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Q&A

Q: Could we just get rid of that pesky step size
hyperparameter y() in gradient descent?

A: NO!

In order to prove that gradient descent
converges to a local minimum of a function,

we need to assume gamma is properly
defined.



Q&A

How can | get more one-on-one interaction with the
course staff?

Attend office hours as soon after the homework release

as possible!
OH Traffic for HW2
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Q&A

Q: Can | email, tweeter, instasnap, or facetok
my favorite TA directly about the course?

A:

No. All course communication should be
directed through one of the following
channels:

Piazza (public post)

Piazza (private instructor post)
Email to EAs

Email to Matt (delays likely)
In-person communication at OHs


mailto:eas-10-601@cs.cmu.edu

Q&A

Q: | just asked a question in OH and now my
TA is crying quietly -- what did | do wrong?

A You’ve just committed the worst of crimes: asking a
question that was directly answered in a recitation.

The TA you asked spent hours carefully writing
careful recitation notes and solutions, practicing
their recitation, responding to criticism [ changes
from me, etc.

To increase OH efficiency, please review the HW
recitation before asking HW questions in OHs.



Reminders

 Practice Problems 1
— released on course website

 Exam 1: Thu, Feb. 16
— Time: 6:30 - 8:30pm

— Location: Your room/seat assignment will be
announced on Piazza




EXAM 1 LOGISTICS



Exam 1

* Time /Location
— Time: Thu, Feb 16, at 6:30pm - 8:30pm
— Location & Seats: You have all been split across multiple rooms.
Everyone has an assigned seat in one of these room.
— Please watch Piazza carefully for announcements.
* Logistics
— Covered material: Lecture 1 — Lecture 7

— Format of questions:
* Multiple choice
* True/ False (with justification)
* Derivations
* Short answers
* Interpreting figures
* Implementing algorithms on paper

— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and
back)



Exam 1

* How to Prepare

— Attend the midterm review lecture
(right now!)

— Review exam practice problems
— Review this year’s homework problems

— Consider whether you have achieved the
“learning objectives” for each lecture [ section

— Write your one-page cheat sheet (back and
front)



Exam 1

* Advice (for during the exam)

— Solve the easy problems first
(e.g. multiple choice before derivations)

* if a problem seems extremely complicated you’re likely
missing something
— Don’t leave any answer blank!
— If you make an assumption, write it down

— If you look at a question and don’t know the
danswer:
* we probably haven’t told you the answer
* but we’ve told you enough to work it out
* imagine arguing for some answer and see if you like it



Topics for Exam 1

e Foundations

— Probability, Linear
Algebra, Geometry,
Calculus

— Optimization

* Important Concepts
— Overfitting
— Experimental Design

e (lassification
— Decision Tree
— KNN
— Perceptron

* Regression
— KNN Regression

— Decision Tree
Regression

— Linear Regression
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SAMPLE QUESTIONS



Sample Questions

5.2 Constructing decision trees

Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the
factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we
have the training examples described in the Table 5.2.

Snowstorm Holiday Wegkend Closed
T T F

Mg m s m A
SRS SRS R R
HHam-mg S

C:'ﬂ’ﬂ'ﬂ'ﬂ’ﬂ'ﬂ'ﬂﬂj

Table 1: Training examples for decision tree

Q1

e |2 points| What would be the effect of the Weekend attribute on the decision tree if it were made the root? Explain
in terms of iformatom gAY wohys A

e [8 points| If we cannot make Weekend the root node, which attribute should be made the root node of the decision
tree? Explain your reasoning and show your calculations. (You may use log, 0.75 = —0.4 and log, 0.25 = —2)
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Sample Questions <

- \

Q2 _ ~howic (-l
4.1 True or False ‘b\” Ne @

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets D®) and D® where DO = {(z\", y{"), .., @, vi")}
and D@ = {(z? 4, . (@, y)} such that 2" € R%, 2/* € R%. Suppose d; > ds
and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D™ than on dataset D®.
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ample Questions

Obsevad data
Ingar regression prediction

Observed data Obseved data Obseved data
Linear mgression prediction Inear regression prediction
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Sample Questions

Obsevad data
Linear rogression prdiction

Observed data Obseved data Obseved data
Inear regression prediction Linear regression prediction




Sample Questions

Obsevad data
Linear rogression prdiction

Observed data Obseved data Obseved data
Inear regression prediction Linear regression prediction




Q&A



CONVEXITY



Convexity

Function f : RM — Ris convex
ifV x; € RM,XQ c RM,O <t< 1

Fltxa + (1 - t)x2) < tf(x1) + (1= 1) f(x0)

—

A

tf(wy) + (1 —1)f(22)

f(tiBl -+ (1 — t)xz)
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Convexity

Suppose we have a function f(x) : X — ).
e The value z* is a global minimum of f iff f(z*) < f(x),Vx € X.

e The value z* is a local minimum of f iff de s.t. f(z*) < f(z),Vx € [x* — €, 2™ + €].

