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Reminders

• Homework 3: KNN, Perceptron, Lin.Reg.
– Out: Fri, Feb. 3
– Due: Fri, Feb. 10 at 11:59pm 
– (only two grace/late days permitted)

• Exam conflicts form
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Q&A
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Q: I have a medical emergency or family emergency or disability or 
other compelling reason and am unable to attend office hours 
in-person this week. Can an exception be made so I can attend 
office hours remotely?

A: Yes. Please email the Education Associate(s) and request a 
period of remote office hours. We will reply with instructions on 
how to utilize them during the approved time period.



Q&A
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Q: How do we build Decision Trees with real-valued features?

A: Great question! I made a 7 minute video about that.

Q: Is there a more formal statement of the Perceptron Mistake 
Bound?

A: Great question! I’m going to make a 5 minute video about that 
and we’ll cover it in Recitation.

Q: How do we prove the Perceptron Mistake Bound?

A: Great question! I’m going to make a 10 minute video about that.



DECISION TREES WITH 
REAL-VALUED FEATURES
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Q&A
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Q: How do we learn a Decision Tree with real-
valued features?

A:



Q&A
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Q: How do we learn a Decision Tree with real-
valued features?

A: Make new discrete features out of the real-valued features and 
then learn the Decision Tree as normal! Here’s an example…



Perceptron Exercise
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Question:
Unlike Decision Trees and K-
Nearest Neighbors, the 
Perceptron algorithm does 
not suffer from overfitting 
because it does not have any 
hyperparameters that could 
be over-tuned on the training 
data.

A. True
B. False
C. True and False

Answer:
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PERCEPTRON MISTAKE BOUND
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Perceptron Mistake Bound
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Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin ! and all points lie inside 
a ball of radius " rooted at the origin, then the online 
Perceptron algorithm makes ≤ ⁄" ! ! mistakes
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��Def: We say that the (batch) perceptron algorithm has 
converged if it stops making mistakes on the training data 
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the 
perceptron algorithm cycles repeatedly through the data, 
it will converge in a finite # of steps.



Linear Separability
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Def: For a binary classification problem, a set of examples %
is linearly separable if there exists a linear decision boundary 
that can separate the points
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Geometric Margin
Definition: The margin of example & w.r.t. a linear separator ' is 
the distance from & to the plane ' ⋅ & = 0 (or the negative if on 
wrong side)

Slide from Nina Balcan
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Geometric Margin

Definition: The margin !# of a set of examples % w.r.t. a linear 
separator ' is the smallest margin over points & ∈ %.
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Slide from Nina Balcan

Definition: The margin of example & w.r.t. a linear separator ' is 
the distance from & to the plane ' ⋅ & = 0 (or the negative if on 
wrong side)
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Definition: The margin ! of a set of examples % is the maximum !#
over all linear separators '.

Geometric Margin

Slide from Nina Balcan

Definition: The margin !# of a set of examples % w.r.t. a linear 
separator ' is the smallest margin over points & ∈ %.

Definition: The margin of example & w.r.t. a linear separator ' is 
the distance from & to the plane ' ⋅ & = 0 (or the negative if on 
wrong side)
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Perceptron Mistake Bound
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Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin ! and all points lie inside 
a ball of radius " rooted at the origin, then the online 
Perceptron algorithm makes ≤ ⁄" ! ! mistakes
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Perceptron Mistake Bound
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Slide adapted from Nina Balcan

(Normalized margin: multiplying all points by 100, or dividing all points by 100, 
doesn’t change the number of mistakes! The algorithm is invariant to scaling.)

Guarantee: if some data has margin ! and all points lie inside 
a ball of radius " rooted at the origin, then the online 
Perceptron algorithm makes ≤ ⁄" ! ! mistakes
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��Def: We say that the (batch) perceptron algorithm has 
converged if it stops making mistakes on the training data 
(perfectly classifies the training data).

Main Takeaway: For linearly separable data, if the 
perceptron algorithm cycles repeatedly through the data, 
it will converge in a finite # of steps.



PROOF OF THE MISTAKE BOUND
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Analysis: Perceptron
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Figure from Nina Balcan

Perceptron Mistake Bound

++

+
+

+
+

+

-

-
-

-

-

g
g

-
-
-

-

+

R

��

Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(t(i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · t(i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2



Analysis: Perceptron
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Figure from Nina Balcan

Perceptron Mistake Bound
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Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(t(i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · t(i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Common 
Misunderstanding:

The radius is 
centered at the 

origin, not at the 
center of the 

points.



