

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Linear Regression + Optimization for ML

Matt Gormley Lecture 8 Feb. 13, 2023

Q: Could we just get rid of that pesky step size hyperparameter $\mathbf{y}^{(t)}$ in gradient descent?

A: No!

In order to **prove** that gradient descent converges to a local minimum of a function, we need to **assume** gamma is properly defined.

Q: How can I get more one-on-one interaction with the course staff?

A: Attend office hours as soon after the homework release as possible!

Q: Can I email, tweeter, instasnap, or facetok my favorite TA directly about the course?

- A: No. All course communication should be directed through one of the following channels:
 - Piazza (public post)
 - Piazza (private instructor post)
 - Email to EAs <u>eas-10-601@cs.cmu.edu</u>
 - Email to Matt (delays likely)
 - In-person communication at OHs

Q: I just asked a question in OH and now my TA is crying quietly -- what did I do wrong?

A: You've just committed the worst of crimes: asking a question that was directly answered in a recitation.

The TA you asked spent hours carefully writing careful recitation notes and solutions, practicing their recitation, responding to criticism / changes from me, etc.

To increase OH efficiency, please review the HW recitation before asking HW questions in OHs.

Reminders

- Practice Problems 1

 released on course website
- Exam 1: Thu, Feb. 16
 - Time: 6:30 8:30pm
 - Location: Your room/seat assignment will be announced on Piazza

EXAM 1 LOGISTICS

Exam 1

- Time / Location
 - Time: Thu, Feb 16, at 6:30pm 8:30pm
 - Location & Seats: You have all been split across multiple rooms.
 Everyone has an assigned seat in one of these room.
 - Please watch Piazza carefully for announcements.

Logistics

- Covered material: Lecture 1 Lecture 7
- Format of questions:
 - Multiple choice
 - True / False (with justification)
 - Derivations
 - Short answers
 - Interpreting figures
 - Implementing algorithms on paper
- No electronic devices
- You are allowed to bring one 8½ x 11 sheet of notes (front and back)

Exam 1

How to Prepare

- Attend the midterm review lecture (right now!)
- Review exam practice problems
- Review this year's homework problems
- Consider whether you have achieved the "learning objectives" for each lecture / section
- Write your one-page cheat sheet (back and front)

Exam 1

• Advice (for during the exam)

- Solve the easy problems first
 (e.g. multiple choice before derivations)
 - if a problem seems extremely complicated you're likely missing something
- Don't leave any answer blank!
- If you make an assumption, write it down
- If you look at a question and don't know the answer:
 - we probably haven't told you the answer
 - but we've told you enough to work it out
 - imagine arguing for some answer and see if you like it

Topics for Exam 1

- Foundations
 - Probability, Linear
 Algebra, Geometry,
 Calculus
 - Optimization
- Important Concepts
 - Overfitting
 - Experimental Design

- Classification
 - Decision Tree
 - KNN
 - Perceptron
- Regression
 - KNN Regression
 - Decision TreeRegression
 - Linear Regression

SAMPLE QUESTIONS

5.2 Constructing decision trees

Consider the problem of predicting whether the university will be closed on a particular day. We will assume that the factors which decide this are whether there is a snowstorm, whether it is a weekend or an official holiday. Suppose we have the training examples described in the Table 5.2.

Snowstorm	Holiday	W	Veeken	d	Closed
Т	Т	F			F
Т	Т		F		Т
F	Т		\mathbf{F}		\mathbf{F}
Т	Т		\mathbf{F}		F
F	F		\mathbf{F}		F
F	F		\mathbf{F}		Т
Т	\mathbf{F}		\mathbf{F}	Γ	Т
F	F		\mathbf{F}		Т

Table 1: Training examples for decision tree

• [2 points] What would be the effect of the Weekend attribute on the decision tree if it were made the root? Explain in terms of information gain. > Notes in formation gain. > Notes

• [8 points] If we cannot make Weekend the root node, which attribute should be made the root node of the decision tree? Explain your reasoning and show your calculations. (You may use $\log_2 0.75 = -0.4$ and $\log_2 0.25 = -2$)

4 K-NN [12 pts]

Now we will apply K-Nearest Neighbors using Euclidean distance to a binary classification task. We assign the class of the test point to be the class of the majority of the k nearest neighbors.

3. [2 pts] What is the N-fold cross-validation error for the dataset shown in Figure 5? Assume k=1.

Sample Questions 75% True or False

4.1

Answer each of the following questions with \mathbf{T} or \mathbf{F} and provide a one line justification.

(a) [2 pts.] Consider two datasets $D^{(1)}$ and $D^{(2)}$ where $D^{(1)} = \{(x_1^{(1)}, y_1^{(1)}), ..., (x_n^{(1)}, y_n^{(1)})\}$ and $D^{(2)} = \{(x_1^{(2)}, y_1^{(2)}), ..., (x_m^{(2)}, y_m^{(2)})\}$ such that $x_i^{(1)} \in \mathbb{R}^{d_1}, x_i^{(2)} \in \mathbb{R}^{d_2}$. Suppose $d_1 > d_2$ and n > m. Then the maximum number of mistakes a perceptron algorithm will make is higher on dataset $D^{(1)}$ than on dataset $D^{(2)}$.

