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Q&A
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Q: Could we just get rid of that pesky step size 
hyperparameter ɣ(t) in gradient descent?

A: No!

In order to prove that gradient descent 
converges to a local minimum of a function, 
we need to assume gamma is properly 
defined.



Q&A
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Q: How can I get more one-on-one interaction with the 
course staff?

A: Attend office hours as soon after the homework release 
as possible!



Q&A
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Q: Can I email, tweeter, instasnap, or facetok
my favorite TA directly about the course?

A: No. All course communication should be 
directed through one of the following 
channels:
• Piazza (public post)
• Piazza (private instructor post)
• Email to EAs eas-10-601@cs.cmu.edu
• Email to Matt (delays likely)
• In-person communication at OHs

mailto:eas-10-601@cs.cmu.edu


Q&A

5

Q: I just asked a question in OH and now my 
TA is crying quietly -- what did I do wrong?

A: You’ve just committed the worst of crimes: asking a 
question that was directly answered in a recitation. 

The TA you asked spent hours carefully writing 
careful recitation notes and solutions, practicing 
their recitation, responding to criticism / changes 
from me, etc.

To increase OH efficiency, please review the HW 
recitation before asking HW questions in OHs.



Reminders

• Practice Problems 1 
– released on course website

• Exam 1: Thu, Feb. 16
– Time: 6:30 – 8:30pm
– Location: Your room/seat assignment will be 

announced on Piazza
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EXAM 1 LOGISTICS
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Exam 1
• Time / Location

– Time: Thu, Feb 16, at 6:30pm - 8:30pm
– Location & Seats: You have all been split across multiple rooms. 

Everyone has an assigned seat in one of these room. 
– Please watch Piazza carefully for announcements.

• Logistics
– Covered material: Lecture 1 – Lecture 7
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and 

back)
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Exam 1

• How to Prepare
– Attend the midterm review lecture

(right now!)
– Review exam practice problems
– Review this year’s homework problems
– Consider whether you have achieved the 

“learning objectives” for each lecture / section
– Write your one-page cheat sheet (back and 

front)
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Exam 1
• Advice (for during the exam)
– Solve the easy problems first 

(e.g. multiple choice before derivations)
• if a problem seems extremely complicated you’re likely 

missing something
– Don’t leave any answer blank!
– If you make an assumption, write it down
– If you look at a question and don’t know the 

answer:
• we probably haven’t told you the answer
• but we’ve told you enough to work it out
• imagine arguing for some answer and see if you like it
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Topics for Exam 1
• Foundations
– Probability, Linear 

Algebra, Geometry, 
Calculus

– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– KNN Regression
– Decision Tree 

Regression
– Linear Regression

11



SAMPLE QUESTIONS
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10-701 Machine Learning Midterm Exam - Page 8 of 17 11/02/2016

Now we will apply K-Nearest Neighbors using Euclidean distance to a binary classifi-
cation task. We assign the class of the test point to be the class of the majority of the
k nearest neighbors. A point can be its own neighbor.

Figure 5

3. [2 pts] What value of k minimizes leave-one-out cross-validation error for the dataset
shown in Figure 5? What is the resulting error?

4. [2 pts] Sketch the 1-nearest neighbor boundary over Figure 5.

5. [2 pts] What value of k minimizes the training set error for the dataset shown in
Figure 5? What is the resulting training error?
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4 K-NN [12 pts]

In this problem, you will be tested on your knowledge of K-Nearest Neighbors (K-NN), where
k indicates the number of nearest neighbors.

1. [3 pts] For K-NN in general, are there any cons of using very large k values? Select

one. Briefly justify your answer.

(a) Yes (b) No

2. [3 pts] For K-NN in general, are there any cons of using very small k values? Select

one. Briefly justify your answer.

(a) Yes (b) No

3. [2 pts] What is the N-fold cross-validation error for the dataset shown in 
Figure 5? Assume k=1.
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4 SVM, Perceptron and Kernels [20 pts. + 4 Extra Credit]

4.1 True or False

Answer each of the following questions with T or F and provide a one line justification.

(a) [2 pts.] Consider two datasets D
(1) and D

(2) where D
(1) = {(x(1)

1 , y
(1)
1 ), ..., (x(1)

n , y
(1)
n )}

and D
(2) = {(x(2)

1 , y
(2)
1 ), ..., (x(2)

m , y
(2)
m )} such that x(1)

i 2 Rd1 , x(2)
i 2 Rd2 . Suppose d1 > d2

and n > m. Then the maximum number of mistakes a perceptron algorithm will make
is higher on dataset D(1) than on dataset D(2).

(b) [2 pts.] Suppose �(x) is an arbitrary feature mapping from input x 2 X to �(x) 2 RN

and let K(x, z) = �(x) · �(z). Then K(x, z) will always be a valid kernel function.