Convex Function Nonconvex Function
A

> . . —
%\ %z x’ -
e Eachlocal minimumi s a * A nonconvex function is not
global minimum | convex

 Each local minimum is not
necessarily a global minimum



Convexity

Function f : RM — R is convex
ifVx e R xo e RM 0<¢t<1:

flx1+ (1 —t)xo) <tf(x1) + (1 —1)f(x2)

tf(z1) + (1 —t)f(x2)

Sz + (1 —t)z2) ey

Function f : RM — Ris strictly donvex
ifVXleRM,XQERM,OSt :

f(tXl + (1 — t)Xg) < tf(Xl) + (1 — t)f(Xg)

A

tf(z1) + (1= 1) f(z2)

|
f(txl + (1 — t)xz) "*'4 ............... :
|

Each local
minimum of a
convex function is
also a global
minimum.

A strictly convex
function has a
unique global

minimum.
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CONVEXITY AND LINEAR
REGRESSION



Convexity and Linear Regression

The Mean Squared Error function,
which we minimize for learning
the parameters of Linear
Regression, is convex!

...but in the general case it is not
strictly convex.




Gradient Descent & Convexity

e Gradient

 |fthe functionis

 |fthe functionis

descentis a
local
optimization
algorithm

nonconvex, it ‘“

\\\ o
e S \\\:\M«
necessanl a “/O‘““' ‘// I\\
global minimum 7 ‘

convex, it will
find a global
minimum

"«




Regression Loss Functions
(>
In-Class Exercise: _, y)ﬁTy—m—‘W‘“ $y.L Jl dog

\/Gﬁ (9,9 Iy |——>
Which of the followzrijg (6.1 y 1%2%% ,\\1 ("L @

could be used as loss

functions for trammgu 1D\ 204,y

da linear regression
model? \J ) —y)? if |§ —y| <6
G (9:9) (5| —y| — 36* otherwise

Select all that apply. L/e(y, — log(cosh(§ — y))

G. %1\1\ S"&/“D




OPTIMIZATION METHOD #2:
CLOSED FORM SOLUTION



Calculus and Optimization

In-Class Exercise Answer Here:
Plot three functions:




Optimization: Closed form solutions

Chalkboard

— Zero Derivatives
— Example: 1-D function
— Example: higher dimensions



CLOSED FORM SOLUTION FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {he : ho(x) = 07,0 ¢ RM}




Linear Regression: Closed Form

J(@)=J(6,06 :lz Y _ gTx(®))
Optimization Method #2: (1.0) (8 8:)= 5 i:1< )
Closed Form 0.000
1. Evaluate -
BMLE — (XTx)—ley
2. Return QMLE 061 o S 5 B; N
o |+ 33
0.4 O
y = h*(x) S
A (unl;nown) - 5
/
h(x; O(MLE))
0.0 Y T T f
0.0 0.2 0.4 0.6 0.8 1.0
> 91
t e1 eZ J(e17 eZ)
/ MLE | 0.59 | 0.43 0.2
/




Background: Linear Algebra

Definition: the identity matrix I is a diagonal matrix with 1’s on the diagonal
and o0’s everywhere else.
Example of 2xZ identity matrix:

1 0 0
1=[010] TA=A

0 0 1

Definition: the inverse of a matrix 4 is A~! when
ATtA =441 =1
— The inverse of a matrix does not always exist.

There is no division of matrices, but we can...
— pre-multiply by an inverse:
AC =B
= A 1(AC) = A7'B
= C=A"'B
— post-multiply by an inverse
AC =B
= (Ac)ct=Bc™!
= A=BC™!



Optimization for Linear Regression

Chalkboard

— Closed-form (Normal Equations)



COMPUTATIONAL COMPLEXITY



Computational Complexity of OLS

To solve the Ordinary Least Squares The resulting shape of the matrices:
problem we compute:
N
5 1 . : T —1 T
0 = argmin = N E §(y(z) — (07x(V)))? ( |X | ?_(l ) ( |X | E )
6 i—1 MXxN NxM MxN Nx1
L 11 |
= (XTX)1(xX*Y) M x M M x 1

Background: Matrix Multiplication Given matrices A and B
e If Aisqg x rand Bisr x s, computing AB takes O(qrs)
o If A and B are ¢ x ¢, computing AB takes O(q¢*3"3)
o If Aisq x g, computing A~ takes O(q¢*373).