3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets S^{new} plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

(a) Adding one outlier to the original data set.

3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets S^{new} plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

Dataset	(a)	(b)	(c)	(d)	(e)
Regression line					

Figure 1: An observed data set and its associated regression line.

Dataset

(c) Adding three outliers to the original data set. Two on one side and one on the other side.

3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets S^{new} plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

Dataset	(a)	(b)	(c)	(d)	(e)
Regression line					

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets S^{new} .

Dataset

(d) Duplicating the original data set.

3.1 Linear regression

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For each of the altered data sets S^{new} plotted in Fig. 3, indicate which regression line (relative to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write your answers in the table below.

Dataset	(a)	(b)	(c)	(d)	(e)
Regression line					

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets S^{new} .

Dataset

(e) Duplicating the original data set and adding four points that lie on the trajectory of the original regression line.

CONVEXITY

Convexity

Convexity

Suppose we have a function $f(x) : \mathcal{X} \to \mathcal{Y}$.

- The value x^* is a **global minimum** of f iff $f(x^*) \leq f(x), \forall x \in \mathcal{X}$.
- The value x^* is a **local minimum** of f iff $\exists \epsilon$ s.t. $f(x^*) \leq f(x), \forall x \in [x^* \epsilon, x^* + \epsilon]$.

 Each local minimum is a global minimum

Convexity

Each local minimum of a convex function is also a global minimum.

A strictly convex function has a unique global minimum.

CONVEXITY AND LINEAR REGRESSION

Convexity and Linear Regression

The **Mean Squared Error** function, which we minimize for learning the parameters of Linear Regression, **is convex**!

... but in the general case it is **not** strictly convex.

Gradient Descent & Convexity

- Gradient descent is a local optimization algorithm
- If the function is nonconvex, it will find a local minimum, not necessarily a global minimum
- If the function is convex, it will find a global minimum

Regression Loss Functions

In-Class Exercise:

Which of the following could be used as loss functions for training a linear regression model?

Select all that apply.

A.
$$\ell(\hat{y}, y) = ||\hat{y} - y||_2$$
 Toxic
B. $\ell(\hat{y}, y) = |\hat{y} - y||_2$ Toxic
C. $\ell(\hat{y}, y) = |\hat{y} - y||_2$ Toxic
C. $\ell(\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2 + \int (\hat{e}) = \int_{N} \xi_{eef}^{(i)}(y) + \int (\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2 + \int (\hat{e}) + \int (\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2 + \int (\hat{e}) + \int (\hat{y}, y) = \frac{1}{4}(\hat{y} - y)^4$
(E. $\ell(\hat{y}, y) = \begin{cases} \frac{1}{2}(\hat{y} - y)^2 & \text{if } |\hat{y} - y| \le \delta \\ \delta |\hat{y} - y| - \frac{1}{2}\delta^2 & \text{otherwise} \end{cases}$
F. $\ell(\hat{y}, y) = \log(\cosh(\hat{y} - y))$
G. $\ell(\hat{y}, y) = \sin(y - y)$

OPTIMIZATION METHOD #2: CLOSED FORM SOLUTION

Calculus and Optimization

In-Class Exercise Plot three functions:

1.
$$f(x) = x^3 - x$$

2. $f'(x) = \frac{\partial y}{\partial x} = 3x^2 - 1$
3. $f''(x) = \frac{\partial^2 y}{\partial x^2} = 6x$

Optimization: Closed form solutions

Chalkboard

- Zero Derivatives
- Example: 1-D function
- Example: higher dimensions

CLOSED FORM SOLUTION FOR LINEAR REGRESSION

Linear Regression as Function $\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^{N}$ where $\mathbf{x} \in \mathbb{R}^{M}$ and $y \in \mathbb{R}$ Approximation

1. Assume \mathcal{D} generated as:

 $\begin{aligned} \mathbf{x}^{(i)} &\sim p^*(\cdot) \\ y^{(i)} &= h^*(\mathbf{x}^{(i)}) \end{aligned}$

2. Choose hypothesis space, \mathcal{H} : all linear functions in M-dimensional space

$$\mathcal{H} = \{h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M\}$$

3. Choose an objective function: *mean squared error (MSE)*

$$J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_i^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^2$$
$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$$

4. Solve the unconstrained optimization problem via favorite method:

- stochastic gradient descent
- ...

$$\hat{\boldsymbol{ heta}} = \operatorname*{argmin}_{\boldsymbol{ heta}} J(\boldsymbol{ heta})$$

5. Test time: given a new x, make prediction \hat{y}

$$\hat{y} = h_{\hat{oldsymbol{ heta}}}(\mathbf{x}) = \hat{oldsymbol{ heta}}^T \mathbf{x}$$

