
HOMEWORK 7: HIDDEN MARKOV MODELS
10-301/10-601 Introduction to Machine Learning (Fall 2022)

http://www.cs.cmu.edu/˜mgormley/courses/10601/
OUT: Friday, November 11th

DUE: Monday, April 10th
TAs: Monica, Yash, Siva, Dishani, Asmita, Markov, Neural the Narwhal

Summary In this assignment you will implement a new named entity recognition system using Hidden
Markov Models. You will begin by going through some multiple choice and short answer warm-up problems
to build your intuition for these models and then use that intuition to build your own HMM models.

START HERE: Instructions
• Collaboration Policy: Please read the collaboration policy here: http://www.cs.cmu.edu/
˜mgormley/courses/10601/syllabus.html

• Late Submission Policy: See the late submission policy here: http://www.cs.cmu.edu/

˜mgormley/courses/10601/syllabus.html

• Submitting your work: You will use Gradescope to submit answers to all questions and code. Please
follow instructions at the end of this PDF to correctly submit all your code to Gradescope.

– Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, please use the provided template. Submissions can be handwritten onto the template, but
should be labeled and clearly legible. If your writing is not legible, you will not be awarded
marks. Alternatively, submissions can be written in LATEX. Each derivation/proof should be
completed in the boxes provided. You are responsible for ensuring that your submission contains
exactly the same number of pages and the same alignment as our PDF template. If you do not
follow the template, your assignment may not be graded correctly by our AI assisted grader and
there will be a 2% penalty (e.g., if the homework is out of 100 points, 5 points will be deducted
from your final score).

– Programming: You will submit your code for programming questions on the homework to
Gradescope. After uploading your code, our grading scripts will autograde your assignment by
running your program on a virtual machine (VM). You are only permitted to use the Python Stan-
dard Library modules and numpy. Ensure that the version number of your programming lan-
guage environment (i.e. Python 3.9.12) and versions of permitted libraries (i.e. numpy 1.23.0)
match those used on Gradescope. You have 10 free Gradescope programming submissions, after
which you will begin to lose points from your total programming score. We recommend debug-
ging your implementation on your local machine (or the Linux servers) and making sure your
code is running correctly first before submitting your code to Gradescope.

• Materials: The data and reference output that you will need in order to complete this assignment is
posted along with the writeup and template on the course website.
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Instructions for Specific Problem Types
For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

Matt Gormley

⃝ Marie Curie

⃝ Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in the new answer:

Select One: Who taught this course?

Henry Chai

⃝ Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

2 I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and bubble in the new
answer(s):

Select all that apply: Which are scientists?

■ Stephen Hawking

■ Albert Einstein

■ Isaac Newton

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully included in the
given space. You may cross out answers or parts of answers, but the final answer must still be within the
given space.

Fill in the blank: What is the course number?

10-601 10-��SS6301
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Written Questions (49 points)
1 LATEX Bonus Point and Template Alignment (1 points)

1. (1 point) Select one: Did you use LATEX for the entire written portion of this homework?

⃝ Yes

⃝ No

2. (0 points) Select one: I have ensured that my final submission is aligned with the original template
given to me in the handout file and that I haven’t deleted or resized any items or made any other modi-
fications which will result in a misaligned template. I understand that incorrectly responding yes to this
question will result in a penalty equivalent to 2% of the points on this assignment.
Note: Failing to answer this question will not exempt you from the 2% misalignment penalty.

⃝ Yes

2 Graphical Models (6 points)
Consider the joint distribution over the binary random variables A,B,C,D,E represented by the
Bayesian Network shown in the figure.

A

B
C

D

E

1. (1 point) Write the joint probability distribution for P (A,B,C,D,E) factorized as much as possible
according to the standard definition of a Bayesian Network using the conditional independence assump-
tions expressed by the above network.

Your Answer

2. (1 point) Which nodes are in the Markov boundary of B? Note that the Markov boundary is the smallest
possible Markov blanket.