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:

We will show that there exist constants A and B s.t.

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k

Ak � ||�(k+1)|| � B
�

k



Analysis: Perceptron
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Theorem 0.1 (Block (1962), Novikoff (1962)).
Given dataset: D = {(t(i), y(i))}N

i=1.
Suppose:

1. Finite size inputs: ||x(i)|| � R
2. Linearly separable data: ��� s.t. ||��|| = 1 and

y(i)(�� · t(i)) � �, �i
Then: The number of mistakes made by the Perceptron
algorithm on this dataset is

k � (R/�)2

Algorithm 1 Perceptron Learning Algorithm (Online)

1: procedure PĊėĈĊĕęėĔē(D = {(t(1), y(1)), (t(2), y(2)), . . .})
2: � � 0, k = 1 � Initialize parameters
3: for i � {1, 2, . . .} do � For each example
4: if y(i)(�(k) · t(i)) � 0 then � If mistake
5: �(k+1) � �(k) + y(i)t(i) � Update parameters
6: k � k + 1
7: return �



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 1: for some A, Ak � ||�(k+1)|| � B

�
k

�(k+1) · �� = (�(k) + y(i)t(i))��

by Perceptron algorithm update

= �(k) · �� + y(i)(�� · t(i))

� �(k) · �� + �

by assumption

� �(k+1) · �� � k�

by induction on k since �(1) = 0

� ||�(k+1)|| � k�

since ||r|| � ||m|| � r · m and ||��|| = 1

Cauchy-Schwartz inequality



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 2: for some B, Ak � ||�(k+1)|| � B

�
k

||�(k+1)||2 = ||�(k) + y(i)t(i)||2

by Perceptron algorithm update

= ||�(k)||2 + (y(i))2||t(i)||2 + 2y(i)(�(k) · t(i))

� ||�(k)||2 + (y(i))2||t(i)||2

since kth mistake � y(i)(�(k) · t(i)) � 0

= ||�(k)||2 + R2

since (y(i))2||t(i)||2 = ||t(i)||2 = R2 by assumption and (y(i))2 = 1

� ||�(k+1)||2 � kR2

by induction on k since (�(1))2 = 0

� ||�(k+1)|| �
�

kR



Analysis: Perceptron
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Proof of Perceptron Mistake Bound:
Part 3: Combining the bounds finishes the proof.

k� � ||�(k+1)|| �
�

kR

�k � (R/�)2

The total number of mistakes 
must be less than this



Analysis: Perceptron
What if the data is not linearly separable?

1. Perceptron will not converge in this case (it can’t!)
2. However, Freund & Schapire (1999) show that by projecting the 

points (hypothetically) into a higher dimensional space, we can 
achieve a similar bound on the number of mistakes made on 
one pass through the sequence of examples

29

LARGE MARGIN CLASSIFICATION USING THE PERCEPTRON ALGORITHM 281

Similarly,

‖vk+1‖2 = ‖vk‖2 + 2yi (vk · xi ) + ‖xi‖2 ≤ ‖vk‖2 + R2.

Therefore, ‖vk+1‖2 ≤ kR2.
Combining, gives

√
kR ≥ ‖vk+1‖ ≥ vk+1 · u ≥ kγ

which implies k ≤ (R/γ )2 proving the theorem. !

3.2. Analysis for the inseparable case

If the data are not linearly separable then the Theorem 1 cannot be used directly. However,
we now give a generalized version of the theorem which allows for some mistakes in the
training set. As far as we know, this theorem is new, although the proof technique is very
similar to that of Klasner and Simon (1995, Theorem 2.2). See also the recent work of
Shawe-Taylor and Cristianini (1998) who used this technique to derive generalization error
bounds for any large margin classifier.

Theorem2. Let 〈(x1, y1), . . . , (xm, ym)〉bea sequenceof labeled exampleswith‖xi‖ ≤ R.
Let u be any vector with ‖u‖ = 1 and let γ > 0. Define the deviation of each example as

di = max{0, γ − yi (u · xi )},

and define D =
√∑m

i=1 d
2
i . Then the number of mistakes of the online perceptron algorithm

on this sequence is bounded by

(
R + D

γ

)2
.