Linear Regression: Closed Form

$\mathsf{J}(\boldsymbol{\theta}) = \mathsf{J}(\boldsymbol{\theta}_1, \boldsymbol{\theta}_2) = \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)} \right)^2$ **Optimization Method #2:** 1.0 0.000. **Closed Form** 30,000 10.000 **Evaluate** 1. 0.8 $\boldsymbol{\theta}^{\mathsf{MLE}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ 15.000 20.000 Return **O**MLE 15.000 2. 0.6 20.000 . 000. θ_2 0.4 $y = h^*(x)$ 5.000 (unknown) h(x; **θ**^(MLE)) 0.0 0.0 0.2 0.4 0.6 0.8 1.0 θ_1 $J(\theta_1, \theta_2)$ θ θ, t MLE 0.59 0.43 0.2

>

37

Background: Linear Algebra

Definition: the identity matrix I is a diagonal matrix with 1's on the diagonal and 0's everywhere else.
 Example of x identity matrix: 1 0 01

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

IA = A

• Definition: the **inverse** of a matrix A is A^{-1} when $A^{-1}A = AA^{-1} = I$

- The inverse of a matrix does not always exist.

- There is no division of matrices, but we can...
 - pre-multiply by an inverse:

$$AC = B$$

$$\Rightarrow A^{-1}(AC) = A^{-1}B$$

$$\Rightarrow C = A^{-1}B$$

- post-multiply by an inverse

$$AC = B$$

$$\Rightarrow (AC)C^{-1} = BC^{-1}$$

$$\Rightarrow A = BC^{-1}$$

Optimization for Linear Regression

Chalkboard

- Closed-form (Normal Equations)

COMPUTATIONAL COMPLEXITY

Computational Complexity of OLS

To solve the Ordinary Least Squares problem we compute:

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^T \mathbf{x}^{(i)}))^2$$
$$= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$$

The resulting shape of the matrices:

Background: Matrix Multiplication Given matrices \mathbf{A} and \mathbf{B}

- If A is $q \times r$ and B is $r \times s$, computing AB takes O(qrs)
- If A and B are $q \times q$, computing AB takes $O(q^{2.373})$
- If A is $q \times q$, computing A^{-1} takes $O(q^{2.373})$.

Gradient Descent

Cases to consider gradient descent:

- 1. What if we **can not** find a closed-form solution?
- 2. What if we **can**, but it's inefficient to compute?
- 3. What if we **can**, but it's numerically unstable to compute?

Empirical Convergence

- Def: an epoch is a single pass through the training data
- 1. For GD, only **one update** per epoch
- 2. For SGD, N updates per epoch N = (# train examples)
- SGD reduces MSE much more rapidly than GD
- For GD / SGD, training MSE is initially large due to uninformed initialization

LINEAR REGRESSION: SOLUTION UNIQUENESS

Question:

Consider a 1D linear regression model trained to minimize MSE.

Question:

Consider a 1D linear regression model trained to minimize MSE.

Question:

Consider a 1D linear regression model trained to minimize MSE.

Question:

Consider a 1D linear regression model trained to minimize MSE.

Question:

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w₁, w₂, b) are there for the given dataset?

Question:

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w₁, w₂, b) are there for the given dataset?

Question:

- Consider a 2D linear regression model trained to minimize MSE
- How many solutions (i.e. sets of parameters w₁, w₂, b) are there for the given dataset?

To solve the Ordinary Least Squares problem we compute: $\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^T \mathbf{x}^{(i)}))^2$ $= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$

These geometric intuitions align with the linear algebraic intuitions we can derive from the normal equations.

- 1. If $(\mathbf{X}^T \mathbf{X})$ is invertible, then there is exactly one solution.
- 2. If $(\mathbf{X}^T \mathbf{X})$ is not invertible, then there are either no solutions or infinitely many solutions.

To solve the Ordinary Least Squares problem we compute: $\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y^{(i)} - (\boldsymbol{\theta}^T \mathbf{x}^{(i)}))^2$ $= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{Y})$

These geometric intuitions align with the linear algebraic intuitions we can derive from the normal equations.

- 1. If $(\mathbf{X}^T \mathbf{X})$ is invertible, then there is exactly one solution.

Invertability of $(\mathbf{X}^T \mathbf{X})$ is 2. If $(\mathbf{X}^T \mathbf{X})$ is not invertible equivalent to X being full rank. no solutions or inf That is, there is no feature that is a linear combination of the other features.

Solving Linear Regression

Question: QS: sky

True or False: If Mean Squared Error (i.e. $\frac{1}{N}\sum_{i=1}^{N}(y^{(i)}-h(\mathbf{x}^{(i)}))^2$) has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e. $\frac{1}{N} \sum_{i=1}^{N} |y^{(i)} - h(\mathbf{x}^{(i)})|$) must also have a unique minimizer.

Answer:

Linear Regression Objectives

You should be able to...

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using three optimization techniques: (1) closed form, (2) gradient descent, (3) stochastic gradient descent
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Identify situations where least squares regression has exactly one solution or infinitely many solutions