Your Answer

3. (1 point) Which nodes are in the Markov boundary of C? Note that the Markov boundary is the smallest
possible Markov blanket.
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Your Answer
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4. (1 point) True or False: E is conditionally independent of C given {A,B,D}. That is,
E ⊥ C | {A,B,D}.

⃝ True

⃝ False

5. (1 point) How many parameters would we need to represent the joint distribution P (A,B,C,D,E)
without the conditional independence assumptions expressed by the Bayesian Network?

Your Answer

6. (1 point) How many parameters would we need to represent the joint distribution P (A,B,C,D,E)
with the conditional independence assumptions expressed by the Bayesian Network?

Your Answer
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3 Hidden Markov Models (12 points)
1. In this section, we will test your understanding of several aspects of HMMs.

(a) (2 points) Select all that apply: Let Yt be the state at time t. Which of the following are true under
the (first-order) Markov assumption in an HMM?

2 The states are independent

2 The observations are independent

2 Yt ⊥⊥ Yt−1 | Yt−2

2 Yt ⊥⊥ Yt−2 | Yt−1

2 None of the above

(b) (2 points) Select all that apply: Which of the following independence assumptions hold in an
HMM?

2 The current observation Xt is conditionally independent of all other observations given
the current state Yt

2 The current observation Xt is conditionally independent of all other states given the
current state Yt

2 The current state Yt is conditionally independent of all states given the previous state

2 The current observation Xt is conditionally independent of Yt−2 given the previous
observation Xt−1

2 None of the above
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2. In the remaining questions, you will see two quantities and decide what the strongest relation between
them is. For each question, there is only one correct answer. As a reminder, αt(sj) = P (Yt =
sj , x1:t) and βt(sj) = P (xt+1:T | Yt = sj). Assume that there are J possible hidden states, so each
Yt ∈ {si}Ji=1, and that we do not use pseudocounts.

Note: ? means it’s not possible to assign any true relation.

(a) (3 points) Select one: What is the relation between
∑J

i=1(α5(si)β5(si)) and P (x1:T ), for T > 5?
Select only the strongest relation that necessarily holds.

⃝ =

⃝ >

⃝ <

⃝ ≤

⃝ ≥

⃝ ?

(b) (3 points) Select one: What is the relation between P (Y4 = s1, Y5 = s2, x1:T ) and α4(s1)β5(s2)?
Select only the strongest relation that necessarily holds.

⃝ =

⃝ >

⃝ <

⃝ ≤

⃝ ≥

⃝ ?

(c) (2 points) Select one: What is the relation between α5(si) and β5(si)? Select only the strongest
relation that necessarily holds.

⃝ =

⃝ >

⃝ <

⃝ ≤

⃝ ≥

⃝ ?

Page 7



4 Viterbi Decoding (4 points)
Suppose we have a set of sequences consisting of T observed states, x1, . . . , xT , where each xt ∈
{1, 2, 3}. Each observed state is associated with a hidden state Yt ∈ {C,D}. Let s1 = C and s2 = D.

In the Viterbi algorithm, we seek to find the most probable hidden state sequence ŷ1, . . . , ŷT given the
observations x1, . . . , xT .

We define:

• B to be the transition matrix: Bjk = P (Yt = sk | Yt−1 = sj)

• A to be the emission matrix: Ajk = P (Xt = k | Yt = sj)

• π to be the initialization matrix for Y1: πj = P (Y1 = sj)

• ωt(sk) to be the maximum product of all the probabilities taken through path Y1, . . . , Yt−1 that
ends with Yt at state sk.

ωt(sk) = max
y1,...,yt−1

P (x1:t, y1:t−1, Yt = sk) (1)

• bt(sk) to be the backpointer that stores the path through hidden states that gives us the highest
product.

bt(sk) = argmax
y1,...,yt−1

P (x1:t, y1:t−1, Yt = sk) (2)

We outline the Viterbi Algorithm below:

1. Initialize ω1(sj) = πjAjx1 and b1(sj) = j

2. For t > 1, we have

ωt(sj) = max
k∈{1,...,J}

AjxtBkjωt−1(sk)

bt(sj) = argmax
k∈{1,...,J}

AjxtBkjωt−1(sk)

We can obtain the most probable sequence by backtracking through the backpointers as follows:

1. ŷT = argmaxk∈{1,...,J} ωT (sk).

