HOMEWORK &
REINFORCEMENT LEARNING *

10-301/10-601INTRODUCTION TO MACHINE LEARNING(SPRING 2023)
https://www.cs.cmu.edu/~mgormley/courses/10601/

OUT: Monday, April 10
DUE: Friday, April 21
TAs: Alex, Emaan, {Graddyant, Markov, Neural} the Narwhal, Pranay, Pranit, Tanvi

Summary In this assignment, you will implement a reinforcement learning algorithm for solving the
classic mountain-car environment. As a warmup, the first section will lead you through an on-paper example
of how value iteration and Q-learning work. Then, in Section 7, you will implement Q-learning with function
approximation to solve the mountain car environment.

START HERE: Instructions

* Collaboration Policy: Please read the collaboration policy here: http://www.cs.cmu.edu/
~mgormley/courses/10601/syllabus.html

» Late Submission Policy: See the late submission policy here: http://www.cs.cmu.edu/
~mgormley/courses/10601/syllabus.html

* Submitting your work: You will use Gradescope to submit answers to all questions and code. Please
follow instructions at the end of this PDF to correctly submit all your code to Gradescope.

— Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, please use the provided template. Submissions can be handwritten onto the template, but
should be labeled and clearly legible. If your writing is not legible, you will not be awarded
marks. Alternatively, submissions can be written in I&[|EX. Each derivation/proof should be
completed in the boxes provided. You are responsible for ensuring that your submission contains
exactly the same number of pages and the same alignment as our PDF template. If you do not
follow the template, your assignment may not be graded correctly by our Al assisted grader and
there will be a 2% penalty (e.g., if the homework is out of 100 points, 5 points will be deducted
from your final score).

— Programming: You will submit your code for programming questions on the homework to
Gradescope. After uploading your code, our grading scripts will autograde your assignment by
running your program on a virtual machine (VM). You are only permitted to use the Python Stan-
dard Library modules and numpy. Ensure that the version number of your programming lan-
guage environment (i.e. Python 3.9.12) and versions of permitted libraries (i.e. numpy 1.23.0)

*Compiled on Monday 10" April, 2023 at 11:32

https://www.cs.cmu.edu/~mgormley/courses/10601/
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
https://gradescope.com
https://docs.python.org/3/library/
https://docs.python.org/3/library/

Homework 8: Reinforcement Learning 10-301/10-601

match those used on Gradescope. You have 10 free Gradescope programming submissions, after
which you will begin to lose points from your total programming score. We recommend debug-
ging your implementation on your local machine (or the Linux servers) and making sure your
code is running correctly first before submitting your code to Gradescope.

* Materials: The data and reference output that you will need in order to complete this assignment is
posted along with the writeup and template on the course website.

2 0f23

Homework 8: Reinforcement Learning 10-301/10-601

Instructions for Specific Problem Types

For “Select One” questions, please fill in the appropriate bubble completely:
Select One: Who taught this course?
@ Mart Gormley
(O Marie Curie
(O Noam Chomsky
If you need to change your answer, you may cross out the previous answer and bubble in the new answer:
Select One: Who taught this course?
o Henry Chai
(O Marie Curie
’: Noam Chomsky
For “Select all that apply” questions, please fill in all appropriate squares completely:
Select all that apply: Which are scientists?
B Stephen Hawking
B Albert Einstein
B Isaac Newton
O Idon’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and bubble in the new
answer(s):

Select all that apply: Which are scientists?
B Stephen Hawking
B Albert Einstein
B Isaac Newton
M I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully included in the
given space. You may cross out answers or parts of answers, but the final answer must still be within the
given space.

Fill in the blank: What is the course number?

10-601 10-6301

30f 23

Homework 8: Reinforcement Learning 10-301/10-601

Written Questions (39 points)
1 ITgX Bonus Point and Template Alignment (1 points)

1. (1 point) Select one: Did you use I&TEX for the entire written portion of this homework?