Proof: The case D = 0 follows from Theorem 1, so we can assume that D > 0.
The proof is based on a reduction of the inseparable case to a separable case in a higher

dimensional space. As we will see, the reduction does not change the algorithm.
We extend the instance space Rn to Rn+m by adding m new dimensions, one for each

example. Let x′
i ∈ Rn+m denote the extension of the instance xi .We set the first n coordinates

of x′
i equal to xi . We set the (n + i)’th coordinate to " where " is a positive real constant

whose value will be specified later. The rest of the coordinates of x′
i are set to zero.

Next we extend the comparison vector u ∈ Rn to u′ ∈ Rn+m . We use the constant Z ,
whichwe calculate shortly, to ensure that the length ofu′ is one.We set the first n coordinates
of u′ equal to u/Z . We set the (n+ i)’th coordinate to (yidi )/(Z"). It is easy to check that
the appropriate normalization is Z =

√
1+ D2/"2.



Summary: Perceptron
• Perceptron is a linear classifier
• Simple learning algorithm: when a mistake is 

made, add / subtract the features
• Perceptron will converge if the data are linearly 

separable, it will not converge if the data are 
linearly inseparable

• For linearly separable and inseparable data, we 
can bound the number of mistakes (geometric 
argument)

• Extensions support nonlinear separators and 
structured prediction
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Perceptron Learning Objectives
You should be able to…
• Explain the difference between online learning and 

batch learning
• Implement the perceptron algorithm for binary 

classification [CIML]
• Determine whether the perceptron algorithm will 

converge based on properties of the dataset, and 
the limitations of the convergence guarantees

• Describe the inductive bias of perceptron and the 
limitations of linear models

• Draw the decision boundary of a linear model
• Identify whether a dataset is linearly separable or not
• Defend the use of a bias term in perceptron

31



REGRESSION
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Regression
Goal:
– Given a training dataset of 

pairs (x,y) where
• x is a vector
• y is a scalar

– Learn a function (aka. curve 
or line) y’ = h(x) that best fits 
the training data

Example Applications:
– Stock price prediction
– Forecasting epidemics
– Speech synthesis
– Generation of images (e.g. 

Deep Dream)

33

Week 49 (December 5) forecast, using wILI data through week 47. During the week of
the first forecast, all of the available wILI values are below the CDC onset threshold, as shown
in Fig 2A. Predictions for the onset are concentrated near the actual value, and the error in the
point prediction is fairly small (1.58 weeks). Much of this error can be attributed to the sudden
jump in wILI at the onset, which corresponds to Thanksgiving week. The number of patients
seen per reporting provider in ILINet drops noticeably every season on Thanksgiving week and
around winter holidays; at these times, there is a systematic bias towards higher wILI values.

In the 2013–2014 season, the number of total visits dropped from 869362 on the week
before Thanksgiving to 661282 on Thanksgiving week, and from 808701 on week 51 to 607611
on week 52. The number of ILI visits also dropped slightly on Thanksgiving week (from 14995
to 13909, not as significant as the drop in total visits), then increased continuously until it

Fig 2. 2013–2014 national forecast, retrospectively, using the final revisions of wILI values, using
revised wILI data through epidemiological weeks (A) 47, (B) 51, (C) 1, and (D) 7.

doi:10.1371/journal.pcbi.1004382.g002

Flexible Modeling of Epidemics with an Empirical Bayes Framework

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004382 August 28, 2015 8 / 18



Regression
Q: What is the function that 
best fits these points?

35

x

y Example: Dataset with only 
one feature x and one scalar 
output y



K-NEAREST NEIGHBOR 
REGRESSION
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k-NN Regression

Algorithm 2: k=2 Nearest 
Neighbors Distance Weighted 
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest 

two instances x(n1) and x(n2)

in training data and return 
the weighted average of 
their y values

Algorithm 1: k=1 Nearest 
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x 

in training data and return 
its y

38

x

y Example: Dataset with only 
one feature x and one scalar 
output y



k-NN Regression

Algorithm 2: k=2 Nearest 
Neighbors Distance Weighted 
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest 

two instances x(n1) and x(n2)

in training data and return 
the weighted average of 
their y values

Algorithm 1: k=1 Nearest 
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x 

in training data and return 
its y

39

x

y Example: Dataset with only 
one feature x and one scalar 
output y

Algorithm 1: drawing 
the function is left as 
an exercise



k-NN Regression

Algorithm 2: k=2 Nearest 
Neighbors Distance Weighted 
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest 

two instances x(n1) and x(n2)

in training data and return 
the weighted average of 
their y values

Algorithm 1: k=1 Nearest 
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x 

in training data and return 
its y

40

x

y Example: Dataset with only 
one feature x and one scalar 
output y

x(n1) x(n2)x’

y (n1)

y (n2)
y’