2. For t = T − 1, . . . , 1:
ŷt = bt+1(ŷt+1)

3. Return ŷ1, . . . , ŷT
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For the following question, consider the Hidden Markov Model specified below. We have that P (Y1 =
C) = P (Y1 = D) = 0.5, and the state transition model and emission probability tables are given as
follows.

C D0.7

0.3

0.6

0.4

k P (Xt = k | Yt = C) P (Xt = k | Yt = D)

1 0.5 0.3
2 0.4 0.5
3 0.1 0.2

We observed X1 = 1 and X2 = 2.

1. (2 points) Compute ω1(C) and ω1(D). If your answers involve decimal numbers, please round your
answer to TWO decimal places.

Note: Showing your work in these questions is optional, but it is recommended to help us understand
where any misconceptions may occur. Only your answer in the left box will be graded.

What is ω1(C)?

ω1(C) Work

What is ω1(D)?

ω1(D) Work

2. (2 points) (Select one) Which of the following is the most likely sequence of hidden states?

# Y1 = C, Y2 = C

# Y1 = D, Y2 = D

# Y1 = D, Y2 = C

# Y1 = C, Y2 = D

# Not enough information.
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5 Forward-Backward Algorithm (20 points)
The following questions should be completed before you start the programming component of this
assignment. To help you prepare to implement the HMM forward-backward algorithm (see Section 8.5
for a detailed explanation), we have provided a small example for you to work through by hand. This
toy data set consists of a training set of three sequences with three unique words and two tags, and a
validation set with a single sequence composed of the same words occurring in the training set.

Training set:

you D
eat C
fish D

you D
fish D
eat C

eat C
fish D

The training word sequences are:

x(1) = [you eat fish]T

x(2) = [you fish eat]T

x(3) = [eat fish]T

And the corresponding tags are:

y(1) = [D C D]T

y(2) = [D D C]T

y(3) = [C D]T

Validation set:

fish
eat
you

The validation word sequence is:

xvalidation =
[
fish eat you

]T
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In this question, we define:

• Each observed state xt ∈ {1, 2, 3}, where 1 corresponds to you, 2 corresponds to eat, and 3
corresponds to fish

• Each hidden state Yt ∈ {C,D}. Let s1 = C and s2 = D.

• B is the transition matrix, where Bjk = P (Yt = sk | Yt−1 = sj). Here B is a 2× 2 matrix.

• A is the emission matrix, where Ajk = P (Xt = k | Yt = sj). Here A is a 2 × 3 matrix. As
an example, A23 denotes P (Xt = 3 | Yt = s2), or the probability that Xt corresponds to fish
given the hidden state Yt = D.

• π describes Y1’s initialization probabilities: πj = P (Y1 = sj).

For pseudo-code of the Forward-Backward Algorithm, refer to 8.5.

Note: Pseudocounts used in section 8.4 should also be used here.

For all numerical answers, round to four decimal places after the decimal point. Showing your work
in these questions is optional, but it is recommended to help us understand where any misconceptions
may occur. Only your answer in the left box will be graded.
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1. (5 points) Compute α2(C), the α value associated with the tag “C” for the second word in the validation
sequence.

α2(C) Work

2. (3 points) Compute β2(D), the β value associated with the tag “D” for the second word in the validation
sequence.

β2(D) Work

Page 12



3. (3 points) Predict the tag for the third word in the validation sequence.

Tag Work

4. (3 points) Compute the log-likelihood for the entire validation sequence, “fish eat you”, using e
as the log base.