O Yes
O No

2. (0 points) Select one: I have ensured that my final submission is aligned with the original template
given to me in the handout file and that I haven’t deleted or resized any items or made any other modi-
fications which will result in a misaligned template. I understand that incorrectly responding yes to this
question will result in a penalty equivalent to 2% of the points on this assignment.

Note: Failing to answer this question will not exempt you from the 2% misalignment penalty.

O Yes

2 Value Iteration (12 points)

While attending an ML conference, you meet scientists at NASA who ask you to develop a reinforce-
ment learning agent capable of carrying out a space-flight from Earth to the Sun. You model this
problem as a Markov decision process (MDP). The figure below depicts the state space.

Sp Sk S F
—t—
+25
Sun T
SA +50 ‘ SB SC
-65
4>
Earth Metis

Here are the details:

1. Each grid cell is a state S4, Sp, ..., S corresponding to a position in the solar system. The start
state is S'4 (Earth). The terminal states include both the Sg (Sun) and S (Metis).

2. The action space includes movement up/down/left/right. Transitions are non-deterministic.
With probability 80% the agent transitions to the intended state. With probability 10% the agent
slips left of the intended direction. With probability 10% the agent slips right of the intended
direction. For example, if the agent is in state Sp and takes action left, it moves to state Sy
with 80% probability, it moves to state Sp (left of the intended direction is off the board, so the
agent remains where it was) with 10% probability, and it moves to state S (right of the intended
direction) with 10% probability.

3. It is not possible to move to the blocked state (shaded grey) since it contains another planet. If the
agent’s action moves them off the board or to the blocked state, it remains in the same state.

4. Non-zero rewards are depicted with arrows. Flying into the Sun from below gives positive reward
R(Sp,a,Sg) = 450 Va € {up,down, left, right}, since it is more fuel-efficient than flying
into the sun from the left (the agent can use the gravitational field of the planet in Sr and Metis).

4 of 23

Homework 8: Reinforcement Learning

10-301/10-601

However, approaching the Sun from below has risks, as flying too close to Metis is inadvisable and
gives negative reward R(Sp, a, Sc) = —65 Va € {up,down, left,right}. Note that flying
into the Sun from the left still achieves the goal and gives positive reward R(Sp, a, Sg) = +25
Va € {up, down, left, right}. All other rewards are zero.

Below, let V*(s) denote the value function for state s using the optimal policy 7*(s).

2.1 Synchronous Value Iteration

. (3 points) Report the value of each state (including terminal states) after a single round of synchronous
value iteration in the table below. Initialize the value table V(s) = 0, Vs € {S4...Sr} and assume
v = 0.9. Visit each state in reverse alphabetical order. Ignore the blocked states. Round your answers
only to the first decimal place. Do not round intermediate values when calculating your answers.

Sp SE Sk

Sa S Sc

2.2 Asynchronous Value Iteration

. (3 points) Starting over, report the value of each state for a single round of asynchronous value iteration
in the table below. Initialize the value table V(s) = 0, Vs € {S4...Sp} and assume v = 0.9. Visit
each state in reverse alphabetical order. Ignore the blocked states. Round your answers only to the
first decimal place. Do not round any intermediate values, including state values, when calculating
your answers.

Sp

SE

Sk

Sa

Sp

Sc

S5of23

Homework 8: Reinforcement Learning 10-301/10-601

2. (3 points) Below, we give you the value of each state one round before the convergence of asyn-
chronous value iteration.! What is the final value of each state, V*(s)? Be sure to use asynchronous
value iteration, and visit each state in reverse alphabetical order. Ignore the blocked states. Round
your answers only to the first decimal place. Do not round any intermediate values, including state
values, when calculating your answers.

Sp SE Sp
25 0
Sa Sg Sc
30 36
Your solution:
Sp SE Sk
Sa Sg Sc

3. (3 points) What is the policy, 7*(s), that corresponds to V*(s)? Write one of up, down, left, or
right for each state. If multiple actions are acceptable, choose the one that comes alphabetically first.
For terminal states, write terminal. Ignore the blocked states.

