
Stochastic Gradient Descent
+

Probabilistic Learning
(Binary Logistic Regression)

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley
Lecture 9

Feb. 15, 2023

Machine Learning Department
School of Computer Science
Carnegie Mellon University

k-NN Regression

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest

two instances x(n1) and x(n2)

in training data and return
the weighted average of
their y values

Algorithm 1: k=1 Nearest
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x

in training data and return
its y

3

x

y Example: Dataset with only
one feature x and one scalar
output y

x(n1) x(n2)x’

y (n1)

y (n2)
y’

Algorithm 2

This version is incorrect.

k-NN Regression

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest

two instances x(n1) and x(n2)

in training data and return
the weighted average of
their y values

Algorithm 1: k=1 Nearest
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x

in training data and return
its y

4

x

y Example: Dataset with only
one feature x and one scalar
output y

x(n1) x(n2)x’

y (n1)

y (n2)
y’

Algorithm 2

k-NN Regression

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest

two instances x(n1) and x(n2)

in training data and return
the weighted average of
their y values

Algorithm 1: k=1 Nearest
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x

in training data and return
its y

5

x

y Example: Dataset with only
one feature x and one scalar
output y

x(n1) x(n2)x’

y (n1)

y (n2)
y’

Algorithm 2

This tends
toward the

average
height of

the
leftmost

two points

The distance
weighted

average of x(n1)

and x(n2)

This region is closer to
the two points to the left

Reminders

• Practice Problems 1
– released on course website

• Exam 1: Thu, Feb. 16
– Time: 6:30 – 8:30pm
– Location: Your room/seat assignment will be

announced on Piazza

• Homework 4: Logistic Regression
– Out: Fri, Feb 17
– Due: Sun, Feb. 26 at 11:59pm

6

OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT

8

Gradient Descent

9
M

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

—

Stochastic Gradient Descent (SGD)

10

per-example objective:

original objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Stochastic Gradient Descent (SGD)

11

In practice, it is common
to implement SGD using

sampling without
replacement (i.e.

shuffle({1,2,…N}), even
though most of the

theory is for sampling
with replacement (i.e.

Uniform({1,2,…N}).

per-example objective:

original objective:

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Let J(�) =
�N

i=1 J (i)(�)
where J (i)(�) = 1

2 (�T x(i) � y(i))2.

Background: Probability
Expectation of a function of a random variable

• For any discrete random variable X

𝐸! 𝑓(𝑋) = '
" ∈ 𝒳

𝑃 𝑋 = 𝑥 𝑓(𝑥)

12

Why does SGD work?
• If the example is sampled uniformly at random, the expected value of

the pointwise gradient is the same as the full gradient!

𝐸 ∇𝜽𝐽 " 𝜽 =&
"#$

%

probability of selecting 𝒙 " , 𝑦 " ∇𝜽𝐽 " 𝜽

𝐸 ∇𝜽𝐽 " 𝜽 =&
"#$

%
1
𝑁

∇𝜽𝐽 " 𝜽

𝐸 ∇𝜽𝐽 " 𝜽 =
1
𝑁
&
"#$

%

∇𝜽𝐽 " 𝜽

𝐸 ∇𝜽𝐽 " 𝜽 = ∇𝜽𝐽 𝜽

• In practice, the data set is randomly shuffled then looped through so

that each data point is used equally often

13

15

SGD VS. GRADIENT DESCENT

19

SGD vs. Gradient Descent

20

Gradient Descent Stochastic Gradient Descent

• SGD reduces MSE
much more rapidly
than GD

• For GD / SGD, training
MSE is initially large
due to uninformed
initialization

21

Gradient Descent

SGD

Closed-form
(normal eq.s)

• Def: an epoch is a
single pass through
the training data

1. For GD, only one
update per epoch

2. For SGD, N updates
per epoch
N = (# train examples)

M
ea

n
Sq

ua
re

d
Er

ro
r (

Tr
ai

n)

Epochs

Log-log scale plot

SGD vs. Gradient Descent
• Empirical comparison:

SGD vs. Gradient Descent

• Theoretical comparison:

22

Method Steps to
Convergence

Computation
per Step

Gradient descent 𝑂 log %1 𝜖 𝑂 𝑁𝑀

SGD 𝑂 %1 𝜖 𝑂 𝑀

(with high probability under certain assumptions)

Define convergence to be when 𝐽 𝜽 𝒕 − 𝐽 𝜽∗ < 𝜖

Main Takeaway: SGD has much slower asymptotic convergence
(i.e. it’s slower in theory), but is often much faster in practice.