Log-
Likelihood

Work
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5. In the forward algorithm, recall that the entries in α can be computed using the following dynamic
programming algorithm:

α1(sj) = πj ·Asj ,x1 for all sj
For t = 1, 2, 3, . . . , T

αt(sj) = Asj ,xt

∑
k Bsk,sjαt−1(sk) for all sj

To implement the forward algorithm in log-space, we can derive log
(
αt(sj)

)
in terms of log(αt−1),

logB and logA:

log
(
αt(sj)

)
= log

(
Aj,xt

∑
k Bkjαt−1(sk)

)
= log(Aj,xt) + log

(∑
k Bkjαt−1(sk)

)
= log(Aj,xt) + log

(∑J
k=1 e

log
(
αt−1(k)Bkj

))
= log(Aj,xt) + log

(∑J
k=1 e

log
(
αt−1(k)

)
+log

(
Bkj

))

In the backward algorithm, we also have a similar algorithm:

βT (sj) = 1 for all sj
For t = T − 1, T − 2, T − 3, . . . , 1

βt(sj) =
∑

k βt+1(sk)Ask,xt+1Bsj ,sk

We can also derive the backward algorithm in log-space by finding log
(
βt(j)

)
in terms of log(βt+1),

logB and logA:

log
(
βt(sj)

)
= log

(∑
k(βt+1(sk)Akxt+1Bjk)

)
= log

(∑
k e

log
(
βt+1(sk)Akxt+1

Bjk

))
= log

(∑J
k=1 e

log(Akxt+1
)+log

(
βt+1(k)

)
+log(Bjk)

)
Note how the above equations include terms that look like log

∑
i exp(vi). In your programming sec-

tion, you shouldn’t program this as-is, because the exp term will underflow when vi is very negative.
You’ll instead implement this using a trick known as the log-sum-exp trick. For this written problem,
you may assume access to a logsumexp function that takes in a matrix H and returns a vector v where
vi = log

∑
j exp(Hij). In other words, logsumexp performs the log-sum-exp trick on each row of

H .

Now it’s time to vectorize the log-space equations above! For each of the following quantities, write
one line of code to compute them from the given quantities. You are given that logαt is a column
vector which is the element-wise log of αt, logβt is a column vector which is the element-wise log of
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βt, logA is the element-wise log of the emission matrix, logB is the element-wise log of the transition
matrix, logπ is the element-wise log of the initial probabilities, x is the input sequence (a list of words
represented as matrix indices), and the logsumexp function as described above. You may only write
your answer in terms of these quantities. You may assume that NumPy has been imported as np and
that broadcasting is allowed (e.g. if M is an a× b matrix and v is a vector of length b, then M + v will
add v element-wise to every row of M ).

(a) (2 points) logα1

Your Answer

% YOUR ANSWER

(b) (2 points) logα2

Your Answer

% YOUR ANSWER

(c) (2 points) logβ2

Your Answer

% YOUR ANSWER
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6 Empirical Questions (6 points)
Return to these questions after implementing your learnhmm.py and
forwardbackward.py functions. Please ensure that you have used the log-sum-exp trick in your
programming as described in Section 8.5.3 before answering these empirical questions.

Using the full data set en data/train.txt in the handout, use your implementation of
learnhmm.py to learn HMM parameters using the first 10, 100, 1000, and 10000 sequences in the
file. Use these learned parameters to perform prediction on both the English train.txt and the valida-
tion.txt files with your implementation of forwardbackward.py. Construct a plot with number
of sequences used for training on the x-axis and average log likelihood across all sequences from the
English train.txt and the validation.txt on the y-axis (see Section 8.5 for details on computing the log
data likelihood for a sequence). Please use log-scale with base 10 for the x-axis.

Fill in the table with the resulting log likelihood values, rounded to two decimal places, and include
your plot in the large box. To receive credit for your plot, you must submit a computer generated plot.
DO NOT hand draw your plot.

1. (4 points) Fill in this table.

# Sequences
Train Average Log-
Likelihood

Validation Average
Log-Likelihood

10 ?? ??
100 ?? ??
1000 ?? ??
10000 ?? ??

2. (2 points) Put your plot below:

Plot
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7 Collaboration Questions
After you have completed all other components of this assignment, report your answers to these questions
regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details.