(c) [2 pts.] Given the same training data, in which the points are linearly separable, the
margin of the decision boundary produced by SVM will always be greater than or equal
to the margin of the decision boundary produced by Perceptron.

4.2 Multiple Choice

(a) [3 pt.] If the data is linearly separable, SVM minimizes kwk2 subject to the constraints
8i, yiw · xi � 1. In the linearly separable case, which of the following may happen to the
decision boundary if one of the training samples is removed? Circle all that apply.

• Shifts toward the point removed

• Shifts away from the point removed

• Does not change

(b) [3 pt.] Recall that when the data are not linearly separable, SVM minimizes kwk2 +
C
P

i ⇠i subject to the constraint that 8i, yiw · xi � 1 � ⇠i and ⇠i � 0. Which of the
following may happen to the size of the margin if the tradeo↵ parameter C is increased?
Circle all that apply.

• Increases

• Decreases

• Remains the same

Q
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3 Linear and Logistic Regression [20 pts. + 2 Extra Credit]

3.1 Linear regression

Given that we have an input x and we want to estimate an output y, in linear regression
we assume the relationship between them is of the form y = wx+ b+ ✏, where w and b are
real-valued parameters we estimate and ✏ represents the noise in the data. When the noise
is Gaussian, maximizing the likelihood of a dataset S = {(x1, y1), . . . , (xn, yn)} to estimate
the parameters w and b is equivalent to minimizing the squared error:

argmin
w

nX

i=1

(yi � (wxi + b))2.

Consider the dataset S plotted in Fig. 1 along with its associated regression line. For
each of the altered data sets Snew plotted in Fig. 3, indicate which regression line (relative
to the original one) in Fig. 2 corresponds to the regression line for the new data set. Write
your answers in the table below.

Dataset (a) (b) (c) (d) (e)
Regression line

Figure 1: An observed data set and its associated regression line.

Figure 2: New regression lines for altered data sets Snew.
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(a) Adding one outlier to the
original data set.

(b) Adding two outliers to the original data
set.

(c) Adding three outliers to the original data
set. Two on one side and one on the other
side.

(d) Duplicating the original data set.

(e) Duplicating the original data set and
adding four points that lie on the trajectory
of the original regression line.

Figure 3: New data set Snew.

Dataset
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(a) Adding one outlier to the
original data set.

(b) Adding two outliers to the original data
set.

(c) Adding three outliers to the original data
set. Two on one side and one on the other
side.

(d) Duplicating the original data set.

(e) Duplicating the original data set and
adding four points that lie on the trajectory
of the original regression line.

Figure 3: New data set Snew.
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CONVEXITY
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Convexity

22



Convexity

Convex Function

• Each local minimum is a 
global minimum

Nonconvex Function

• A nonconvex function is not 
convex

• Each local minimum is not
necessarily a global minimum 23



Convexity

24

Each local 
minimum of a 

convex function is 
also a global 

minimum.

A strictly convex 
function has a 
unique global 

minimum.



CONVEXITY AND LINEAR 
REGRESSION

25



Convexity and Linear Regression

26

The Mean Squared Error function, 
which we minimize for learning 

the parameters of Linear 
Regression, is convex!

…but in the general case it is not 
strictly convex.



Gradient Descent & Convexity
• Gradient 

descent is a 
local 
optimization 
algorithm

• If the function is 
nonconvex, it 
will find a local 
minimum, not 
necessarily a 
global minimum

• If the function is 
convex, it will 
find a global 
minimum

27



Regression Loss Functions

In-Class Exercise:

Which of the following 
could be used as loss 
functions for training 
a linear regression 
model? 

Select all that apply.

28



OPTIMIZATION METHOD #2:
CLOSED FORM SOLUTION

31



Calculus and Optimization

In-Class Exercise
Plot three functions:

32

Answer Here:



Optimization: Closed form solutions

Chalkboard
– Zero Derivatives
– Example: 1-D function
– Example: higher dimensions

34



CLOSED FORM SOLUTION FOR 
LINEAR REGRESSION

35



Linear Regression as Function 
Approximation

36



Linear Regression: Closed Form
Optimization Method #2: 
Closed Form
1. Evaluate 

2. Return θMLE

37

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.59 0.43 0.2

x

y

y = h*(x)
(unknown)

t
MLE

h(x; θ(MLE))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2



Background: Linear Algebra
• Definition: the identity matrix I is a diagonal matrix with 1’s on the diagonal 

and 0’s everywhere else. 
Example of 2x2 identity matrix:

I =
1 0 0
0 1 0
0 0 1

• Definition: the inverse of a matrix 𝐴 is 𝐴!" when
𝐴!"𝐴 = 𝐴𝐴!" = 𝐼

– The inverse of a matrix does not always exist.

