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How to Read

Please read this first!

What is this write-up?
This write-up covers everything you need to know (and a little more) about matrix

calculus to pass 10-301/601. You must be fairly comfortable with single-variable calculus
and basic vector algebra before reading this (and for 10-301/601). This does not constitute
as a formal introduction to matrix calculus, but anything necessary for the course is covered.

What topics are covered in this write-up, and when should I read this?
The first section glosses over basic multivariable calculus you need for the class, such as

gradients and partial derivatives. You may skip this section if you are already familiar with
this topic, but please do not skip the first exercise question. Topics in this section will be
covered in the first exam, so it is highly recommended that you read this as early as possible.

The second section introduces basic definitions of matrix derivatives and how the chain
rule is extended to matrix calculus. You do not need any prior knowledge on deep learning.
Aim to fully understand this section before the release of homework 5. This will help you
greatly with the chain rule and back propagation part of the course.

The last section focuses more on how to actually compute the derivatives (who uses the
definition of the derivative to find the derivative of y = 3x2 + 5?). You will learn to use
how to derive different versions of chain rules, and how to compute any derivatives you will
encounter in 10-301/601 starting from considering one element of the result. This section
will be the most helpful section for the homework and exams.

How should I solve the exercises?
Each section includes exercises that help you understand or apply the material.Do NOT

skip the exercises , as they also introduce some new theorems and facts that are greatly
useful for the course. Practice makes perfect, especially for math! The exercises are designed
to be solved (mostly) in order. Some of them may depend on the results derived in previous
exercises.

When/How should I read the solutions?
All exercises are accompanied with fairly detailed solutions, especially for Sections 2

and 3. Avoid reading the solutions before properly attempting to solve the problems. When
you are stuck, read the section again, digest the content, and come back to it later; maybe
collaborate with others if necessary. Please do not resort to the solutions before giving yourself
enough time to think about the question.

Make sure to compare your solutions with the reference solutions. Some questions have
multiple solutions with different approaches, from which you may be able to develop more
intuition. If you find any errors or have a better/more efficient solution or any feedback,
please send me an email!
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1 Multivariable Scalar Functions

This section briefly summarizes some important concepts of multivariable calculus. We
will skip any mathematical details or proofs not necessary for the course. Some important
concepts such as the definition of limit, continuity, differentiability are omitted since they
are not the focus of 10-301/601, but they are not to be made light of.

1.1 Rn → R Functions

In this section, we deal with functions that map a vector Rn to a scalar R. We use
column vectors by default throughout the entire write-up.∗ Such Rn → R functions can also
be considered to take multiple scalar inputs and yield one scalar output. Some examples
include:

1. The volume of a cone whose radius of the base is r and the height is h is given as:

V (r, h) =
1

3
πr2h.

The function V maps a vector [r, h]T ∈ R2 to a scalar 1
3
πr2h ∈ R.

2. The distance between two points a and b on the x-axis is given as:

d(a, b) = |a− b|.

The function d maps a vector [a, b]T ∈ R2 to a scalar |a− b| ∈ R.

3. (Important) The L2 norm of a vector x = [x1, x2, · · · , xn]
T ∈ Rn is given as:

f(x) = ∥x∥2 = ∥x∥ =
√

x2
1 + x2

2 + · · ·+ x2
n.

†

The function f maps a vector x ∈ Rn to a scalar
√
x2
1 + · · ·+ x2

n ∈ R. This example is
marked as important because you will use L2 norm a lot, and because you will often
see a vector itself being passed to a function. This can be thought of as the following:

f(x1, x2, · · · , xn) =
√

x2
1 + x2

2 + · · ·+ x2
n.

1.2 Partial Derivatives

Recall how we took the derivative of a R → R function. A simple function, say f(x) = x2,
has only one independent variable x, and naturally we take the derivative of x2 with respect
to that independent variable, x. The key point here is that there is only one input, so we
have no other choice but to differentiate with respect to that one variable. Now for Rn → R
functions, we have n inputs, so we end up with more possible choices—with respect to which
variable do we differentiate f?

∗The write-up follows the convention used in class. More about the notation can be found here.
†Note that the subscript 2 can be omitted for L2 norm.
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The derivative with respect to a single independent variable is obtained by simply pre-
tending as if all the other variables are constants. For example, consider

f(x, y, z) = xy + yx + 2z

and say we are taking the derivative with respect to one of the variables, y. Then we treat
x and z as constants, and the result will be:

x+ xyx−1.

We walk through this result term by term. For xy, only y is regarded as a variable and x
is considered as a constant, so the derivative is x. This is analogous to the derivative of 3x
being 3; x is a variable and 3 is a constant. For yx, again, x is treated as a constant so
we have xyx−1 (just like how (x3)′ = 3x2). For 2z, the entire term is a constant and the
derivative is zero. We call what we just evaluated a partial derivative of f with respect to
y, and mathematically we write:

∂f

∂y
= x+ xyx−1, or

∇yf(x, y) = x+ xyx−1.

The symbol ∂ is read “partial,” and ∇ is read “nabla,” “del,” or “gradient.”
Just as we can differentiate a single-variable function multiple times, we may be interested

in evaluating higher order partial derivatives. Recall that higher order derivatives are written
as:

d2f

dx2
,
d3f

dx3
, · · · , d

nf

dxn
.

