	Monday	, Februar	y 13, 2023	12:24	PM		_
,							
I		- (-1.	C 104	\cap	time:	,

Closed-Form Optimization

Given J(6): RM→R

(1) Write down the gadent
$$VJ(\hat{\theta})$$

(2) Set gendant to all zeros
$$\nabla J(\vec{\theta}) = \begin{bmatrix} \partial J/\partial \theta_1 \\ \partial J/\partial \theta_2 \end{bmatrix} = \begin{bmatrix} 0\\0\\\vdots\\ \partial J/\partial \theta_n \end{bmatrix}$$

Closed Form Solution for Linear Regression

Notehan

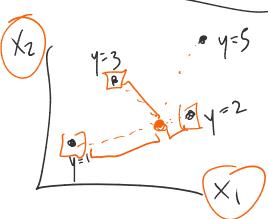
$$\overrightarrow{Y} = \begin{bmatrix} Y^{(1)} \\ Y^{(2)} \end{bmatrix}$$
 $\overrightarrow{X} = \begin{bmatrix} X_1^{(1)} & \cdots & X_M^{(1)} &$

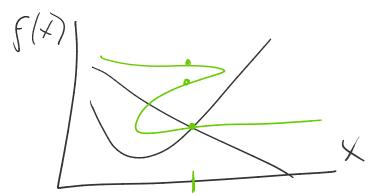
(i) Write
$$J(\vec{\theta})$$
 in metrix/vector form
$$J(\vec{\theta}) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \vec{x}^{(i)})^2$$

$$= \frac{1}{N} \frac{1}{2} (X \vec{\theta} - \vec{y})^T (X \vec{\theta} - \vec{y})$$

(T) 2 (T)

$$\nabla J(\vec{0}) = X^T X \vec{0} - X^T \vec{\zeta} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$


$$X^T X \overrightarrow{\Theta} - X^T y = 0$$


$$\Rightarrow$$
 $X^TX\Theta = X^Ty$

$$\Rightarrow X^{T}X\Theta = X^{T}y$$

$$\Rightarrow \Theta = (X^{T}X)^{-1}X^{T}y = \underset{\Theta}{\operatorname{argmin}} J(\vec{\Theta})$$

