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K-NN Regression

Example: Dataset with only

i one feature x and one scalar
outputy
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This version is incorrect. |

Algorithm 1: k=1 Nearest
Neighbor Regression

Train: store all (x, y) pairs

Predict: pick the nearest x
in training data and return
itsy

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

Train: store all (x, y) pairs

Predict: pick the nearest
two instances x(™ and x("2)
in traininﬁ data and return
the weighted average of
their y values



K-NN Regression

Example: Dataset with only
one feature x and one scalar Algorithm 1: k=1 Nearest

output y Neighbor Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest x
® in training data and return
itsy

VLG
Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x("2)
L in traininﬁ data and return
KM x(n2) the weighted average of
their y values
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K-NN Regression

Example: Dataset with only
one feature x and one scalar
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¥ This region is closer to
the two points to the left

KM 7 x(n2)

Algorithm 1: k=1 Nearest
Neighbor Regression

 Train: store all (x, y) pairs

* Predict: pick the nearest x
in training data and return
itsy

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression

* Train: store all (x, y) pairs

* Predict: pick the nearest
two instances x(™ and x("2)
in traininﬁ data and return
the weighted average of
their y values



Reminders

 Practice Problems 1
— released on course website

Exam 1: Thu, Feb. 16
— Time: 6:30 — 8:30pm

— Location: Your room/seat assignment will be
announced on Piazza

* Homework 4: Logistic Regression

— Out: Fri, Feb 17
— Due: Sun, Feb. 26 at 11:59pm




OPTIMIZATION METHOD #3:
STOCHASTIC GRADIENT DESCENT



Gradient Descent
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Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

i: procedure SGD(D, 6V)

x 9 <00

% while not converged do

4: i ~ Uniform({1,2,...,N})
5

6

0 < 0 —YVeJD(0)
return 0

per-example objective:
J(6)
original objective:

J(0) =YL, J9(6)



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent (SGD)

i procedure SGD(D, %)
x < 00 s
3 while not converged do :
4: for i € shuffle({1,2,...,N}) do
5 0« 0 —-YVeJ () °
6 return %
In practice, it is common
) SRR to implement SGD using
per-example objective: sampling with(out
(7) replacement (i.e.
J (0) shuffle({1,2,... N}), even
original objective: though most of the
N theory is for sampl(mg
_ (7) with replacement (i.e.
J(H) Z’L’:l J (9) Uniform({1,2,... N}).




Background: Probability

Expectation of a function of a random variable

* Forany discrete random variable X

Exlf(0] = ) P(X = 0)f(x)

XEX



Why does SGD work?

If the example is sampled uniformly at random, the expected value of

the pointwise gradient is the same as the full gradient!

N

E[Ve/D(@)] = Z(probability of selecting x), y D) Vo7 (0)

i=1
N

=" ()71 ®

1=1
N
= lz Vo] (0)
NL®
=1
= Ve/(0)
In practice, the data set is randomly shuffled then looped through so

that each data point is used equally often
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SGD VS. GRADIENT DESCENT



SGD vs. Gradient Descent

Gradient Descent Stochastic Gradient Descent
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* Empirical comparison:

Mean Squared Error (Train)

A

SGD vs. Gradient Descent

Log-log scale plot

ClosedXorm
(normal

Gradient Descent

Epochs

Def: an epoch is a
single pass through
the training data

For GD, only one
update per epoch

For SGD, N updates
per epoch
N = (# train examples)

SGD reduces MSE
much more rapidly
than GD

For GD / SGD, training
MSE is initially large
due to uninformed
initialization



SGD vs. Gradient Descent

* Theoretical comparison:

Define convergence to be when J(8V) — J(8*) < ¢

Steps to Computation
Convergence per Step
Gradient descent  0(log 1/¢) O(NM)
SGD 0(1/¢) 0(M)

\/

(with high probability under certain assumptions)

22



SGD FOR
LINEAR REGRESSION



Linear Regression as Function
Approximation

2. Choose hypothesis space, H:
all linear functions in M-dimensional space

H = {hg : ho(x) = 07x,0 ¢ RM}




Gradient Calculation for Linear Regression

Derivative of J(*)(8):
d d 1 .
4 ) 0T x () _ ()2
dOkJ (9) = d9k2( )
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= (8Tx® — y(%))xg)
Gradient of J(¥)(9)
i % J®(6)7
A (O))
Vo D(0) = | ¥ J. (0) _
_ﬁJ (") (6).