Your Answer
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8 Programming (98 points)
8.1 The Task
In the programming section you will implement a named entity recognition system using Hidden Markov
Models (HMMs). Named entity recognition (NER) is the task of classifying named entities, typically proper
nouns, into pre-defined categories, such as person, location, or organization. Consider the example sequence
below, where each word is appended with a tab and then its tag:

“ O
Rhinestone B-ORG
Cowboy I-ORG
” O
( O
Larry B-PER
Weiss I-PER
) O
- O
3:15 O

Rhinestone and Cowboy are labeled as an organization (ORG), while Larry and Weiss is labeled as a
person (PER). Words that aren’t named entities are assigned the O tag. The B- prefix indicates that a word
is the beginning of an entity, while the I- prefix indicates that the word is inside the entity.

NER is an incredibly important task for a machine to analyze and interpret a body of natural language
text. For example, when designing a system that automatically summarizes news articles, it is important
to recognize the key subjects in the articles. Another example is designing a trivia bot. If you can quickly
extract the named entities from the trivia question, you may be able to more easily query your knowledge
base (e.g. type a query into Google) to request information about the answer to the question.

On a technical level, the main task is to implement an algorithm to learn the HMM parameters given the
training data and then implement the forward-backward algorithm to perform a smoothing query which we
can then use to predict the hidden tags for a sequence of words.

8.2 The Dataset
WikiANN is a “silver standard” dataset that was generated without human labelling. The English Abstract
Meaning Representation (AMR) corpus and DBpedia features were used to train an automatic classifier
to label Wikipedia articles. These labels were then propagated throughout other Wikipedia articles using
the Wikipedia’s cross-language links and redirect links. Afterwards, another tagger that self-trains on the
existing tagged entities was used to label all other mentions of the same entities, even those with different
morphologies (prefixes and suffixes that modify a word in other languages). Finally, the amassed training
examples were filtered by “commonness” and “topical relatedness” to pick more relevant training data.

The WikiANN dataset provides labelled entity data for Wikipedia articles in 282 languages. We will be
primarily using the English subset, which contains 14,000 training examples and 3,300 test examples, and
the French subset, which contains around 7,500 training examples and 300 test examples.
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8.3 File Formats
The contents and formatting of each of the files in the handout folder is explained below.

1. train.txt This file contains labeled text data that you will use in training your model in the Learn-
ing problem (Section 8.4). Specifically, the text contains one word per line that has already been
preprocessed, cleaned and tokenized. Every sequence has the following format:

<Word0>\t<Tag0>\n<Word1>\t<Tag1>\n ... <WordN>\t<TagN>\n

where every <WordK>\t<TagK> unit token is separated by a newline. Between each sequence is
an empty line. If we have two three-word sequences in our data set, the data will look like so:

<Word0>\t<Tag0>\n
<Word1>\t<Tag1>\n
<Word2>\t<Tag2>\n
\n
<Word0>\t<Tag0>\n
<Word1>\t<Tag1>\n
<Word2>\t<Tag2>

Note: Word 2 of the second sequence does not end with a newline because it is the end of the data set.

2. validation.txt: This file contains labeled validation data that you will use to evaluate your model.
This file has the same format as train.txt.

3. index to word.txt, index to tag.txt: These files contain a list of all words or tags that appear in the
data set. The format is simple:

index to word.txt index to tag.txt
<Word0>\n <Tag0>\n
<Word1>\n <Tag1>\n
<Word2>\n <Tag2>\n
...

...

In your functions, you will convert the string representation of words or tags to indices correspond-
ing to the location of the word or tag in these files. For example, if Austria is on line 729 of in-
dex to word.txt, then all appearances of Austria in the data sets should be converted to the index
729. This index will also correspond to locations in the parameter matrices. For example, the word
Austria corresponds to the parameters in column 729 of the matrix stored in hmmemit.txt. This will
be useful for your forward-backward algorithm implementation (see Section 8.5).

4. predicted.txt: This file contains labeled data that you will use to debug your implementation. The la-
bels in this file are generated by running a reference implementation using the features from train.txt.
This file has the same format as train.txt.

5. metrics.txt: This file contains the metrics you will compute for the validation data. The first line
should contain the average log likelihood, and the second line should contain the prediction accuracy.
There should be a single space after the colon preceding the metric value; see the reference output file
for more detail.

