
Recitation 3
Classification and Regression

10-301/10-601: Introduction to Machine Learning

02/08/2023

1 Decision Trees and Beyond

1. Decision Tree Classification with Continuous Attributes
Given the dataset D1 = {x(i), y(i)}Ni=1 where x(i) ∈ R2, y(i) ∈ {Yellow,Purple,Green} as
shown in Fig. 1, we wish to learn a decision tree for classifying such points. Provided
with a possible tree structure in Fig. 1, what values of α, β and leaf node predictions
could we use to perfectly classify the points? Now, draw the associated decision bound-
aries on the scatter plot.

Figure 1: Classification of 2D points, with Decision Tree to fill in

Solution:

10-301/10-601: Recitation 3 Page 2 of 18

Note how our decision tree actually creates partitions in the 2D space of points, and
each partition is associated with one predicted class. If we had trees of larger maximum
depth, we gain the ability to create even more fine-grained partitions of the feature
space, resulting in greater flexibility of predictions.

10-301/10-601: Recitation 3 Page 3 of 18

2. Decision Tree Regression with Continuous Attributes
Now instead if we had dataset D2 = {x(i), y(i)}Ni=1 where x(i) ∈ R2, y(i) ∈ R as shown in
Fig. 2, we wish to learn a decision tree for regression on such points. Using the same
tree structure and values of α, β as before, what values should each leaf node predict to
minimize the training Mean Squared Error (MSE) of our regression? Assume each leaf
node just predicts a constant.

Figure 2: Regression on 2D points, with Decision Tree to fill in

10-301/10-601: Recitation 3 Page 4 of 18

Solution:

In this example we see how decision trees can be used for regressions too. Since we
already know the splits, we partition up the feature space in the same way as before
where each partition yields a single constant as a prediction. Instead of predicting a
class, we want to predict a real number for each partition that will minimize our metric,
MSE. The mean value of y in each partition will be the prediction that minimizes MSE.

3. Choosing a Tree: What might happen if we increased the max-depth of the tree?
When predicting on unseen data, would we prefer the depth-2 tree above or a very deep
tree?

We would overfit to the training data by learning a complex decision boundary, and
would rather prefer the depth-2 tree during inference.

10-301/10-601: Recitation 3 Page 5 of 18

The smaller the depth of the tree, the fewer splits we make, which simplifies the decision
boundary.

This question is getting at the inductive bias of a decision tree wherein we prefer trees
with a smaller depth that work.

Consider the dataset above. The complex decision boundary on the left overfits the
training data, while the simpler boundary on the right will probably generalize to test
data better.

10-301/10-601: Recitation 3 Page 6 of 18

2 k-NN

2.1 A Classification Example

Using the figure below, what would you categorize the green circle as with k = 3? k = 5?
k = 4?

Figure 3: An example of k-NN on a small dataset; image source from Wikipedia

Example of k-NN classification. The test sample (green circle) should be classified either to
the first class of blue squares or to the second class of red triangles.

If k = 3 (solid line circle) it is assigned to the second class because there are 2 triangles and
only 1 square inside the inner circle.

If k = 5 (dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles inside the
outer circle).

2.2 k-NN for Regression

You want to predict a continuous variable Y with a continuous variable X. Having just
learned k-NN, you are super eager to try it out for regression. Given the data below, draw
the regression lines (what k-NN would predict Y to be for every X value if it was trained for
the given data) for k-NN regression with k = 1, weighted k = 2, and unweighted k = 2. For
weighted k = 2, take the weighted average of the two nearest points. For unweighted k = 2,
take the unweighted average of the two nearest points. (Note: the points are equidistant along
the x-axis)

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm##/media/File:KnnClassification.svg

10-301/10-601: Recitation 3 Page 7 of 18

(a) k = 1

(b) weighted k = 2

(c) unweighted k = 2

10-301/10-601: Recitation 3 Page 8 of 18

SOLUTION:

(a) k = 1 (b) weighted k = 2
For X < 1, the regression line tends to the average of the first 2 points.

Similarly, for X > 5, the regression line tends to the average of the last 2 points.

(c) unweighted k = 2

To understand how the weighted k=2 case works, you can write a small script as well.

data_x = [1.,2.,3.,4.,5.]

data_y = [4.,10.,7.,20.,13.]

x= []

y = []

for i in range(len(data_x)-1):

x1 = data_x[i]

x2 = data_x[i+1]

y1 = data_y[i]

y2 = data_y[i+1]

xtmp = np.linspace(x1,x2,100)

k1 = xtmp - x1

k2 = x2 - xtmp

ytmp = k1*y2 + k2*y1

ytmp /= (x2-x1)

x.append(xtmp)

10-301/10-601: Recitation 3 Page 9 of 18

(a) k = 2

y.append(ytmp)

10-301/10-601: Recitation 3 Page 10 of 18

2.3 k-NN Decision Boundary

Draw the decision boundaries for the above training dataset given using kNN algorithm con-
sidering k=1.