Sp SE Sr

Sa S Sc

IThis is actually one round before the policy convergence, not the value convergence. The values we provide are the values
after the second iteration, rounded to the nearest whole number for ease of calculation.

6 of 23

Homework 8: Reinforcement Learning 10-301/10-601

3 Q-Learning (9 points)

Let’s consider an environment that is similar to the grid world we saw before, but has more states:

S[SJ SK SL
Sun
SE SF SG SH
Metis
S Sp Sc Sp
Earth

This time, however, suppose we don’t know the reward function or the transition probability between
states. Some rules for this setup are:

1.
2.
3.

5.

Each grid cell is a state S4, Spg, ..., St corresponding to a position in the solar system.
The action space of the agent is: {up, down, left, right}.

If the agent hits the edge of the board, it remains in the same state. It is not possible to move into
blocked states, which are shaded grey, since they contain other planets.

The start state is S (Earth). The terminal states include both the S;, (Sun) and S (asteroid
Metis).

Use the discount factor v = 0.9 and learning rate o = 0.1.

We will go through three iterations of Q-learning in this section. Initialize Q(s, a) as below:

[a\s Si Sg So So Se S S¢ Su Si Sy Sk Si

Uup 04 01 01 07 00 09 07 08 00 01 08 038
Down 10 08 02 05 01 02 07 02 10 09 01 03
Left 09 04 03 04 09 06 05 01 02 03 09 0.1
Right 03 08 03 02 00 02 02 03 09 04 02 03

1. (1 point) Select all that apply: If the agent were to act greedily, what action would it take at this time
from state S¢?

O up
O down
O left
O

right

7 of 23

Homework 8: Reinforcement Learning 10-301/10-601

2. (1 point) Beginning at state S¢, you take the action right and receive a reward of 0. You are now in
state Sp. What is the new value for Q(S¢, right), assuming the update for deterministic transitions?
If needed, round your answer to the fourth decimal place.

3. (1 point) What is the new value for Q(S¢c, right), using the temporal difference error update? If
needed, round your answer to the fourth decimal place.

4. (1 point) Select all that apply: Continue to update your Q-function (as calculated by the temporal
difference error update) from above. This time, though, assume your run has brought you to state Sy
with no updates to the Q-function in the process. If the agent were to act greedily, what action would it
take at this time?

O up

O down

O left

O right

5. (1 point) Beginning at state Sy, you take the action up, receive a reward of +25, and the run terminates.
What is the new value for Q(Sg, up), assuming the update for deterministic transitions? If needed,
round your answer to the fourth decimal place.

6. (1 point) What is the new value for Q(Sy, up), using the temporal difference error update? If needed,
round your answer to the fourth decimal place.

8 of 23

Homework 8: Reinforcement Learning 10-301/10-601

7. (1 point) Select all that apply: Continue to update your Q-function (as calculated by the temporal
difference error update) from above. You start from state S since the previous run terminated, but
manage to make it to state S with no updates to the Q-function. If the agent were to act greedily, what
action would it take at this time?

O up

O down

O left

O right

8. (1 point) Beginning at state S, you take the action 1eft, receive a reward of -50, and the run termi-
nates. What is the new value for Q(SF, left), assuming the update for deterministic transitions? If
needed, round your answer to the fourth decimal place.

9. (1 point) What is the new value for Q(SF, left), using the temporal difference error update? If
needed, round your answer to the fourth decimal place.