SGD FOR
LINEAR REGRESSION

23

Linear Regression as Function
Approximation

24

Gradient Calculation for Linear Regression

26

[used by SGD]
[used by Gradient Descent]

SGD for Linear Regression
SGD applied to Linear Regression is called the “Least
Mean Squares” algorithm

27

GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

28

Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓ ✓(0) . Initialize parameters
3: while not converged do
4: ;

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓ ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg=">AAAFIXicdVNLbxMxEN6G8FqehSOXEU2lVuojKQcQElJFy0uqUClNi5QNleOd3VjY3pXtbRtW+2v4C9z4BdwQN8SJK/wJxmlSmrb44vG8vpn5xr1cCuuazR9TtQv1i5cuX7kaXrt+4+at29N3dmxWGI5tnsnMvOsxi1JobDvhJL7LDTLVk7jb+7Dm7bv7aKzI9LYb5NhVLNUiEZw5Uu1N17bDqIep0CWTaWaE66uq87IbAkSc5d6nfLEOSWZggxCYgS1MDVqfr/JOp2IFrzqtLszCdh9BF6qHBhxKaeGgjwbBkdqXOrIJnYLtZ4WMwTpmHGWknJsm4xgXBgl6Y6sqG9E6byxAI6Jox/bfl3PN+apRwdCb/N865vDYDFGKzsKkM0RrmVKoXflKCyeYFB8RcmaYQkfTqcapdvtCYqkzBzzTNLcU47HtFFh6DGQLtVeKJ63q/WuYG8NuQ3TowcV8BYswOJLm/ylPVER3XlDO1LBYkOI/gOd1R6mjlCnF6No/kbKdxz7onAaf6XjY4+TsIoeHrpeUBl1hdHWM1gjHQceceNJRxxOUh5OaKty7PdNcag4PnBVaI2EmGJ3Nvempz1Gc8cJXzyWzttNq5q5b0k4ILpEQCos54x9Yih0SNfVlu+Vw/yuYJU08XNIk05460p6MKJmydqB65KmY69vTNq88z9YpXPKoWwrt+dH8CCgpJLgM/GeCWBjkTg5IYJx6Fxx4n4bO/czDMBpGlsttS89lReNREgfLtF5Iz8EiTX0xxoQV0tklelQU4pk4ELHrt5pcheEszD6nvtaYjikveCsIDRvE2uErByyO6U8J6ysa/ntGH3/BfzMNVCscovSej8PIoMYDTvtBmcooYUrIwQi7KiObjOWJ2fhx2hw9w5bWjmnrNeWomiHPrdOsnhV2VpZaD5ZW3qzMrD4dMX4luBfcD+aCVvAwWA1eBptBO+C1L7Vftd+1P/VP9a/1b/XvR661qVHM3WDi1H/+BdBErlY=</latexit>

Answer:

Solving Linear Regression

29

Question:

Optimization Objectives
You should be able to…
• Apply gradient descent to optimize a function
• Apply stochastic gradient descent (SGD) to

optimize a function
• Apply knowledge of zero derivatives to identify

a closed-form solution (if one exists) to an
optimization problem

• Distinguish between convex, concave, and
nonconvex functions

• Obtain the gradient (and Hessian) of a (twice)
differentiable function

32

PROBABILISTIC LEARNING

33

Probabilistic Learning

Function Approximation
Previously, we assumed that our
output was generated using a
deterministic target function:

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning
Today, we assume that our
output is sampled from a
conditional probability
distribution:

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)

34

Robotic Farming

35

Deterministic Probabilistic

Classification
(binary output)

Is this a picture of
a wheat kernel?

Is this plant
drought resistant?