6. hmmtrans.txt, hmmemit.txt, hmminit.txt: These files contain pre-trained model parameters of an
HMM that you can use to test your implementation of the Learning and Evaluation and Decoding
problems (Sections 8.4, 8.5). The formats of the first two files are the same; each line in these files
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consists of a conditional probability distribution. In the case of transition probabilities, this distribu-
tion corresponds to the probability of transitioning into another state, given a current state. Similarly,
in the case of emission probabilities, this distribution corresponds to the probability of emitting a par-
ticular symbol, given a current state. Elements in the same row are separated by a space. Each row
corresponds to a line of text, using \n to create new lines.

hmmtrans.txt:

<ProbS1S1> <ProbS1S2> ... <ProbS1SN>\n
<ProbS2S1> <ProbS2S2> ... <ProbS2SN>\n...

hmmemit.txt:

<ProbS1Word1> <ProbS1Word2> ... <ProbS1WordN>\n
<ProbS2Word1> <ProbS2Word2> ... <ProbS2WordN>\n...

The format of hmminit.txt is similarly defined except that it only contains a single probability distri-
bution over starting states. Therefore, each row only has a single element.

hmminit.txt:
<ProbS1>\n
<ProbS2>\n...

8.4 Learning
Your first task is to write a program learnhmm.py to learn the Hidden Markov Model parameters needed
to apply the forward-backward algorithm (See Section 8.5). There are three sets of parameters that you
will need to estimate: the initialization probabilities π, the transition probabilities B, and the emission
probabilities A. For this assignment, we model each of these probabilities using a multinomial distribution
with parameters πj = P (Y1 = sj), Bjk = P (Yt = sk | Yt−1 = sj), and Ajk = P (Xt = k | Yt = sj).
These can be estimated using maximum likelihood, which results in the following parameter estimates:

1. P (Y1 = sj) = πj =
NY1=sj

+1∑J
p=1(NY1=sp+1)

, where NY1=sj equals the number of times state sj is associated

with the first word of a sentence in the training data set.

2. P (Yt = sk | Yt−1 = sj) = Bjk =
NYt=sk,Yt−1=sj

+1∑J
p=1(NYt=sp,Yt−1=sj

+1)
, where NYt=sk,Yt−1=sj is the number of

times state sj is followed by state sk in the training data set.

3. P (Xt = k | Yt = sj) = Ajk =
NXt=k,Yt=sj

+1∑M
p=1(NXt=p,Yt=sj

+1)
, where NXt=k,Yt=sj is the number of times that

the state sj is associated with the word k in the training data set.

Note we add 1 to each count to make a pseudocount. This is slightly different from pure maximum likelihood
estimation, but it is useful in improving performance when evaluating unseen cases during evaluation of your
validation set.

Your implementation should read in the training data set (train.txt), and then estimate π, B, and A using
the above maximum likelihood solutions with pseudocounts.
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Your outputs should be in the same format as hmminit.txt, hmmtrans.txt, and hmmemit.txt (including the
same number of decimal places to ensure there are no rounding errors during prediction). The autograder
runs and evaluates the output from the files generated, using the following command:

$ python3 learnhmm.py [args...]

Where [args...] is a placeholder for six command-line arguments: <train input> <index to word>
<index to tag> <hmminit> <hmmemit> <hmmtrans>. These arguments are described below:

1. <train input>: path to the training input .txt file (see Section 8.2)

2. <index to word>: path to the .txt file that specifies the dictionary mapping from words to
indices. The tags are ordered by index, with the first word having index of 0, the second word having
index of 1, etc.

3. <index to tag>: path to the .txt file that specifies the dictionary mapping from tags to indices.
The tags are ordered by index, with the first tag having index of 0, the second tag having index of 1,
etc.

4. <hmminit>: path to output .txt file to which the estimated initialization probabilities (π) will be
written. The file output to this path should be in the same format as the handout hmminit.txt (see
Section 8.2).