Q(Sk, left)

90f23

Homework 8: Reinforcement Learning 10-301/10-601

4 Deep Q-Learning (7 points)

In this question we will motivate learning a parametric form for solving Markov Decision Processes
by looking at Breakout, a game on the Atari 2600. The Atari 2600 is a gaming system released in the
1980s, but nevertheless is a popular target for reinforcement learning papers and benchmarks. The Atari
2600 has a resolution of 160 x 192 pixels. In the case of Breakout, we try to move the paddle to hit the
ball in order to break as many tiles above as possible. We have the following actions:

* Move the paddle left
* Move the paddle right

* Do nothing

(a) Atari Breakout (b) Black and white Breakout

Figure 1: Atari Breakout. 1a is what Breakout looks like. We have the paddle in the bottom of the screen
aiming to hit the ball in order to break the tiles at the top of the screen. 1b is our transformation of Atari
Breakout into black and white pixels for the purpose of some of the following problems.

1. (1 point) Suppose we are dealing with the black and white version of Breakout” as in Figure 1b. Fur-
thermore, suppose we are representing the state of the game as just a vector of pixel values without
considering if a certain pixel is always black or white. Since we are dealing with the black and white
version of the game, these pixel values can either be O or 1.

What is the size of the state space?

2. (1 point) In the same setting as the previous part, suppose we wish to apply Q-learning to this problem.
What is the size of the Q-value table we will need?

*Play a “Google”-Doodle version here

10 of 23

https://elgoog.im/breakout/

Homework 8: Reinforcement Learning 10-301/10-601

3. (1 point) Now assume we are dealing with the colored version of Breakout as in Figure 1a. Now each
pixel is a tuple of real valued numbers between 0 and 1. For example, black is represented as (0,0, 0)
and white is (1,1, 1).

Is it possible to represent all our Q-values with a table holding one value for every (state, action) pair?

Suppose rather than storing many separate Q-values for similar states, we want to share information
between states. Instead of individual entries in a table, we can learn parameters w that parameterize
some approximation ¢(s, a; w) of the true Q-values.

Let us define ¢, (s, a) as the true action value function of the current policy 7. Assume ¢ (s, a) is given
to us by some oracle. Also define ¢(s, a; w) as the action value predicted by the function approximator
parameterized by w. Clearly we want to have ¢(s, a; w) be close to ¢ (s, a) for all (s, a) pairs we see.
This is just our standard regression setting. That is, our objective function is just the Mean Squared
Error:

Jw) =55 D (an(s.0) —g(s,a:w))”. (1)

s€8S,acA
Because we want to update for each example stochastically®, we get the following update rule:
W<—W—a(q(s,a;w) —qﬂ(s,a))qu(s,a;w). (2)
However, more often than not we will not have access to the oracle that gives us our target ¢, (s, a). So

how do we get the target to regress ¢(s,a; w) on? One way is to bootstrap an estimate of the action
value under a greedy policy using the function approximator itself. That is to say

qr(s,a) = r+ymaxq(s,a';w) 3)
a/

where 7 is the reward observed from taking action a at state s, - is the discount factor and s’ is the
state resulting from taking action a at state s. This target is often called the Temporal Difference (TD)
target, and gives rise to the following update for the parameters of our function approximator in lieu of
a tabular update:

W W — a(q(s, a;w) — (r+ fymz}xq(s’,a';w)))qu(s, a; w). 4)

TD Target

TD Error

4. (2 points) Consider the setting where we can represent our state by some vector s, and for each action,
we learn a linear approximation from states to Q-values. That is:

q(s,a; w) = wgs &)

3This is not really stochastic, you will be asked in a bit why.

11 of 23

Homework 8: Reinforcement Learning 10-301/10-601

Again, assume we are in the black and white setting of Breakout as in Figure 1b. Show that tabular
Q-learning is just a special case of Q-learning with a linear function approximator by describing a
construction of s. (Hint: Engineer features such that Eq. (5) encodes a table lookup)

Answer

\.

5. (2 points) Stochastic Gradient Descent works because we can assume that the samples we receive are
independent and identically distributed. Is that the case here? If not, why and what are some ways you
think you could combat this issue?

