradient Paths
O,

J(6)=(8, 6,)
1.0

)
—

\\F—\\gl \\i

0.8

0.6

|
i
)
I
i

|
)
|
T
U

0.4

N
)
% ///

0.2

W
)

/

0,
Shown are the paths that Gradient Descent

would follow if it were making infinitesimally
small steps.

Gradient Descent

Chalkboard
— Gradient Descent Algorithm
— Details: starting point, stopping criterion, line
search

Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 0(0))

1:

2 6 — 09

3: while not converged do
4 00— YVeoJ(0O)

5 return 0

In order to apply GD to Linear
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

Gradient Descent

Algorithm 1 Gradient Descent

procedure GD(D, 0(0))
0 — 6

1:

2

3: while not converged do
4 00— YVeoJ(0O)

5)

return 6

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

Ve J(0)]]2 < €

Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.

GRADIENT DESCENT FOR
LINEAR REGRESSION

Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : ho(x) = 07,0 ¢ RM}

Linear Regression by Gradient Desc.

J(e) — J(G1, ez) — %i (y(i) _ng(z')))z

Optimization Method #1:
Gradient Descent

1.
2.

Pick arandom 6

Repeat:
a. Evaluate gradient VJ(0)
b. Step opposite gradient

Return O that gives
smallest J(0)

=1

. ///

S
061 o S
D
b S

20 000

-
N

0.00q

\

)
u
o
o
o

N
e

o
o
o

ann'C7

0.0
0.0 0

Q
6 o
(@}
<
0.2 7
2 0.4 0.6 0.
0

1

8

t e1 ez J(ev ez)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2

1.0

O1

Linear Regression by Gradient Desc.

Optimization Method #1:
Gradient Descent

1. Pick arandom 6
2. Repeat:

a. Evaluate gradient VJ(0)
b. Step opposite gradient

3. Return 6 that gives
smallest J(0)

y = h*(x)
A (unl;nown)
//
"
&
¢”‘/’
L
K
’, / t 0, 0, J(6, 6,)
/' “*-e 1 | 0.01 | 0.02 25.2
‘ 2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
% > 4 | 0.59 | 0.43 0.2

Linear Regression by Gradient Desc.

J(©)=J(8.,6 R RVt T ()Y)
Optimization Method #1: () =8, 6,) N;<y)

Gradient Descent +0 0.000
1. Pickarandom 6
2. Repeat: 08
a. Evaluate gradient VJ(0)
b. Step opposite gradient 064 | S o)
3. Return @ that gives 0, ? > < @ 23

smallest J(O) . Q
y = h*(x) 6 s
A (unl;nown) - u?
Ve
h(x; 6(4)) O
0.0 Y T T f
h(X; 9(3)) 0.0 0.2 0.4 0.6 0.8 1.0
0,
t| 6 | 6 | J6,6)
/l _ h(x; 6@) 1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
—_ h(x; 61) 3 | 0.51 | 0.30 1.5
X > 4 | 0.59 | 0.43 0.2

Linear Regression by Gradient Desc.

~ A
O
T
Y ©
T =
5 @
(g0)
(V)
S A
. . >
Iteration, t
y = h*(x)
A (unl;nown)
V4
h(x;e(4))
- h(x;e(S))
/ t 0, 0, _// J(6, 6,)
1% _ h(x 60) 1| 0.01]0.02[]| 25.
/ 2 | 0.30 | 0.12) 8.7
— h(x; 81) 3 | 0.51 | 0.30 1.5
X > 4059043\ 027

Linear Regression by Gradient Desc.

J(e) — J(e1, ez) = %i (y(i) _ ng(i)))z

-~ A
| -
O
o A
T R
Vo
5 &
q = A
cC
5 A
= A 0,
, , >
Iteration, t
y = h*(x)
N (unl;nown)
’
h(x; 6(4))
. h(x; 63))

K
} __ h(x; 8@)
/
o h(x; ()
>

i=1

(@]
o
(@)
wn
H

Uuo
20.000

1
=T

: ///

0.00q

\

)
u
o
o
o

N
e

o
o
o

ann'C7

0.0
0.0

O
2

Q
S
S
Q
0.

Q
<

0i4 Oi6
0

1

8

t e1 ez J(ev ez)
1 | 0.01 | 0.02 25.2
2 | 0.30 | 0.12 8.7
3 | 0.51 | 0.30 1.5
4 | 0.59 | 0.43 0.2

1.0

95

Optimization for Linear Regression

Chalkboard

— Computing the gradient for Linear Regression
— Gradient Descent for Linear Regression

Gradient Calculation for Linear Regression

Derivative of J(*)(8): Derivative of J(6):
d al : N
4 16)(g 9T %) _ /()2 d d
_1d =

(gT (¢) _ (i))2 N
2 dOy _ Z(OTx(z) (z))x(z)
= (87x®) — (z)) (gT (6 _ (@) i=1

— (QTX(Z') (z) (Zg at(z) pt)

— (67x) — y(a)xg)

Gradient of J(0) [used by Gradient Descent]
0] (S0 0]

d_(g) N (0T x(0) — 5 (0)zl

VQJ(O) _ df2 ' _ Zz—l(.) 2
L 10)] [(67xD — yD)af)

d
N . . .
= 3(67x — @)

GD for Linear Regression

Cradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

procedure GDLR(D, 9(0))

0 — 6 > Initialize parameters
while not converged do

1:
2
3
4: g =i, (07x(D) — y(0)x® > Compute gradient
5
6

00 —ng > Update parameters
return 6

