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k-NN Regression

Algorithm 2: k=2 Nearest 
Neighbors Distance Weighted 
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest 

two instances x(n1) and x(n2)

in training data and return 
the weighted average of 
their y values

Algorithm 1: k=1 Nearest 
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x 

in training data and return 
its y
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x

y Example: Dataset with only 
one feature x and one scalar 
output y

x(n1) x(n2)x’

y (n1)

y (n2)
y’

Algorithm 2

This version is incorrect.
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This tends 
toward the 

average 
height of 

the 
leftmost 

two points

The distance 
weighted 

average of x(n1)

and x(n2)

This region is closer to 
the two points to the left



Reminders

• Practice Problems 1 
– released on course website

• Exam 1: Thu, Feb. 16
– Time: 6:30 – 8:30pm
– Location: Your room/seat assignment will be 

announced on Piazza

• Homework 4: Logistic Regression
– Out: Fri, Feb 17
– Due: Sun, Feb. 26 at 11:59pm
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OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT
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Gradient Descent
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Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—



Stochastic Gradient Descent (SGD)
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per-example objective:

original objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.



Stochastic Gradient Descent (SGD)
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In practice, it is common 
to implement SGD using 

sampling without
replacement (i.e. 

shuffle({1,2,…N}), even 
though most of the 

theory is for sampling 
with replacement (i.e. 

Uniform({1,2,…N}).

per-example objective:

original objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.



Background: Probability
Expectation of a function of a random variable

• For any discrete random variable X 

𝐸! 𝑓(𝑋) = '
" ∈ 𝒳

𝑃 𝑋 = 𝑥 𝑓(𝑥)
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Why does SGD work?
• If the example is sampled uniformly at random, the expected value of 

the pointwise gradient is the same as the full gradient!

𝐸 ∇𝜽𝐽 " 𝜽 =&
"#$

%

probability of selecting 𝒙 " , 𝑦 " ∇𝜽𝐽 " 𝜽

𝐸 ∇𝜽𝐽 " 𝜽 =&
"#$

%
1
𝑁

∇𝜽𝐽 " 𝜽

𝐸 ∇𝜽𝐽 " 𝜽 =
1
𝑁
&
"#$

%

∇𝜽𝐽 " 𝜽

𝐸 ∇𝜽𝐽 " 𝜽 = ∇𝜽𝐽 𝜽

• In practice, the data set is randomly shuffled then looped through so 

that each data point is used equally often
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SGD VS. GRADIENT DESCENT
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SGD vs. Gradient Descent
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Gradient Descent Stochastic Gradient Descent



• SGD reduces MSE 
much more rapidly 
than GD

• For GD / SGD, training 
MSE is initially large 
due to uninformed 
initialization

21

Gradient Descent

SGD

Closed-form 
(normal eq.s)

• Def: an epoch is a 
single pass through 
the training data

1. For GD, only one 
update per epoch

2. For SGD, N updates 
per epoch 
N = (# train examples) 
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Epochs

Log-log scale plot

SGD vs. Gradient Descent
• Empirical comparison:



SGD vs. Gradient Descent

• Theoretical comparison:
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Method Steps to 
Convergence

Computation 
per Step

Gradient descent 𝑂 log %1 𝜖 𝑂 𝑁𝑀

SGD 𝑂 %1 𝜖 𝑂 𝑀

(with high probability under certain assumptions)

Define convergence to be when 𝐽 𝜽 𝒕 − 𝐽 𝜽∗ < 𝜖

Main Takeaway: SGD has much slower asymptotic convergence 
(i.e. it’s slower in theory), but  is often much faster in practice.