[used by SGD]

[(07x®

67

(OTX(Z)

(i))

— yD)zf]
— y@)af’

y(z))w( i)

— y @)z

y )z

yD)a)’

y(z)) (2)

Derivative of J(0):
N
d d _.
el _ el (O
570 =2 570
=1
N
=3 (07X
=1
Gradient of J(0) [used by Gradient Descent]
A J0)] [ Zea(67x0 -
J(0 Y (07x®
VOJ(B): 02 ( ) Zz:l( X.
-ﬁ«f@- S (67X -
_ Z(BT (5) _ 0%



SGD for Linear Regression

SGD applied to Linear Regression is called the “Least
Mean Squares” algorithm

Algorithm 1 Least Mean Squares (LMS)

procedure LMS(D, 80

6« 6 > Initialize parameters

1%
2
3: while not converged do

4: for i € shuffle({1,2,...,N})do
5

6

7

g + (0Tx() — y()x() > Compute gradient
0 <0 —n~g > Update parameters
return 6




GD for Linear Regression

Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

procedure GDLR(D, 6'*)

0 «— 60 > Initialize parameters
while not converged do

1:
2
3
4 g S (07xD) — y)x(®) > Compute gradient
5
6

0<—0—n~g > Update parameters
return 6




Solving Linear Regression

Question:

True or False: If Mean Squared Error (i.e. & S0 (y® — h(x(#))?)
has a unique minimizer (i.e. argmin), then Mean Absolute Error (i.e.

L Zf;\; 1y — h(x()|) must also have a unique minimizer.

Answer:



Optimization Objectives

You should be able to...
* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to
optimize a function

* Apply knowledge of zero derivatives to identify
a closed-form solution (if one exists) to an
optimization problem

* Distinguish between convex, concave, and
nonconvex functions

* Obtain the gradient (and Hessian) of a (twice)
differentiable function




PROBABILISTIC LEARNING



Probabilistic Learning

Function Approximation

Previously, we assumed that our
output was generated using a
deterministic target function:

x) ~ p* ()
y) = ¢*(x)

Our goal was to learn a
hypothesis h(x) that best
approximates c*(x)

Probabilistic Learning

Today, we assume that our
output is sampled from a
conditional probability
distribution:

x) ~ p*()
Y~ p* (-[x)

Our goal is to learn a probability
distribution p(y|x) that best
approximates p*(y|x)



Robotic F;f]rming

Deterministic Probabilistic
Classification Is this a picture of | Is this plant
| (binary output) a wheat kernel? drought resistant?
Regression How many wheat | What will the yield
(continuous kernels are in this | of this plant be?
output) picture?
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MAXIMUM LIKELIHOOD
ESTIMATION



MLE
Suppose we have data D = {2V},

Principle of Maximum Likelihood Estimation:
Choose the parameters that max1m|ze the likelihood

of the data.
oM = argma,XHp (4)9)

1—=1
Maximum Likelihood Estimate (MLE)

A
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MLE

What does maximizing likelihood accomplish?

* There is only a finite amount of probability
mass (i.e. sum-to-one constraint)

* MLE tries to allocate as much probability
mass as possible to the things we have
observed...

... at the expense of the things we have not
observed



Maximum Likelihood Estimation
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MOTIVATION:
LOGISTIC REGRESSION



Example: Image Classification

45



IM&GENET Fon |
- ST o A — = About Download

Not logged in. Login | Signup

Bird 2
2126 92.85% <1
Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings pictures ggfcu;ﬁ%tlg :vggrdnet

.~ marine animal, marine creature, sea animal, sea creature (1)
v scavenger (1) Treemap Visualization Images of the Synset Downloads
- biped (0)
.- predator, predatory animal (1)
i larva (49)
- acrodont (0)
- feeder (0)
- stunt (0)
+. chordate (3087)
| tunicate, urochordate, urochord (6)
- cephalochordate (1)
+. vertebrate, craniate (3077)
| mammal, mammalian (1169)
- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)
i cock (1)
- hen (0)
- nester (0)
i~ night bird (1)
- bird of passage (0)
- protoavis (0)
- archaeopteryx, archeopteryx, Archaeopteryx lithographi
- Sinornis (0)
- |bero-mesornis (0)
- archaeornis (0)
I ratite, ratite bird, flightless bird (10)
- carinate, carinate bird, flying bird (0)
I passerine, passeriform bird (279)
- nonpasserine bird (0)
- bird of prey, raptor, raptorial bird (80)
- gallinaceous bird, gallinacean (114)




. aquatic plant, water plant, hydrophyte, hydrophytic plant (11

IMAGENET I [

Not logged in. Login | Signup

o § " =)
German iris, Iris kochii 469  49.6% B

Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica pictures gglracu;ﬂrtiﬁg %grdnet

halophyte (0)
“.. succulent (39) Treemap Visualization Images of the Synset Downloads
- cultivar (0)

- cultivated plant (0)

- weed (54)

- evergreen, evergreen plant (0)

