10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Linear Regression

 +
Optimization for ML

Matt Gormley
Lecture 8
Feb. 13, 2023

Q\&A

Q: Could we just get rid of that pesky step size hyperparameter $\gamma^{(t)}$ in gradient descent?

A: No!

In order to prove that gradient descent converges to a local minimum of a function, we need to assume gamma is properly defined.

Q\&A

Q: How can I get more one-on-one interaction with the course staff?

A: Attend office hours as soon after the homework release as possible!

Q\&A

Q: Can I email, tweeter, instasnap, or facetok my favorite TA directly about the course?

A: No. All course communication should be directed through one of the following channels:

- Piazza (public post)
- Piazza (private instructor post)
- Email to EAs eas-10-601@cs.cmu.edu
- Email to Matt (delays likely)
- In-person communication at OHs

Q\&A

Q: I just asked a question in OH and now my TA is crying quietly -- what did I do wrong?

A: You've just committed the worst of crimes: asking a question that was directly answered in a recitation.

The TA you asked spent hours carefully writing careful recitation notes and solutions, practicing their recitation, responding to criticism / changes from me, etc.

To increase OH efficiency, please review the HW recitation before asking HW questions in OHs.

Reminders

- Practice Problems 1
- released on course website
- Exam 1: Thu, Feb. 16
- Time: 6:30-8:30pm
- Location: Your room/seat assignment will be announced on Piazza

EXAM 1 LOGISTICS

Exam 1

- Time / Location
- Time: Thu, Feb 16, at 6:30pm - 8:30pm
- Location \& Seats: You have all been split across multiple rooms. Everyone has an assigned seat in one of these room.
- Please watch Piazza carefully for announcements.
- Logistics
- Covered material: Lecture 1 - Lecture 7
- Format of questions:
- Multiple choice
- True / False (with justification)
- Derivations
- Short answers
- Interpreting figures
- Implementing algorithms on paper
- No electronic devices
- You are allowed to bring one $81 / 2 \times 11$ sheet of notes (front and back)

Exam 1

- How to Prepare
- Attend the midterm review lecture (right now!)
- Review exam practice problems
- Review this year's homework problems
- Consider whether you have achieved the "learning objectives" for each lecture / section
- Write your one-page cheat sheet (back and front)

Exam 1

- Advice (for during the exam)
- Solve the easy problems first (e.g. multiple choice before derivations)
- if a problem seems extremely complicated you're likely missing something
- Don't leave any answer blank!
- If you make an assumption, write it down
- If you look at a question and don't know the answer:
- we probably haven't told you the answer
- but we've told you enough to work it out
- imagine arguing for some answer and see if you like it

Topics for Exam 1

- Foundations
- Probability, Linear

Algebra, Geometry,
Calculus

- Optimization
- Important Concepts
- Overfitting
- Experimental Design
- Classification
- Decision Tree
- KNN
- Perceptron
- Regression
- KNN Regression
- Decision Tree Regression
- Linear Regression

SAMPLE QUESTIONS

Sample Questions

5.2 Constructing decision trees

Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we have the training examples described in the Table 5.2.

Snowstorm	Holiday	Weelend	Closed
T	T	F	F
T	T	F	T
F	T	F	F
T	T	F	F
F	F	F	F
F	F	F	T
T	F	F	T
F	F	F	T

- [2 points] What would be the effect of the Weekend attribute on the decision tree if it were made the root? Explain in terms of infonmation gain. nutual information
- [8 points] If we cannot make Weekend the root node, which attribute should be made the root node of the decision tree? Explain your reasoning and show your calculations. (You may use $\log _{2} 0.75=-0.4$ and $\log _{2} 0.25=-2$)

Sample Questions

$4 \quad \mathrm{~K}-\mathrm{NN}$ [12 pts]

Now we will apply K-Nearest Neighbors using Euclidean distance to a binary classification task. We assign the class of the test point to be the class of the majority of the k nearest neighbors.

3. [2 pts] What is the N -fold cross-validation error for the dataset shown in Figure 5? Assume k=1.