Computational Complexity of OLS:

XTX O(M?2N) , ,
( )1 O(M?373) Linear in # of examples, N

MN) Polynomial in # of features, M




Gradient Descent

Cases to consider gradient descent:

1.

What if we can not find a closed-form
solution?

. What if we can, but it’s inefficient to

compute?

. What if we can, but it’s numerically

unstable to compute?



Mean Squared Error (Train)

Empirical Convergence

Log-log scale plot * Def:anepochisa
single pass through

the training data
Gradient Descent

1. For GD, only one
update per epoch

2. For SGD, N updates
per epoch
N = (# train examples)

e SGD reduces MSE
much more rapidly
than GD

— * For GD /SGD, training

Closed-form
(normal eq.s)

> MSE is initially large
Epochs due to uninformed
initialization



LINEAR REGRESSION: SOLUTION
UNIQUENESS



Linear Regression: Uniqueness

Question:

Consider a 1D linear
regression model
trained to minimize
MSE.

How many
solutions (i.e. sets
of parameters w,b)
are there for the
given dataset?

Y a

Two Points (Case 1)




Linear Regression: Uniqueness

Question:

Consider a 1D linear
regression model
trained to minimize
MSE.

Y a One Point

How many
solutions (i.e. sets
of parameters w,b)

are there for the
given dataset?



Linear Regression: Uniqueness

Question:

Consider a 1D linear
regression model

y4  Two Points (Case 2)

trained to minimize ¢
MSE.
How many ¢

solutions (i.e. sets
of parameters w,b)

are there for the , §
given dataset? Answer: Qf: srip

A:0 B:1 C2 Di+eo




Linear Regression: Uniqueness

Question:

Consider a 1D linear
regression model
trained to minimize
MSE.

y4  Two Points (Case 2)

T~
/

How many
solutions (i.e. sets
of parameters w,b)

are there for the >

given dataset? Answer:
A:0 B:1 (C2 @




Linear Regression: Uniqueness

Question:
° Consider a °D Y A POintS ona Line

linear regression
model trained to
minimize MSE

* How many
solutions (i.e.
sets of
parameters w,,

w,, b) are there x
for the given

dataset? X,




Linear Regression: Uniqueness

Question:
° ConS|der a2D Y A POintS ona Line

linear regression
model trained to
minimize MSE

* How many
solutions (i.e.
sets of
parameters w.,
w,, b) are there
for the given
dataset?
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Linear Regression: Uniqueness

Question:
° Consider a2D Y4 Points on alLine

linear regression
model trained to
minimize MSE

* How many
solutions (i.e.
sets of
parameters w,,
w,, b) are there
for the given

dataset? X,
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Linear Regression: Uniqueness

To solve the Ordinary Least Squares

problem we compute:

N o

A 1 . .
0 — in = — “ (@ — (9T x(D))2
argmin = ; S = (07x))

= (XTX)"'(X*Y)

These geometric intuitions align with the linear
algebraic intuitions we can derive from the
normal equations.

1. If (X* X)is invertible, then there is exactly one
solution.

2. If (X*X)is not invertible, then there are either
no solutions or infinitely many solutions.



Linear Regression: Uniqueness

To solve the Ordinary Least Squares
problem we compute:

1 N

; 1, . .
6 = argmin = N Z §(y(z) _ (ng(z))>2

0

= (XTX)

1=1
—1 (XTY)

These geometric intuitions align with the linear
algebraic intuitions we can derive from the

normal equations.

1. If(X*X)is invertible, then there is exactly one

solutlon

2. If(XTX)is no§/j

no solutions or inf

Invertability of (X'X) is
equivalent to X being full rank.
That is, there is no feature that

is a linear combination of the
other features.
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Solving Linear Regression

Question:  ()S: sty

True or False: If Mean Squared Error (i.e. & Y200, (y® — h(x())?)
has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e.

N 27{\;1 () — h(x(")|) must also have a unique minimizer.

Answer:



Linear Regression Objectives

You should be able to...

Design k-NN Regression and Decision Tree
Regression

mplement learning for Linear Regression using three
optimization techniques: (1) closed form, (2) gradient
descent, (3) stochastic gradient descent

Choose a Linear Regression optimization technique
that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
VS. convergence speed

|dentify situations where least squares regression
has exactly one solution or infinitely many solutions