5. <hmmemit>: path to output .txt file to which the emission probabilities (A) will be written. The
file output to this path should be in the same format as the handout hmmemit.txt (see Section 8.2)

6. <hmmtrans>: path to output .txt file to which the transition probabilities (B) will be written. The
file output to this path should be in the same format as the handout hmmtrans.txt (see Section 8.2).

As an example, the following command would run your program on the toy dataset provided in the handout.

$ python3 learnhmm.py toy_data/train.txt toy_data/index_to_word.txt \
toy_data/index_to_tag.txt toy_data/hmminit.txt toy_data/hmmemit.txt \
toy_data/hmmtrans.txt

After running the command above, the <hmminit>, <hmmemit>, and <hmmtrans> output files should
match the reference files provided in the toy output directory.
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8.5 Evaluation and Decoding
8.5.1 Forward Backward Algorithm and Minimal Bayes Risk Decoding

Your next task is to implement the forward-backward algorithm. Suppose we have a set of sequence consist-
ing of T words, x1, . . . , xT . Each word is associated with a label Yt ∈ {1, . . . , J}. In the forward-backward
algorithm we seek to approximate P (Yt | x1:T ) up to a multiplication constant. This is done by first breaking
P (Yt | x1:T ) into a “forward” component and a “backward” component as follows:

P (Yt = sj | x1:T ) ∝ P (Yt = sj , xt+1:T | x1:t)
∝ P (Yt = sj | x1:t)P (xt+1:T | Yt = sj , x1:t)

∝ P (Yt = sj | x1:t)P (xt+1:T | Yt = sj)

∝ P (Yt = sj , x1:t)P (xt+1:T | Yt = sj)

where P (Yt = sj | x1, . . . , xt) and P (xt+1, . . . , xT | Yt = sj) are computed by bottom-up dynamic
programming approach.

Forward Algorithm

Define αt(sj) = P (Yt = sj , x1:t). This can be rearranged into the following expression (the full derivation
can be found in the lecture notes):

αt(sj) = Ajxt

∑
k

Bkjαt−1(k) (3)

Using this definition, the α’s can be computed using the following dynamic programming procedure:

for t = 1,...,T:
for j = 1,...,J:

if t == 1:
α1(sj) = πj ∗Aj,x1

else:
αt(sj) = Aj,xt ∗

∑
k(αt−1(sk) ∗Bk,j)

Backward Algorithm

Define βt(sj) = P (xt+1:T | Yt = sj). This can be rearranged into the following expression:

βt(sj) =
J∑

k=1

Akxt+1βt+1(sk)Bjk (4)

Just like the α’s, the β’s can also be computed using the following dynamic programming procedure:

for t = T,...,1:
for j = 1,...,J:

if t == T:
βT (sj) = 1

else:
βt(sj) =

∑
k(Ak,xt+1βt+1(sk)Bj,k)
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Forward-Backward Algorithm As stated above, the goal of the Forward-Backward algorithm is to com-
pute P (Yt = sj | x1:T ). This can be done using the following equation:

P (Yt = sj | x1:T ) ∝ P (Yt = sj , x1:T )P (xt+1:T | Yt = sj)

After running your forward and backward passes through the sequence, you are now ready to estimate the
conditional probabilities as:

P (Yt | x1:T ) ∝ αt ⊙ βt

where ⊙ is the element-wise product.

Minimum Bayes Risk Prediction We will assign tags using the minimum Bayes risk predictor, defined for
this problem as follows:

Ŷt = argmax
j∈{1,...,J}

P (Yt = sj | x1:T )

To resolve ties, select the tag that appears earlier in the <index to tag> input file.

Computing the Log Likelihood of a Sequence When we compute the log likelihood of a sequence, we
are interested in the computing the quantity log(P (x1:T )). We can rewrite this in terms of values we have
already computed in the forward-backward algorithm as follows:

logP (x1:T ) = log
(∑

j

P (x1:T , Yt = sj)
)

= log
(∑

j

αT (sj)
)
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8.5.2 Implementation Details

You should now write a program forwardbackward.py that implements the forward-backward algo-
rithm. The program will read in validation data and the parameter files produced by learnhmm.py. The
autograder runs and evaluates the output from the files generated, using the following command:

$ python3 forwardbackward.py [args...]