Sample Questions

4.1 True or False

Answer each of the following questions with \mathbf{T} or \mathbf{F} and provide a one line justification.
(a) $\left[2\right.$ pts.] Consider two datasets $D^{(1)}$ and $D^{(2)}$ where $D^{(1)}=\left\{\left(x_{1}^{(1)}, y_{1}^{(1)}\right), \ldots,\left(x_{n}^{(1)}, y_{n}^{(1)}\right)\right\}$ and $D^{(2)}=\left\{\left(x_{1}^{(2)}, y_{1}^{(2)}\right), \ldots,\left(x_{m}^{(2)}, y_{m}^{(2)}\right)\right\}$ such that $x_{i}^{(1)} \in \mathbb{R}^{d_{1}}, x_{i}^{(2)} \in \mathbb{R}^{d_{2}}$. Suppose $d_{1}>d_{2}$ and $n>m$. Then the maximum number of mistakes a perceptron algorithm will make is higher on dataset $D^{(1)}$ than on dataset $D^{(2)}$.

Sample Questions

3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets $S^{\text {new }}$ plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

Dataset	(a)	(b)	(c)	(d)	(e)
Regression line					

Figure 1: An observed data set and its associated regression line.

Dataset

Suew

(a) Adding one outlier to the original data set.

Figure 2: New regression lines for altered data sets $S^{\text {new }}$.

Sample Questions

3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets $S^{\text {new }}$ plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

Dataset	(a)	(b)	(c)	(d)	(e)
Regression line					

Figure 1: An observed data set and its associated regression line.

Dataset

(c) Adding three outliers to the original data set. Two on one side and one on the other side.

Figure 2: New regression lines for altered data sets $S^{\text {new }}$.

Sample Questions

3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets $S^{\text {new }}$ plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

Dataset	(a)	(b)	(c)	(d)	(e)
Regression line					

Figure 1: An observed data set and its associated regression line.

Dataset

(d) Duplicating the original data set.

Figure 2: New regression lines for altered data sets $S^{\text {new }}$.

Sample Questions

3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets $S^{\text {new }}$ plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

Dataset	(a)	(b)	(c)	(d)	(e)
Regression line					

Figure 1: An observed data set and its associated regression line.

Dataset

(e) Duplicating the original data set and adding four points that lie on the trajectory of the original regression line.

Figure 2: New regression lines for altered data sets $S^{\text {new }}$.

Q\&A

CONVEXITY

Convexity

Function $f: \mathbb{R}^{M} \rightarrow \mathbb{R}$ is convex
if $\forall \mathbf{x}_{1} \in \mathbb{R}^{M}, \mathbf{x}_{2} \in \mathbb{R}^{M}, 0 \leq \underline{t} \leq 1$:
$f\left(t \mathbf{x}_{1}+(1-t) \mathbf{x}_{2}\right) \leq t f\left(\mathbf{x}_{1}\right)+(1-t) f\left(\mathbf{x}_{2}\right)$

Convexity

Suppose we have a function $f(x): \mathcal{X} \rightarrow \mathcal{Y}$.

- The value x^{*} is a global minimum of f iff $f\left(x^{*}\right) \leq f(x), \forall x \in \mathcal{X}$.
- The value x^{*} is a local minimum of f iff $\exists \epsilon$ s.t. $f\left(x^{*}\right) \leq f(x), \forall x \in\left[x^{*}-\epsilon, x^{*}+\epsilon\right]$.

Convex Function

- Each local minimum is a global minimum

Nonconvex Function

- A nonconvex function is not convex
- Each local minimum is not necessarily a global minimum

Convexity

Function $f: \mathbb{R}^{M} \rightarrow \mathbb{R}$ is convex
if $\forall \mathbf{x}_{1} \in \mathbb{R}^{M}, \mathbf{x}_{2} \in \mathbb{R}^{M}, 0 \leq t \leq 1$:

$$
f\left(t \mathbf{x}_{1}+(1-t) \mathbf{x}_{2}\right) \leq t f\left(\mathbf{x}_{1}\right)+(1-t) f\left(\mathbf{x}_{2}\right)
$$

 minimum of a convex function is also a global minimum.

A strictly convex
 function has a unique global minimum.

CONVEXITY AND LINEAR REGRESSION

Convexity and Linear Regression

The Mean Squared Error function, which we minimize for learning the parameters of Linear Regression, is convex!

... but in the general case it is not strictly convex.