SGD FOR
LINEAR REGRESSION
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Linear Regression as Function 
Approximation
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Gradient Calculation for Linear Regression
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[used by SGD]
[used by Gradient Descent]



SGD for Linear Regression
SGD applied to Linear Regression is called the “Least 
Mean Squares” algorithm
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GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes 
steps opposite the gradient of the objective function
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Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓  ✓(0) . Initialize parameters
3: while not converged do
4: ; 

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓  ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg="></latexit>



Answer:

Solving Linear Regression
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Question:



Optimization Objectives
You should be able to…
• Apply gradient descent to optimize a function
• Apply stochastic gradient descent (SGD) to 

optimize a function
• Apply knowledge of zero derivatives to identify 

a closed-form solution (if one exists) to an 
optimization problem

• Distinguish between convex, concave, and 
nonconvex functions

• Obtain the gradient (and Hessian) of a (twice) 
differentiable function
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PROBABILISTIC LEARNING
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Probabilistic Learning

Function Approximation
Previously, we assumed that our 
output was generated using a 
deterministic target function:

Our goal was to learn a 
hypothesis h(x) that best 
approximates c*(x)

Probabilistic Learning
Today, we assume that our 
output is sampled from a 
conditional probability 
distribution:

Our goal is to learn a probability 
distribution p(y|x) that best 
approximates p*(y|x)
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Robotic Farming
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Deterministic Probabilistic

Classification
(binary output)

Is this a picture of 
a wheat kernel?

Is this plant 
drought resistant?

Regression
(continuous 
output)

How many wheat 
kernels are in this 
picture?

What will the yield 
of this plant be?



MAXIMUM LIKELIHOOD 
ESTIMATION
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MLE
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Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood 
of the data.

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)



MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability 

mass (i.e. sum-to-one constraint)
• MLE tries to allocate as much probability 

mass as possible to the things we have 
observed…

…at the expense of the things we have not
observed
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Maximum Likelihood Estimation
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MOTIVATION: 
LOGISTIC REGRESSION
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Example: Image Classification
• ImageNet LSVRC-2010 contest: 
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/
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Example: Image Classification
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax



Example: Image Classification
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CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input 
image 

(pixels)

• Five convolutional layers 
(w/max-pooling)

• Three fully connected layers

1000-way 
softmax

This “softmax” 
layer is Logistic 

Regression!

The rest is just
some fancy 

feature extraction 
(discussed later in 

the course)



LOGISTIC REGRESSION
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Logistic Regression

56

We are back to 
classification.

Despite the name 
logistic regression.

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



Key idea: Try to learn 
this hyperplane directly

Linear Models for Classification

Directly modeling the 
hyperplane would use a 
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

Looking ahead: 
• We’ll see a number of 

commonly used Linear 
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under 

certain conditions)
– Support Vector 

Machines

Recall…



Background: Hyperplanes

w

Half-spaces: 

Notation Trick: fold the 
bias b and the weights w
into a single vector θ by 

prepending a constant to 
x and increasing 

dimensionality by one to 
get x’!

1
’

’ ’

1

1

Hyperplane (Definition 1): 
H = {x : wT x + b = 0}

Hyperplane (Definition 2): 

Recall…



Using gradient ascent for linear 
classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn 

parameters
4. Predict the class with highest probability under 

the model

59



Optimization for Linear Classifiers

Whiteboard
– Strawman: Mean squared error for Perceptron!
– What does             tell us about x?

60

h(t) = sign(�T t)



Using gradient ascent for linear 
classifiers

61

sign(u)

h(t) = sign(�T t)

-1 

1 

Suppose we wanted to learn a linear classifier, but instead of 
predicting y ∈ {-1,+1} we wanted to predict y ∈ {0,1}



Using gradient ascent for linear 
classifiers
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“sign”(u)

0

1 

Suppose we wanted to learn a linear classifier, but instead of 
predicting y ∈ {-1,+1} we wanted to predict y ∈ {0,1}

Goal: Learn a linear 
classifier with 

Gradient Descent



Using gradient ascent for linear 
classifiers
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Use a differentiable 
function instead!

logistic(u) ≡ 1
1+ e−u

p�(y = 1|t) =
1

1 + 2tT(��T t)

But this decision function 
isn’t differentiable…

“sign”(u)

1 

0



Logistic Regression
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Learning: finds the parameters that minimize some 
objective function. �� = argmin

�
J(�)

Prediction: Output is the most probable class.
ŷ = �`;K�t

y�{0,1}
p�(y|t)

Model: Logistic function applied to dot product of 
parameters with input vector.

p�(y = 1|t) =
1

1 + 2tT(��T t)

Data: Inputs are continuous vectors of length M. Outputs 
are discrete.



Logistic Regression

Whiteboard
– Logistic Regression Model
– Partial derivative for logistic regression
– Gradient for logistic regression
– Decision boundary
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