• There is no division of matrices, but we can…
– pre-multiply by an inverse:

𝐴𝐶 = 𝐵
⟹ 𝐴!" 𝐴𝐶 = 𝐴!"𝐵
⟹ 𝐶 = 𝐴!"𝐵

– post-multiply by an inverse
𝐴𝐶 = 𝐵
⟹ 𝐴𝐶 𝐶!" = 𝐵𝐶!"
⟹ 𝐴 = 𝐵𝐶!"

38



Optimization for Linear Regression

Chalkboard
– Closed-form (Normal Equations)

39



COMPUTATIONAL COMPLEXITY

42



Computational Complexity of OLS:

Computational Complexity of OLS

43

To solve the Ordinary Least Squares 
problem we compute:

The resulting shape of the matrices:

Linear in # of examples, N
Polynomial in # of features, M



Gradient Descent

Cases to consider gradient descent:
1. What if we can not find a closed-form 

solution?
2. What if we can, but it’s inefficient to 

compute?
3. What if we can, but it’s numerically 

unstable to compute?

44



Empirical Convergence

• SGD reduces MSE 
much more rapidly 
than GD

• For GD / SGD, training 
MSE is initially large 
due to uninformed 
initialization

45

• Def: an epoch is a 
single pass through 
the training data

1. For GD, only one 
update per epoch

2. For SGD, N updates 
per epoch 
N = (# train examples) 

Gradient Descent

Closed-form 
(normal eq.s)

M
ea

n 
Sq

ua
re

d 
Er

ro
r (

Tr
ai

n)

Epochs

Log-log scale plot



LINEAR REGRESSION: SOLUTION 
UNIQUENESS

46



Linear Regression: Uniqueness
Question:
Consider a 1D linear 
regression model 
trained to minimize 
MSE.

How many 
solutions (i.e. sets 
of parameters w,b) 
are there for the 
given dataset?

47

y

x

Two Points (Case 1)



Linear Regression: Uniqueness

48

y

x

One Point
Question:
Consider a 1D linear 
regression model 
trained to minimize 
MSE.

How many 
solutions (i.e. sets 
of parameters w,b) 
are there for the 
given dataset?



Linear Regression: Uniqueness
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y

x

Two Points (Case 2)

Answer:
A: 0      B: 1     C: 2     D: +∞

Question:
Consider a 1D linear 
regression model 
trained to minimize 
MSE.

How many 
solutions (i.e. sets 
of parameters w,b) 
are there for the 
given dataset?



Linear Regression: Uniqueness
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y

x

Two Points (Case 2)
Question:
Consider a 1D linear 
regression model 
trained to minimize 
MSE.

How many 
solutions (i.e. sets 
of parameters w,b) 
are there for the 
given dataset? Answer:

A: 0      B: 1     C: 2     D: +∞



Linear Regression: Uniqueness
Question:
• Consider a 2D

linear regression 
model trained to 
minimize MSE

• How many 
solutions (i.e. 
sets of 
parameters w1, 
w2, b) are there 
for the given 
dataset?

51

Points on a Liney

x1

x2
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linear regression 
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minimize MSE

• How many 
solutions (i.e. 
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parameters w1, 
w2, b) are there 
for the given 
dataset?
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parameters w1, 
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dataset?
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Points on a Liney
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Linear Regression: Uniqueness

54

These geometric intuitions align with the linear 
algebraic intuitions we can derive from the 
normal equations.
1. If               is invertible, then there is exactly one 

solution. 
2. If               is not invertible, then there are either 

no solutions or infinitely many solutions.

To solve the Ordinary Least Squares 
problem we compute:



Linear Regression: Uniqueness
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These geometric intuitions align with the linear 
algebraic intuitions we can derive from the 
normal equations.
1. If               is invertible, then there is exactly one 

solution. 
2. If               is not invertible, then there are either 

no solutions or infinitely many solutions.

To solve the Ordinary Least Squares 
problem we compute:

Invertability of               is 
equivalent to X being full rank. 
That is, there is no feature that 
is a linear combination of the 

other features.



Answer:

Solving Linear Regression

56

Question:



Linear Regression Objectives
You should be able to…
• Design k-NN Regression and Decision Tree 

Regression
• Implement learning for Linear Regression using three 

optimization techniques: (1) closed form, (2) gradient 
descent, (3) stochastic gradient descent

• Choose a Linear Regression optimization technique 
that is appropriate for a particular dataset by 
analyzing the tradeoff of computational complexity 
vs. convergence speed

• Identify situations where least squares regression 
has exactly one solution or infinitely many solutions
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