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm
- If the function is nonconvex, it will find a local minimum, not necessarily a global minimum
- If the function is convex, it will find a global minimum

Regression Loss Functions

In-Class Exercise:

$$
\begin{aligned}
& \text { C. } \left.\ell(\hat{y}, y)=\frac{1}{2}(\hat{y}-y)^{2}\right)^{2} \zeta 3 \% \hat{y}^{(i)}=\theta^{\top} x^{(i)} \\
& \text { D. } \ell(\hat{y}, y)=\frac{1}{4}(\hat{y}-y)^{4} \\
& \text { E. } \ell(\hat{y}, y)= \begin{cases}\frac{1}{2}(\hat{y}-y)^{2} & \text { if }|\hat{y}-y| \leq \delta \\
\delta|\hat{y}-y|-\frac{1}{2} \delta^{2} & \text { otherwise }\end{cases}
\end{aligned}
$$ a linear regression model?

Select all that apply.
F. $\ell(\hat{y}, y)=\log (\cosh (\hat{y}-y))$
G. $\ell(\hat{y}, y)=\sin (y-y)$

OPTIMIZATION METHOD \#2: CLOSED FORM SOLUTION

Calculus and Optimization

In-Class Exercise

 Plot three functions:$$
\text { 1. } f(x)=x^{3}-x
$$

2. $f^{\prime}(x)=\frac{\partial y}{\partial x}=3 x^{2}-1$
3. $f^{\prime \prime}(x)=\frac{\partial^{2} y}{\partial x^{2}}=6 x$

Answer Here:

Optimization: Closed form solutions

Chalkboard

- Zero Derivatives
- Example: 1-D function
- Example: higher dimensions

CLOSED FORM SOLUTION FOR LINEAR REGRESSION

Linear Regression as Function

$\mathcal{D}=\left\{\mathbf{x}^{(i)}, y^{(i)}\right\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$

Approximation

1. Assume \mathcal{D} generated as:

$$
\begin{aligned}
\mathbf{x}^{(i)} & \sim p^{*}(\cdot) \\
y^{(i)} & =h^{*}\left(\mathbf{x}^{(i)}\right)
\end{aligned}
$$

2. Choose hypothesis space, \mathcal{H} : all linear functions in M-dimensional space

$$
\mathcal{H}=\left\{h_{\boldsymbol{\theta}}: h_{\boldsymbol{\theta}}(\mathbf{x})=\boldsymbol{\theta}^{T} \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^{M}\right\}
$$

3. Choose an objective function: mean squared error (MSE)

$$
\begin{aligned}
J(\boldsymbol{\theta}) & =\frac{1}{N} \sum_{i=1}^{N} e_{i}^{2} \\
& =\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-h_{\boldsymbol{\theta}}\left(\mathbf{x}^{(i)}\right)\right)^{2} \\
& \left.=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2}
\end{aligned}
$$

4. Solve the unconstrained optimization problem via favorite method:

gradient descent

- closeáform
- stochastic gradient descent
- ...

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} J(\boldsymbol{\theta})
$$

5. Test time: given a new \mathbf{x}, make prediction \hat{y}

$$
\hat{y}=h_{\hat{\boldsymbol{\theta}}}(\mathbf{x})=\hat{\boldsymbol{\theta}}^{T} \mathbf{x}
$$

Linear Regression: Closed Form

Optimization Method \#2:

 Closed Form1. Evaluate

$$
\boldsymbol{\theta}^{\mathrm{MLE}}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

2. Return $\boldsymbol{\theta}^{\text {MLE }}$

$$
\left.J(\boldsymbol{\theta})=J\left(\theta_{1}, \theta_{2}\right)=\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-\theta^{T} \mathbf{x}^{(i)}\right)\right)^{2}
$$

t	θ_{1}	θ_{2}	$J\left(\theta_{1}, \theta_{2}\right)$
MLE	0.59	0.43	0.2

Background: Linear Algebra

- Definition: the identity matrix I is a diagonal matrix with 1's on the diagonal and o's everywhere else.
Example of $3 x\}$ identity matrix:

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad I A=A
$$

- Definition: the inverse of a matrix A is A^{-1} when

$$
A^{-1} A=A A^{-1}=I
$$

- The inverse of a matrix does not always exist.
- There is no division of matrices, but we can...
- pre-multiply by an inverse:

$$
\begin{aligned}
& A C=B \\
& \Rightarrow A^{-1}(A C)=A^{-1} B \\
& \Rightarrow C=A^{-1} B
\end{aligned}
$$

- post-multiply by an inverse

$$
\begin{aligned}
& A C=B \\
& \Rightarrow(A C) C^{-1}=B C^{-1} \\
& \Rightarrow A=B C^{-1}
\end{aligned}
$$

Optimization for Linear Regression

Chalkboard

- Closed-form (Normal Equations)