- deciduous plant (0O)

- vine (272)

- creeper (0)

- woody plant, ligneous plant (1868)

- geophyte (0)

- desert plant, xerophyte, xerophytic plant, xerophile, xerophilc
- mesophyte, mesophytic plant (0)

- tuberous plant (0)

- bulbous plant (179)

*. iridaceous plant (27)
¥- iris, flag, fleur-de-lis, sword lily (19)

+ bearded iris (4)

Florentine iris, orris, Iris germanica florentina, Iris
German iris, Iris germanica (0)

- German iris, Iris kochii (0)

... Dalmatian iris, Iris pallida (0)

I beardless iris (4)

- bulbous iris (O)

- dwarf iris, Iris cristata (0)

- stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)

- yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)

- blue flag, Iris versicolor (O)




IMAGENET sbas, | Dowri

About Download

2 images, 21841 synsets indexed

Not logged in. Login | Signup

A=
Court, courtyard 165 92.61% '

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court" pictures Eg?c“;?,'t'}z %gfdnet
1

& Numbers in brackets: (the number of synsets in the subtree ). Treemap Visualization Images of the Synset Downloads

V- ImageNet 2011 Fall Release (32326)
xs-- plant, flora, plant life (4486)
1 geological formation, formation (175)
= natural object (1112)
[ sport, athletics (176)
. artifact, artefact (10504)
’5 - instrumentality, instrumentation (5494)
¥- structure, construction (1405)
i~ airdock, hangar, repair shed (0)
1 altar (1)
1 arcade, colonnade (1)
( - arch (31)
. area (344)
- aisle (0)
¢ auditorium (1)
- baggage claim (0)
- box (1)
- breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)
- corner, nook (2)
. court, courtyard (6)
- atrium (0)
- bailey (0)
- cloister (0)
- food court (0)

- forecourt (0)
.. narvie (NY
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Example: Image Classification




Example: Image Classification

CNN for Image Classification
(Krizhevsky, Sutskever & Hinton, 2011)
17.5% error on ImageNet LSVRC-2010 contest

Input * Five convolutional layers 1000-way
image (w/max-pooling)
(pixels) e Three fully connected layers softmax

| | | f i | [ fl

The rest is just H This “softmax”’ i
some fancy - : o e B\ /Lo \dense
feature extraction | - layer is Logistic [= X =

" (discussed laterin [—=—)| Regression! } /" \
the course) 3| dense
55 — 1000
224 ’S/t’lr”i‘de Max 25 Max pooling 2048 2048
Uof 4 pooling pooling

3 48



LOGISTIC REGRESSION



Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs

are discrete. | |
D = {x9, y1Y  wherex ¢ R andy € {0,1}

We are back to
classification.

Despite the name
logistic regression.



.............

| this hyperplane directly

™

e 1Y

£ | Directly modeling the
—| hyperplane would use a
i decision function:

— .&b DO
Looking ahead:

We’ll see a number of :
commonly used Linear ==
Classifiers
These include:

Perceptron

h(x) = sign(6” x)

— Logistic Regression | =
— Naive Bayes (under | . .
certain conditions) L= 009 for:

Support Vector j o «
Machines

(IS {_17 _I_l}

3.5



Background: Hyperplanes%

Hyperplane (Definition 1):
H={x:w'x+b=0}

Hyperplane (Definition 2):

H={x:0"x=0

and z¢ = 1}
' T
Ve :b,wl,...,qul
x' =[1,21,...,2M]
Half-spaces:

H+={X:9Tx>0andx(1):1}
H ={X:0Tx<0anda:(1):1}



Using gradient ascent for linear

classifiers
Key idea behind today’s lecture:
1. Define alinear classifier (logistic regression)
2. Define an objective function (likelihood)

3. Optimize it with gradient descent to learn
parameters

4. Predict the class with highest probability under
the model



Optimization for Linear Classifiers

Whiteboard

— Strawman: Mean squared error for Perceptron!
— What does 67 x tell us about x?



Using gradient ascent for linear
classifiers




Using gradient ascent for linear
classifiers




Using gradient ascent for linear
classifiers




Logistic Regression

Data: Inputs are continuous vectors of length M. Outputs

are discrete. | |
D = {x9, yY _ wherex ¢ RM andy € {0,1}

Model: Logistic function applied to dot product of
parameters with input vector. 1
pe(y = 1|x) =

1 + exp(—6" %)
Learning: finds the parameters that minimize some

objective function. @* — argmin J(Q)
0

Prediction: Output is the most probable class.

y = argmax pg (y|x)
ye€{0,1}



Logistic Regression

Whiteboard

— Logistic Regression Model

— Partial derivative for logistic regression
— Gradient for logistic regression

— Decision boundary