Answer

12 of 23

Homework 8: Reinforcement Learning 10-301/10-601

S Empirical Questions (10 points)

The following parts should be completed after you work through the programming portion of this as-
signment (Section 7).

1. (4 points) Run Q-learning on the mountain car environment using both tile and raw features.

For the raw features: run for 2500 episodes with max iterations of 200, e set to 0.05, v set to 0.999, and
a learning rate of 0.001.

For the tile features: run for 400 episodes with max iterations of 200, € set to 0.05, ~ set to 0.99, and a
learning rate of 0.00005.

For each set of features, plot the return (sum of all rewards in an episode) per episode on a line graph.
On the same graph, also plot the rolling mean over a 25 episode window. Comment on the difference
between the plots.

Plot of Raw

13 of 23

Homework 8: Reinforcement Learning 10-301/10-601

Plot of Tile

\.

Comment

14 of 23

Homework 8: Reinforcement Learning 10-301/10-601

=120
—140

-160

Value

-180

—200

=220

—240

-1.00 —0.75 -0.50 —0.25 000 025 050 -1.00 —0.75 -0.50 —0.25 000 025 050
Position Position

(a) b)

Figure 2: Estimated optimal value function visualizations for both types of features

2. (2 points) For both raw and tile features, we have run Q-learning with some good parameters and
created visualizations of the value functions after many episodes. For each plot in Figure 2, write down
which features (raw or tile) were likely used for deep Q-learning. Explain your reasoning. In addition,
interpret each of these plots in the context of the mountain car environment.

Answer

3. (2 points) We see that Figure 2b seems to look like a linear function of the position and velocity. Can
the value function depicted in this plot ever be nonlinear (linear here strictly refers to a function that can
be expressed in the form of y = Ax + b)? If so, describe a potential shape. If not, explain why.

Hint: How do we calculate the value of a state given the Q-values?

Answer

15 of 23

Homework 8: Reinforcement Learning

Policy

0.06

0.04 A

0.02 A

Velocity
o
o
o

—0.02 4

—0.04

—0.06

-1.2 -1.0 -08 -06 -04 -02 00 02 04 06
Position

(a)

Velocity

10-301/10-601

Policy

0.06

0.04 A

0.02 A

o
o
S

—0.02 4

—0.04

—0.06

-1.2 -1.0 -08 -06 -04 -02 00 02 04 06
Position

(b)

Figure 3: Estimated optimal policy visualizations for both types of features

4. (2 points) In a similar fashion to the previous question, we have created visualizations of the potential
policies learned. For each plot in Figure 3, write down which features (raw or tile) were likely used for

deep Q-learning. Explain your reasoning.

Answer

16 of 23

Homework 8: Reinforcement Learning 10-301/10-601

6 Collaboration Questions

After you have completed all other components of this assignment, report your answers to these questions
regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details.

Your Answer

17 of 23

http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html

Homework 8: Reinforcement Learning 10-301/10-601

7 Programming [68 Points]

Your goal in this assignment is to implement Q-learning with linear function approximation to solve the
mountain car environment. You will implement all of the functions needed to initialize, train, evaluate,
and obtain the optimal policies and action values with Q-learning. In this assignment we will provide the
environment for you. The program you write will be automatically graded using the Gradescope system.

7.1 Specification of Mountain Car

In this assignment, you will be given code that fully defines the Mountain Car environment. In Mountain
Car you control a car that starts at the bottom of a valley. Your goal is to reach the flag at the top right, as
seen in Figure 4. However, your car is under-powered and cannot climb up the hill by itself. Instead you
must learn to leverage gravity and momentum to make your way to the flag. It would also be good to get to
this flag as fast as possible.

Figure 4: What the Mountain Car environment looks like. The car starts at some point in the valley. The
goal is to get to the top right flag.

The state of the environment is represented by two variables, position and velocity. position can
be between [—1.2, 0.6] (inclusive) and velocity can be between [—0.07,0.07] (inclusive). These are just
measurements along the x-axis.