COMPUTATIONAL COMPLEXITY

Computational Complexity of OLS

To solve the Ordinary Least Squares problem we compute:

$$
\begin{aligned}
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} & =\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2}\left(y^{(i)}-\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{Y}\right)
\end{aligned}
$$

The resulting shape of the matrices:

Background: Matrix Multiplication Given matrices \mathbf{A} and \mathbf{B}

- If \mathbf{A} is $q \times r$ and \mathbf{B} is $r \times s$, computing $\mathbf{A B}$ takes $O(q r s)$
- If \mathbf{A} and \mathbf{B} are $q \times q$, computing $\mathbf{A B}$ takes $O\left(q^{2.373}\right)$
- If \mathbf{A} is $q \times q$, computing A^{-1} takes $O\left(q^{2.373}\right)$.

Computational Complexity of OLS:

Gradient Descent

Cases to consider gradient descent:

1. What if we can not find a closed-form solution?
2. What if we can, but it's inefficient to compute?
3. What if we can, but it's numerically unstable to compute?

Empirical Convergence

- Def: an epoch is a single pass through the training data

1. For GD, only one update per epoch
2. For SGD, N updates per epoch
$N=$ (\# train examples)

- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

LINEAR REGRESSION: SOLUTION UNIQUENESS

Linear Regression: Uniqueness

Question:

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the
 given dataset?

Linear Regression: Uniqueness

Question:

Consider a 1 D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w, b) are there for the
 given dataset?

Linear Regression: Uniqueness

Question:

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?

A: $0 \quad$ B: $1 \quad \mathrm{C}: 2 \quad \mathrm{D}:+\infty$

Linear Regression: Uniqueness

Question:

Consider a 1D linear regression model trained to minimize MSE.

How many solutions (i.e. sets of parameters w,b) are there for the given dataset?

Linear Regression: Uniqueness

Question:

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w_{1}, w_{2}, b) are there for the given dataset?

Linear Regression: Uniqueness

Question:

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w_{1}, w_{2}, b) are there for the given dataset?

Linear Regression: Uniqueness

Question:

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w_{1}, w_{2}, b) are there for the given dataset?

Linear Regression: Uniqueness

$$
\begin{aligned}
& \text { To solve the Ordinary Least Squares } \\
& \text { problem we compute: } \\
& \begin{aligned}
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} & =\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2}\left(y^{(i)}-\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{Y}\right)
\end{aligned}
\end{aligned}
$$

These geometric intuitions align with the linear algebraic intuitions we can derive from the normal equations.

1. If $\left(\mathbf{X}^{T} \mathbf{X}\right)$ is invertible, then there is exactly one solution.
2. If $\left(\mathbf{X}^{T} \mathbf{X}\right)$ is not invertible, then there are either no solutions or infinitely many solutions.

Linear Regression: Uniqueness

$$
\begin{aligned}
& \text { To solve the Ordinary Least Squares } \\
& \text { problem we compute: } \\
& \begin{aligned}
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} & =\frac{1}{N} \sum_{i=1}^{N} \frac{1}{2}\left(y^{(i)}-\left(\boldsymbol{\theta}^{T} \mathbf{x}^{(i)}\right)\right)^{2} \\
& =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{T} \mathbf{Y}\right)
\end{aligned}
\end{aligned}
$$

These geometric intuitions align with the linear algebraic intuitions we can derive from the normal equations.

1. If $\left(\mathbf{X}^{T} \mathbf{X}\right)$ is invertible, then there is exactly one solution. Invertability of $\left(\mathbf{X}^{T} \mathbf{X}\right)$ is
2. If $\left(\mathbf{X}^{T} \mathbf{X}\right)$ is not iny equivalent to X being full rank. no solutions or inf That is, there is no feature that is a linear combination of the other features.

Solving Linear Regression

Question: Qs: skp

True or False: If Mean Squared Error (i.e. $\left.\frac{1}{N} \sum_{i=1}^{N}\left(y^{(i)}-h\left(\mathbf{x}^{(i)}\right)\right)^{2}\right)$ has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e. $\left.\frac{1}{N} \sum_{i=1}^{N}\left|y^{(i)}-h\left(\mathbf{x}^{(i)}\right)\right|\right)$ must also have a unique minimizer.

Answer:

Linear Regression Objectives

You should be able to...

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using three optimization techniques: (1) closed form, (2) gradient descent, (3) stochastic gradient descent
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Identify situations where least squares regression has exactly one solution or infinitely many solutions