Algorithm 2



DECISION TREE REGRESSION
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Decision Tree Regression
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B

A A

0 1

0 1 0 1

+ -

+

C C

0 1 0 1

+ - +

B

A A

0 1

0 1 0 1

75 21

56

C C

0 1 0 1

32 10 60

Decision Tree for Classification Decision Tree for Regression



Decision Tree Regression
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Dataset for Regression Decision Tree for Regression

Y A B C

4 1 0 0

1 1 0 1

3 1 0 o

7 0 0 1

5 1 1 0

6 0 1 1

8 1 1 0

9 1 1 1

B

A A

0 1

0 1 0 1

C

0 1

{4,1,3,7} {5,6,8,9}

{5,8,9}

{4,1,3,7,5,6,8,9}

{7} {4,1,3} {6}

{5,8} {9}

During learning, choose the attribute that 
minimizes an appropriate splitting 
criterion (e.g. mean squared error, mean 
absolute error)

7 2.7 6

6.5 9



LINEAR FUNCTIONS, RESIDUALS, 
AND MEAN SQUARED ERROR
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Linear Functions

Def: Regression is predicting real-valued outputs

! = # ! , % !
!"#
$

with # ! ∈ ℝ% , % ! ∈ ℝ

45

Common Misunderstanding:
Linear functions ≠ Linear decision boundaries

% = '" + )%

"



Linear Functions

Def: Regression is predicting real-valued outputs

! = # ! , % !
!"#
$

with # ! ∈ ℝ% , % ! ∈ ℝ

46

Common Misunderstanding:
Linear functions ≠ Linear decision boundaries

%

"!

""

% = '!"! + '""" + )

• A general linear function is 
% = *%+ + )

• A general linear decision boundary is 
% = sign *%+ + )



Regression Problems

Chalkboard
– Residuals

– Mean squared error

47



OPTIMIZATION FOR ML
The Big Picture

48



Unconstrained Optimization

• Def: In unconstrained optimization, we try 
minimize (or maximize) a function with no 
constraints on the inputs to the function

Given a function

Our goal is to find

49

For ML, these are 
the parameters

For ML, this is the 
objective function



Optimization for ML

Not quite the same setting as other fields…
– Function we are optimizing might not be the 

true goal 

(e.g. likelihood vs generalization error)

– Precision might not matter 

(e.g. data is noisy, so optimal up to 1e-16 might 

not help)

– Stopping early can help generalization error

(i.e. “early stopping” is a technique for 

regularization – discussed more next time)

50



min vs. argmin

51

y = f(x) =x2 + 1
1

2

3
v* = minx f(x)

x* = argminx f(x)

1. Question: What is v*?

2. Question: What is x*?



min vs. argmin

52

y = f(x) =x2 + 1
1

2

3
v* = minx f(x)

x* = argminx f(x)

1. Question: What is v*?

2. Question: What is x*?

v* = 1, the minimum value of the function

x* = 0, the argument that yields the minimum value



OPTIMIZATION METHOD #0:
RANDOM GUESSING
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Notation Trick: 
Folding in the Intercept Term

54

Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one!

This convenience trick allows us to more compactly talk 
about linear functions as a simple dot product (without 

explicitly writing out the intercept term every time).

Notation Trick: 
Folding in the Intercept Term

55

Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one!

This convenience trick allows us to more compactly talk 
about linear functions as a simple dot product (without 

explicitly writing out the intercept term every time).