The actions that you may take at any state are {0, 1,2}, where each number corresponds to an action: (0)
pushing the car left, (1) doing nothing, and (2) pushing the car right.

7.2 Q-learning with Linear Approximations

The Q-learning algorithm is a model-free reinforcement learning algorithm, where we assume we don’t have
access to the model of the environment the agent is interacting with. We also don’t build a complete model
of the environment during the learning process. A learning agent interacts with the environment solely based
on calls to step and reset methods of the environment. Then the Q-learning algorithm updates the q-values
based on the values returned by these methods. Analogously, in the approximation setting the algorithm will
instead update the parameters of g-value approximator.

Let the learning rate be « and discount factor be . Recall that we have the information after one interaction
with the environment, (s, a, r, s’). The tabular update rule based on this information is:

Qs,a) = (1 — @)Q(s,a) + a <r +ymaxQ(s', a')> .

18 of 23

Homework 8: Reinforcement Learning 10-301/10-601

Instead, for the function approximation setting we use the following update rule derived from the Function
Approximation Section (Section 4). Note that we have made the bias term explicit here, where before it was
implicitly folded into w:

wew-a <q<s, a5w) = (r + ymax gl w>> V(s a;w),
a/

where
q(s,a;w) = wls +b,.

The epsilon-greedy action selection method selects the optimal action with probability 1 — ¢ and selects
uniformly at random from one of the 3 actions (0, 1, 2) with probability ¢. The reason that we use an
epsilon-greedy action selection is we would like the agent to do explorations by stochastically selecting
random actions with small probability. For the purpose of testing, we will test two cases: ¢ = 0 and
0 < e < 1. When € = 0 (no exploration), the program becomes deterministic and your output have to match
our reference output accurately. In this case, pick the action represented by the smallest number if there
is a draw in the greedy action selection process. For example, if we are at state s and Q(s,0) = Q(s, 2),
then take action 0. When 0 < € < 1, your output will need to fall in a certain range within the reference
determined by running exhaustive experiments on the input parameters.

7.3 Feature Engineering

Linear approximations are great in their ease of use and implementations. However, there sometimes is a
downside; they’re linear. This can pose a problem when we think the value function itself is nonlinear with
respect to the state. For example, we may want the value function to be symmetric about 0 velocity. To
combat this issue we could throw a more complex approximator at this problem, like a neural network. But
we want to maintain simplicity in this assignment, so instead we will look at a nonlinear transformation of
the “raw” state.

Velocity Velocity
0.07 0.07 : : : : :
004 Y7 A I
0.01 ()()1"-5""5"-"5" "E"-"E"
—0.01 ().()l"-i--ui--"-i-- "5"-"5"
—0.04 —(],()4"?""?""5" --i---di--
70'011.2 —0.84—-0.48—-0.12 0.24 0.6 Position 70'011.2 :—0.8 1:—0.18:—0.12: 0.24 : 0.6 Position
(a) A discretization of the state space of Mountain Car (b) A tiling of the state space of Mountain Car

Figure 5: State representations for the states of Mountain Car

For the Mountain Car environment, we know that position and velocity are both bounded. What we
can do is draw a grid over the possible position-velocity combinations as seen in Figure 5a. We then
enumerate the grid from bottom left to top right, row by row. Then we map all states that fall into a grid

19 of 23

Homework 8: Reinforcement Learning 10-301/10-601

square with the corresponding one-hot encoding of the grid number. For efficiency reasons we will just use
the index that is non-zero. For example the green point would be mapped to {6} and the orange point to
{12}. This is called a discretization of the state space.

The downside to the above approach is that although observing the green point will let us learn parameters
that generalize to other points in the shaded blue region, we will not be able to generalize to the orange
point even though it is nearby. We can instead draw two grids over the state space, each offset slightly from
each other as in Figure 5b. Now we can map the green point to two indices, one for each grid, and get
{6,39} (note the index for orange grid starts from the end of blue index, i.e. 25). Now the green point
has parameters that generalize to points that map to {6} (the blue shaded region) in the first discretization
and parameters that generalize to points that map to {39} (the red shaded region) in the second. We can
generalize this to multiple grids, which is what we do in practice. This is called a tiling or a coarse-coding
of the state space.