SOLUTION:

10-301/10-601: Recitation 3 Page 11 of 18

3 Linear Regression

3.1 Defining the Objective Function

1. What does an objective function J(θ) do?

A function to measure how “good” the linear model is

2. What are some examples?

– Mean Squared Error 1
N

∑N
i=1 e

2
i

– Mean Absolute Error: 1
N

∑N
i=1 |ei|

3. What are some properties of this function?

• Should be differentiable

• Preferably convex

10-301/10-601: Recitation 3 Page 12 of 18

3.2 Solving Linear Regression using Gradient Descent

x(1) x(2) x(3) x(4) x(5)

x1 1.0 2.0 3.0 4.0 5.0
x2 -2.0 -5.0 -6.0 -8.0 -11.0
y 2.0 4.0 7.0 8.0 11.0

Now, we want to implement the gradient descent method.

Assuming that γ = 0.1 and θ has been initialized to [0, 0, 0]T , perform one iteration
of gradient descent:

1. What is the gradient of the objective function J(θ) with respect to θ: ∇θJ(θ)?

dJ(θ)

dθk
=

1

5

5∑
i=1

−2x
(i)
k (y(i) −

2∑
j=0

θjx
(i)
j)

∇θJ(θ) =



dJ(θ)

dθ0

dJ(θ)

dθ1

dJ(θ)

dθ2



=



1

5

5∑
i=1

−2x
(i)
0 (y(i) −

2∑
j=0

θjx
(i)
j)

1

5

5∑
i=1

−2x
(i)
1 (y(i) −

2∑
j=0

θjx
(i)
j)

1

5

5∑
i=1

−2x
(i)
2 (y(i) −

2∑
j=0

θjx
(i)
j)



2. How do we carry out the update rule?

We initialize:

θ =

0
0
0



10-301/10-601: Recitation 3 Page 13 of 18

Follow the update rule:

θ(k+1) = θ(k) − α︸︷︷︸
“Cross-validated”

∇θ|θ=θ(k)J(θ)

, where k = 0 here

1

5

5∑
i=1

−2x
(i)
0 (y(i) −

2∑
j=0

θjx
(i)
j) =

−2

5
· (2 + 4 + 7 + 8 + 11)

= −12.8

1

5

5∑
i=1

−2x
(i)
1 (y(i) −

2∑
j=0

θjx
(i)
j) =

−2

5
· (2 + 8 + 21 + 32 + 55)

= −47.2

1

5

5∑
i=1

−2x
(i)
2 (y(i) −

2∑
j=0

θjx
(i)
j) =

−2

5
· (−4− 20− 42− 64− 121)

= 100.4

∴ θ(1) = θ(0) − α∇θ|θ=θ(0)J(θ)

=

0
0
0

− 0.1

−12.8
−47.2
100.4


=

 1.28
4.72

−10.04


*Convexity of objective function ensures that the local min(max) of the func-
tion is the global min(max).

3. How could we pick which value of γ to use if we weren’t given the step size?

Cross-validation or use a hold-out validation dataset

10-301/10-601: Recitation 3 Page 14 of 18

4 Perceptron

4.1 Perceptron Mistake Bound Guarantee

If a dataset has margin γ and all points inside a ball of radius R, then the perceptron makes
less than or equal to (R/γ)2 mistakes.

Figure 7: Perceptron Mistake Bound Setup

4.2 Definitions

Margin:

• The margin of example x wrt a linear separator w is the (absolute) distance from x to
the plane w · x = 0.

• The margin γw of a set of examples S wrt a linear separator w is the smallest margin
over points x ∈ S.

• The margin γ of a set of examples S is the maximum γw over all linear separators w.

Linear Separability: For a binary classification problem, a set of examples S is linearly
separable if there exists a linear decision boundary that can separate the points.

Update Rule: When the k-th mistake is made on data point x(i), the parameter update is

θ(k+1) = θ(k) + y(i)x(i)

We say the (batch) perceptron algorithm has converged when it stops making mistakes on the
training data.

10-301/10-601: Recitation 3 Page 15 of 18

4.3 Perceptron Mistake Bound: Example

Given dataset D = {(x(i), y(i))}Ni=1, suppose:

1. Finite size inputs: ||x(i)|| ≤ R

2. Linearly separable data: ∃θ∗ and γ > 0 s.t. ||θ∗|| = 1 and y(i)(θ∗ · x(i)) ≥ γ, ∀i

Then, the number of mistakes k made by the perceptron algorithm on D is bounded by (R/γ)2.

The following table shows a dataset of linearly separable datapoints.

x1 x2 y

1 -1 1
0 2 -1
4 0 1

Assuming that the linear separator with the largest margin is given by:

θT
[
x1

x2

]
= 0, where θ =

[
−1
1

]

Calculate the theoretical mistake bound for the perceptron.