Linear Regression as Function 
Approximation
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Contour Plots
Contour Plots
1. Each level curve labeled 

with value 
2. Value label indicates the 

value of the function for 
all points lying on that 
level curve

3. Just like a topographical 
map, but for a function

59

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2



Optimization by Random Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)

60

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

t
1
2
3
4



Optimization by Random Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)

61

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

t
1
2
3
4

For Linear Regression:
• objective function is Mean 

Squared Error (MSE)
• MSE = J(w, b) 

= J(θ1, θ2) =
• contour plot: each line labeled with 

MSE – lower means a better fit
• minimum corresponds to 

parameters (w,b) = (θ1, θ2) that 
best fit some training dataset



Linear Regression:
Running Example
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Counting Butterflies

69

x, # of mountains

y,
 #

 o
f m

on
ar

ch
s

y = h*(x)
(unknown)

h(x; θ(3))



Linear Regression in High Dimensions
• In our discussions of linear regression, we 

will always assume there is just one output, 
y

• But our inputs will usually have many 
features:

x = [x1, x2,…,xM]T
• For example:

– suppose we had a drone take pictures of 
each section of forest

– each feature could correspond to a pixel in 
this image such that xm = 1 if the pixel is 
orange and xm = 0 otherwise

– the output y would be the number of 
butterflies in each picture

70

Q: How would you obtain ground truth 
data?



Linear Regression by Rand. Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)

71
x

y

y = h*(x)
(unknown)

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

For Linear Regression:
• target function h*(x) is unknown
• only have access to h*(x) through 

training examples (x(i),y(i))
• want h(x; θ(t)) that best 

approximates h*(x)
• enable generalization w/inductive 

bias that restricts hypothesis class 
to linear functions



Linear Regression by Rand. Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)

72

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

x

y



OPTIMIZATION METHOD #1:
GRADIENT DESCENT
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Optimization for ML

Chalkboard
– Derivatives

– Gradient

74



Topographical Maps
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https://peakvisor.com/adm/uzbekistan.html

https://peakvisor.com/adm/uzbekistan.html
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Topographical Maps

Franconia Ridge by Jeff P / CC BY

https://flic.kr/p/azSZZG
https://creativecommons.org/licenses/by/2.0/
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Topographical Maps

Franconia Ridge Trail  by Roy Luck / CC BY

https://flic.kr/p/28UcuN2
https://creativecommons.org/licenses/by/2.0/


Gradients
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θ1

θ2

J(θ) = J(θ1, θ2) 



Gradients
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These are the gradients that 

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 



Gradients
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These are the gradients that 

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 

In this picture, each arrow is a 2D 
vector consisting of two partial 
derivatives. 

The vector is evaluated at the 
point [θ1, θ2]T and plotted with its 
origin there as well.

∇J(θ1, θ2) =





∂J

∂θ1

∂J

∂θ2







(Negative) Gradients
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These are the negative gradients that 

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 

In this picture, each arrow is a 2D 
vector consisting of two partial 
derivatives. 

The vector is evaluated at the 
point [θ1, θ2]T and plotted with its 
origin there as well.

−∇J(θ1, θ2) =





−
∂J

∂θ1

−
∂J

∂θ2







(Negative) Gradients
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These are the negative gradients that 

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 



(Negative) Gradient Paths
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Shown are the paths that Gradient Descent 
would follow if it were making infinitesimally 

small steps.

θ1

θ2

J(θ) = J(θ1, θ2) 



Gradient Descent

Chalkboard
– Gradient Descent Algorithm

– Details: starting point, stopping criterion, line 

search
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

In order to apply GD to Linear 
Regression all we need is the 
gradient of the objective 
function (i.e. vector of partial 
derivatives). 

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

—

M



Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.  
For example, we could check whether the L2 norm of 
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the 
objective function from one iteration to the next is small.

—



GRADIENT DESCENT FOR
LINEAR REGRESSION
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Linear Regression as Function 
Approximation
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Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2

t
1
2
3
4

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2
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Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
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Linear Regression by Gradient Desc.
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Linear Regression by Gradient Desc.
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Optimization for Linear Regression

Chalkboard
– Computing the gradient for Linear Regression

– Gradient Descent for Linear Regression
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Gradient Calculation for Linear Regression
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Gradient of J(θ)

∇θJ(θ) =











d

dθ1
J(θ)

d

dθ2
J(θ)
...

d

dθM
J(θ)











=













∑N

i=1(θ
T x(i) − y(i))x(i)

1
∑N

i=1(θ
T x(i) − y(i))x(i)

2
...

∑N

i=1(θ
T x(i) − y(i))x(i)

M













=
N
∑

i=1

(θT x(i)
− y(i))x(i)

[used by Gradient Descent]



GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes 
steps opposite the gradient of the objective function
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Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓  ✓(0) . Initialize parameters
3: while not converged do
4: ; 

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓  ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg="></latexit>