7.4 Implementation Details

Here we describe the API to interact with the Mountain Car environment available to you.

* _init__(mode, debug): Initializes the environment to the a mode specified by the value of
mode. This can be a string of either “raw” or “tile”.

“raw” mode tells the environment to give you the state representation of raw features encoded as a
vector [position,velocity]”.

In “tile” mode you are given a binary vector where the ¢-th index is 1 if the i-th tile is active in the
tiling. All other tile indices are assumed to map to 0. For example the state representation of the
example in Figure 5b would become [0, 0, ...,0,1,0,...,0,1,0, ..., O}T, where indices 6 and 39 are 1.

The dimension of the state space of the “raw” mode is 2. The dimension of the state space of the
“tile” mode is 2048. These values can be accessed from the environment through the state_space

property.
debug is an optional argument for debugging. See Section 7.5 for more details.

* reset (): Reset the environment to starting conditions. Returns the initial state.

* step(action): Take a step in the environment with the given action. action must be an in-
teger in the range [0, env.action_space), where env is the environment instance. For the
Mountain Car environment, env.action_space is 3, since the valid actions are 0, 1, and 2.
step (action) returns a tuple of (state, reward, done) which is the next state, the reward ob-
served, and a boolean indicating if you reached the goal or not, ending the episode. The state will
be either a raw or tile representation, as defined above, depending on how you initialized Mountain
Car. If you observe done = True then you should reset the environment and end the episode.
Failure to do so will result in undefined behavior.

* render (): Visualize the environment (not graded). Requires the installation of pygl et®. We
highly recommend you to use this only after you implement everything. Do not use this as a tool for
debugging—this should rather be used as a tool for understanding Q-learning better. It is computa-
tionally intensive to render graphics, so only call the function once every 100 or 1000 episodes. This
will be a no-op in Gradescope.

*You can install it by typing pip install pyglet in your shell.

20 of 23

Homework 8: Reinforcement Learning 10-301/10-601

You should now implement your Q-learning algorithm with linear approximations in g_learning.py.
The program will assume access to a given environment file(s) which contains the Mountain Car environ-
ment which we have given you. Initialize the parameters of the linear model with all 0 (and don’t forget
to include a bias!) and use the epsilon-greedy strategy for action selection.

Additionally, to avoid numerical precision errors, please ensure that your Q-values throughout your
program are rounded to 5 decimal places. This is already handled for you in the starter code by the
@round_output (5) decorator® above the Q (W, state, action) function;the body of this function
is left for you to complete. If you choose not to use the starter code, make sure that your code still does this
rounding:

Qvalue = <some code to calculate Q-values>
Qvalue = np.round(Qvalue, 5)

Your program should write a output file containing the total rewards (the returns) for every episode after
running Q-learning algorithm. There should be one return per line.

Your program should also write the weights of the model to a file. This output file should have the following
format:

bias_action_0 weight_action_0_1 weight_action_0_2
bias_action_1 weight_action_1_1 weight_action_1_2

Above, each line corresponds to the weights for that action. For example, the first line contains the bias and
the weights for action 0, the second line contains the bias and the weights for action 1, and so on. A space
separates the parameters in each line, and each line is terminated by a newline character "\n".

The autograder will use the following commands to call your function:
$ python g learning.py [args...]

where above [args. . .] isaplaceholder for command-line arguments: <env> <mode> <weight_out>
<returns_out> <episodes> <max_iterations> <epsilon> <gamma> <learning_rate>.
These arguments are described in detail below:

1. <env>: the environment that you are running, either mc for Mountain Car or gw for Grid World.