The radius will be the distance of the point furthest from the origin i.e (4, 0). So, the radius,
r will be

√
16 = 4

Since the linear separator is already provided, the margin, γ, will the distance of the point
closest to the separator which is (1,-1). So,γ = |(−1)∗1+(1)∗(−1)|√

1∗1+(−1)∗(−1)
= 2/

√
2 =

√
2

The mistake bound = (4√
2
)2 = 8

10-301/10-601: Recitation 3 Page 16 of 18

4.4 Theorem: Block, Novikoff

Given dataset D = {(x(i), y(i))}Ni=1, suppose:

1. Finite size inputs: ||x(i)|| ≤ R

2. Linearly separable data: ∃θ∗ and γ > 0 s.t. ||θ∗|| = 1 and y(i)(θ∗ · x(i)) ≥ γ, ∀i

Then, the number of mistakes k made by the perceptron algorithm on D is bounded by (R/γ)2.

Proof:
Part 1: For some A, Ak ≤ ||θ(k+1)||

θ(k+1) · θ∗ = (θ(k) + y(i)x(i)) · θ∗, Perceptron algorithm update

= θ(k) · θ∗ + y(i)(θ∗ · x(i)))

≥ θ(k) · θ∗ + γ, by assumption

=⇒ θ(k+1) · θ∗ ≥ kγ, by induction on k since θ(1) = 0

=⇒ ||θ(k+1)|| ≥ kγ, since ||w|| × ||u|| ≥ w · u and ||θ∗|| = 1

Part 2: For some B, ||θ(k+1)|| ≤ B
√
k

||θ(k+1)||2 = ||θ(k) + y(i)x(i)||2, Perceptron algorithm update

= ||θ(k)||2 + (y(i))2||x(i)||2 + 2y(i)(θ(k) · x(i))

≤ ||θ(k)||2 + (y(i))2||x(i)||2, since kth mistake =⇒ y(i)(θ(k) · x(i)) ≤ 0

= ||θ(k)||2 +R2, since (y(i))2||x(i)||2 = ||x(i)||2 ≤ R2, by assumption and (y(i))2 = 1

=⇒ ||θ(k+1)||2 ≤ kR2, by induction on k since (θ(i))2 = 0

=⇒ ||θ(k+1)|| ≤
√
kR

10-301/10-601: Recitation 3 Page 17 of 18

Part 3: Combine the bounds

kγ ≤ ||θ(k+1)|| ≤
√
kR

=⇒ k ≤ (R/γ)2

• Perceptron will not converge.

• However, we can achieve a similar bound on the number of mistakes made in one pass
(Freund, Schapire)

Main Takeaway: For linearly separable data, if the perceptron algorithm repeatedly cycles
through the data, it will converge in a finite number of steps.

10-301/10-601: Recitation 3 Page 18 of 18

5 Summary

5.1 Decision Tree

Pros Cons Inductive bias When to use

• Easy to
understand and
interpret

• Very fast for
inference

• Tree may grow very
large and tend to
overfit.

• Greedy behaviour
may be sub-optimal

• Prefer the
smallest tree
consistent w/
the training
data (i.e. 0 error
rate)

• Most cases.
Random forests are
widely used in
industry.

5.2 k-NN

Pros Cons Inductive bias When to use

• No training of
parameters

• Can apply to
multi-class
problems and
use different
metrics

• Slow for large
datasets

• Must select good k
• Imbalanced data

and outliers can
lead to misleading
results

• Similar (i.e.
nearby) points
should have
similar labels

• All label
dimensions are
created equal

• Small dataset
• Small

dimensionality
• Data is clean (no

missing data)
• Inductive bias is

strong for dataset

5.3 Linear regression

Pros Cons Inductive bias When to use

• Easy to
understand and
train

• Closed form
solution

• Sensitive to noise
(other than
zero-mean
Gaussian noise)

• The true
relationship
between the
inputs and
output is linear.

• Most cases (can be
extended by adding
non-linear feature
transformations)

5.4 Perceptron

Pros Cons Inductive bias When to use

• Easy to
understand and
works for online
learning.

• Provable
guarantees on
mistakes made
for linearly
separable data.

• No guarantees on
finding best
(maximum-margin)
hyperplane.

• Output is sensitive
to noise in the
training data.

• The binary
classes are
separable in the
feature space by
a line.

• Not used much
anymore, but
variants (kernel
perceptron,
structured
perceptron) may
have more success.

	Decision Trees and Beyond
	k-NN
	A Classification Example
	k-NN for Regression
	k-NN Decision Boundary

	Linear Regression
	Defining the Objective Function
	Solving Linear Regression using Gradient Descent

	Perceptron
	Perceptron Mistake Bound Guarantee
	Definitions
	Perceptron Mistake Bound: Example
	Theorem: Block, Novikoff

	Summary
	Decision Tree
	k-NN
	Linear regression
	Perceptron