Where [args...] is a placeholder for eight command-line arguments:<validation input> <index to word>
<index to tag> <hmminit> <hmmemit> <hmmtrans> <predicted file> <metric file>.
These arguments are described in detail below:

1. <validation input>: path to the validation input .txt file that will be evaluated by your for-
ward backward algorithm (see Section 8.2)

2. <index to word>: path to the .txt file that specifies the dictionary mapping from words to
indices. The tags are ordered by index, with the first word having index of 0, the second word having
index of 1, etc. This is the same file as was described for learnhmm.py.

3. <index to tag>: path to the .txt file that specifies the dictionary mapping from tags to indices.
The tags are ordered by index, with the first tag having index of 0, the second tag having index of 1,
etc. This is the same file as was described for learnhmm.py.

4. <hmminit>: path to input .txt file which contains the estimated initialization probabilities (π).

5. <hmmemit>: path to input .txt file which contains the emission probabilities (A).

6. <hmmtrans>: path to input .txt file which contains transition probabilities (B).

7. <predicted file>: path to the output .txt file to which the predicted tags will be written. The
file should be in the same format as the <validation input> file.

8. <metric file>: path to the output .txt file to which the metrics will be written.

As an example, the following command would run your program on the toy dataset provided in the handout.

$ python3 forwardbackward.py toy_data/validation.txt \
toy_data/index_to_word.txt toy_data/index_to_tag.txt \
toy_data/hmminit.txt toy_data/hmmemit.txt \
toy_data/hmmtrans.txt toy_data/predicted.txt \
toy_data/metrics.txt

After running the command above, the <predicted file> output should be:

fish D
eat C
you D
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And the <metric file> output should be:

Average Log-Likelihood: -3.0438629330222424
Accuracy: 0.3333333333333333

where average log-likelihood and accuracy are evaluated over the validation set.

Take care that your output has the exact same format as shown above. There should be a single space
after the colon preceding the metric value (e.g. a space after Average Log-Likelihood:). Each line
should be terminated by a Unix line ending \n.

8.5.3 Log-Space Arithmetic for Avoiding Underflow

Handling underflow properly is a critical step in implementing an HMM. The most generalized way of
handling numerical underflow due to products of small positive numbers (like probabilities) is to calculate
everything in log-space, i.e., represent every quantity by their logarithm.

For this homework, using log-space starts with transforming Eq.(3) and Eq.(4) into logarithmic form - you
may find the recitation handout helpful. Please use base e (natural log) for logarithm calculation.

After transforming the equations into log form, you may discover calculations of the following type:

log
∑
i

exp (vi)

This may be programmed as is, but exp (vi) may cause underflow when vi is large and negative. One way
to avoid this is to use the log-sum-exp trick. We provide the pseudocode for this trick in Algorithm 1:

Algorithm 1 Log-Sum-Exp Trick
1: procedure LOGSUMEXPTRICK((v1, v2, · · · , vn))
2: m = max(vi) for i = {1, 2, · · · , n}
3: return m+ log(

∑
i exp(vi −m))

Note: The autograder test cases account for numerical underflow using the Log-Sum-Exp Trick. If
you do not implement forwardbackward.py with the trick, you might only receive partial credit.

8.6 Gradescope Submission
You should submit your learnhmm.py and forwardbackward.py to Gradescope. Any other files
will be deleted. Please do not use other file names. This will cause problems for the autograder to correctly
detect and run your code. Please go through the appendix at the end for information on starter-code.

Some additional tips: Make sure to read the autograder output carefully. The autograder for Gradescope
prints out some additional information about the tests that it ran. For this programming assignment we’ve
specially designed some buggy implementations that you might implement and will try our best to detect
those and give you some more useful feedback in Gradescope’s autograder. Make wise use of autograder’s
output for debugging your code.

Note: For this assignment, you have 10 submissions to Gradescope before the deadline, but only your last
submission will be graded.
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