2. <mode>: mode to run the environment in. Should be either raw or tile. Note that Grid World
operates only in t 1 1e mode.

3. <weight_out>: path to output the weights of the linear model.
4. <returns_out>: path to output the returns of the agent.

5. <episodes>: the number of episodes your program should train the agent for. One episode is a
sequence of states, actions and rewards, which ends with terminal state or ends when the maximum
episode length has been reached.

6. <max_iterations>: the maximum of the length of an episode. When this is reached, we terminate
the current episode.

7. <epsilon>: the value € for the epsilon-greedy strategy.

5You don’t need to know how decorators work for this class, but you can read more about them here if you’re interested.

21 0f 23

https://realpython.com/primer-on-python-decorators/

Homework 8: Reinforcement Learning 10-301/10-601

8. <gamma>: the discount factor ~.
9. <learning_rate>: the learning rate « of the Q-learning algorithm.
Example command:

$ python g learning.py mc raw mc_raw_weight.txt mc_raw_returns.txt \
4 200 0.05 0.99 0.01

Example output from the above command (may not be exactly the same, but should be close up to 0.01):
<weight_out>

-2.616201458164875e+00 1.372446352613752e+00 —-8.118122206508656e-04
—2.624314255042218e+00 1.377997342131049e+00 —-5.094025945611515e-05
—-2.624000732921778e+00 1.378888252513226e+00 1.757295801944946e-03

<returns_out>

—-2.000000000000000000e+02
-2.000000000000000000e+02
-2.000000000000000000e+02
-2.000000000000000000e+02

7.5 Debugging Tips

To help with debugging, we have provided the option for printing each step of the Q-learning train func-
tion based on the reference output for the Grid World environment. We created this output by adding the
debug=True argument when initializing the Grid World environment. You may do the same to compare
your output against ours.

We recommend first checking your outputs based on a run with extremely simple parameters. Remember to
set <epsilon>=0 so the program is run without the epsilon-greedy strategy.

We have provided output on the Grid World for the following simple command:

$ python g learning.py gw tile gw_simple_weight.txt \
gw_simple_returns.txt 1 1 0.0 1 1

Once this works, you can change the parameters to be slightly more complex (such as the ones we have
below), and check with our calculations again:

$ python g _learning.py gw tile gw_weight.txt gw_returns.txt \
350.00.9 0.01

The logs for both of the above commands should be in reference_output/gw_simple.log and
reference_output/gw. log, respectively.

In addition, we have provided mc_weight .txt and mc_returns.txt in the handout, which are gener-
ated using the following parameters:

¢ <env>:mc

e <mode>: tile

22 of 23

Homework 8: Reinforcement Learning 10-301/10-601

* <episodes>: 25

* <max_iterations>: 200

* <epsilon>:0.0

* <gamma>: 0.99

* <learning.rate>: 0.005
Example command:

$ python g _learning.py mc tile mc_tile_weight.txt \
mc_tile returns.txt 25 200 0.0 0.99 0.005

For your convenience, we have provided a file check . py in the handout that will generate and compare
your reward and weight outputs to all the reference outputs provided in the reference_output folder.
See the comment at the top of the file for instructions on running these checks.

For all checks:

$ python —-m unittest check

For a specific example (in this case Mountain Car with tile features, the command given earlier on this page):

$ python -m unittest check.MCTile

7.6 Gradescope Submission

You should submit your g_learning.py to Gradescope. Any other files uploaded will be discarded or
reverted back to the original version provided in the handout. Do not use other file names.

23 0of 23

	LaTeX Bonus Point and Template Alignment
	Value Iteration
	Synchronous Value Iteration
	Asynchronous Value Iteration

	Q-Learning
	Deep Q-Learning
	Empirical Questions
	Collaboration Questions
	Programming [68 Points]
	Specification of Mountain Car
	Q-learning with Linear Approximations
	Feature Engineering
	Implementation Details
	Debugging Tips
	Gradescope Submission