Regression
(continuous
output)

How many wheat
kernels are in this
picture?

What will the yield
of this plant be?

MAXIMUM LIKELIHOOD
ESTIMATION

36

MLE

37

Suppose we have dataD = {x(i)}N
i=1

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

�MAP = �`;K�t
�

N�

i=1

p(t(i)|�)p(�)

Principle of Maximum Likelihood Estimation:
Choose the parameters that maximize the likelihood
of the data.

�MLE = �`;K�t
�

N�

i=1

p(t(i)|�)

Maximum Likelihood Estimate (MLE)

L(θ)

θMLE

θMLEθ2

θ1

L(θ1, θ2)

MLE

What does maximizing likelihood accomplish?
• There is only a finite amount of probability

mass (i.e. sum-to-one constraint)
• MLE tries to allocate as much probability

mass as possible to the things we have
observed…

…at the expense of the things we have not
observed

38

Maximum Likelihood Estimation

43

MOTIVATION:
LOGISTIC REGRESSION

46

Example: Image Classification
• ImageNet LSVRC-2010 contest:
– Dataset: 1.2 million labeled images, 1000 classes
– Task: Given a new image, label it with the correct class
– Multiclass classification problem

• Examples from http://image-net.org/

49

50

51

52

Example: Image Classification

53

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

Example: Image Classification

54

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input
image

(pixels)

• Five convolutional layers
(w/max-pooling)

• Three fully connected layers

1000-way
softmax

This “softmax”
layer is Logistic

Regression!

The rest is just
some fancy

feature extraction
(discussed later in

the course)

LOGISTIC REGRESSION

55

Logistic Regression

56

We are back to
classification.

Despite the name
logistic regression.

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Key idea: Try to learn
this hyperplane directly

Linear Models for Classification

Directly modeling the
hyperplane would use a
decision function:

for:

h(t) = sign(�T t)

y � {�1, +1}

Looking ahead:
• We’ll see a number of

commonly used Linear
Classifiers

• These include:
– Perceptron
– Logistic Regression
– Naïve Bayes (under

certain conditions)
– Support Vector

Machines

Recall…

Background: Hyperplanes

w

Half-spaces:

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one to
get x’!

1
’

’ ’

1

1

Hyperplane (Definition 1):
H = {x : wT x + b = 0}

Hyperplane (Definition 2):

Recall…

Using gradient ascent for linear
classifiers

Key idea behind today’s lecture:
1. Define a linear classifier (logistic regression)
2. Define an objective function (likelihood)
3. Optimize it with gradient descent to learn

parameters
4. Predict the class with highest probability under

the model

59

Optimization for Linear Classifiers

Whiteboard
– Strawman: Mean squared error for Perceptron!
– What does tell us about x?

60

h(t) = sign(�T t)

Using gradient ascent for linear
classifiers

61

sign(u)

h(t) = sign(�T t)

-1

1

Suppose we wanted to learn a linear classifier, but instead of
predicting y ∈ {-1,+1} we wanted to predict y ∈ {0,1}

Using gradient ascent for linear
classifiers

62

“sign”(u)

0

1

Suppose we wanted to learn a linear classifier, but instead of
predicting y ∈ {-1,+1} we wanted to predict y ∈ {0,1}

Goal: Learn a linear
classifier with

Gradient Descent

Using gradient ascent for linear
classifiers

63

Use a differentiable
function instead!

logistic(u) ≡ 1
1+ e−u

p�(y = 1|t) =
1

1 + 2tT(��T t)

But this decision function
isn’t differentiable…

“sign”(u)

1

0

Logistic Regression

64

Learning: finds the parameters that minimize some
objective function. �� = argmin

�
J(�)

Prediction: Output is the most probable class.
ŷ = �`;K�t

y�{0,1}
p�(y|t)

Model: Logistic function applied to dot product of
parameters with input vector.

p�(y = 1|t) =
1

1 + 2tT(��T t)

Data: Inputs are continuous vectors of length M. Outputs
are discrete.

Logistic Regression

Whiteboard
– Logistic Regression Model
– Partial derivative for logistic regression
– Gradient for logistic regression
– Decision boundary

65