Similarly, when we take the partial derivative multiple times with respect to the same vari-
able, we write:

∂2f

∂x2
,
∂3f

∂x3
, · · · , ∂

nf

∂xn
.

However, because now we have multiple input variables, we do not necessarily have to take the
partial derivative with respect to the same variable every time. For f(x, y, z) = xy+ yx+2z,
we can take the partial derivative with respect to y and then z. This is written as

∂2f

∂z∂y
=

∂

∂z

[
x+ xyx−1

]
= 0.

The power of the “numerator” means how many times we differentiate, and the “denomina-
tor” determines which variables we take the partial derivatives with respect to and in what
order. Remember that you have to read it right-to-left ; ∂z∂y means with respect to y first,
not z! It is worth mentioning that you can change the order in which partial derivatives are
taken under certain conditions, i.e.,

∂2f

∂x∂y
=

∂2f

∂y∂x
.

A lot of the functions we will encounter have this property. This, however, is not true in
general.∗

∗This holds when the partial derivatives exist and are continuous in an open region containing the point
at which the partial derivative is evaluated. In 10-301/601, this is almost always the case.
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1.3 Gradients

Instead of having to inspect the partial derivatives one by one, what if we want a single
entity that represents the degree of change with respect to all variables altogether? This
motivates the use of gradient, which is simply a vector of all partial derivatives. For example,
for f(x, y, z) = xy + yx + 2z, the gradient is:∂f/∂x∂f/∂y

∂f/∂z

 =

y + yx log y
x+ xyx−1

2

 .

Mathematically, we write:

∇f(x) =

y + yx log y
x+ xyx−1

2

 .

You may see ∇ in boldface or with an arrow on top to emphasize that it is a vector.
Gradient is extremely important and utilized a lot in machine learning. One of the most

important properties of gradient is that the gradient of a function evaluated at one point is
the direction to take in order to climb up the function the fastest. In other words, the exact
opposite direction of the gradient vector is the direction to take to climb down the function
the fastest (Figure 1).

−2 −1
0

1
2−2

0

2

0

5

x

y

z
=

x
2
+
y
2

Figure 1: Climbing down z = x2 + y2 from point (−2, 2, 8) following the opposite direction
of the gradient vector.
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1.4 Exercises

1. In this problem, we will briefly review single-variable calculus with some extremely
useful functions for deep learning.

(a) Evaluate d
dx
σ(x) where σ(x) = 1/(1 + e−x). This is called the sigmoid function.

(b) Express your answer in (a) using only σ(x) and constants.

(c) Evaluate d
dx

tanh(x) where tanh(x) = (ex − e−x)/(ex + e−x). This is called the
hyperbolic tangent function.

(d) Express your answer in (c) using only tanh(x) and constants.

2. Evaluate the following:

(a) ∂f
∂x

and ∂f
∂y

where f(x, y) = xy + yx

(b) ∂f
∂x

and ∂f
∂y

where f(x, y) = sin(y + cosx)

(c) ∂f
∂x

and ∂f
∂y

where f(x, y) = exy + y log 3x

(d) ∂2f
∂x2 ,

∂2f
∂x∂y

, ∂2f
∂y∂x

, and ∂2f
∂y2

where f(x, y) = sin(xy) + cos(xy)

(e) ∇xf(x, y) and ∇yf(x, y) where f(x, y) = xlog y + x2 + 2y

(f) ∇xf(x, y) and ∇yf(x, y) where f(x, y) = (x+ y)2

(g) ∂f
∂xi

where f(x) = ∥x∥22 (1 ≤ i ≤ n) Hint: Recall that ∥x∥2 =
√

x2
1 + · · ·+ x2

n

(h) ∂f
∂xi

where f(x) = wTx and w is a constant vector (1 ≤ i ≤ n)

3. Evaluate the following:

(a) ∇f(x, y) where f(x, y) = xy2 + x2y

(b) ∇f(x, y) where f(x, y) = (x+ y)2

(c) ∇2f(x, y) where f(x, y) = sin(exy)

(d) ∇f(x) where f(x) = ∥x∥22
(e) Express your answer in (d) using only one variable (no limit on constants).

(f) ∇f(x) where f(x) = wTx and w is a constant vector

(g) Express your answer in (f) using only one variable (no limit on constants).

4. Hayden was taking a nap on a hill at Schenley park, only to realize that he has to
run back to the campus for his next class in two minutes. He approximates the height
h of the hill at position (x, y) as h = x2 − 3y2, and guesses that his current position
is (x, y, h) = (−1, 0, 1). Which direction should he take to go down the hill as fast as
possible?
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2 Basics of Matrix Calculus

In this section, we will cover the basic definitions of matrix calculus and how the chain
rule works in matrix calculus.

2.1 Definitions

In the world of single-variable functions, the options are limited for taking the derivative;
for f : R → R, x 7→ f(x), the only derivative of our interest is df

dx
. But with functions such as

g(x) = Ax and h(x,A) = xTAx, we can also consider derivatives such as dg
dx
, dg

dxi
, dh

dA
, dh

dAij
,

dh
dxT , and such. In particular, we have the following nine cases:

Scalar Vector Matrix

Scalar
dy
dx

dy
dx

dy
dX

Vector
dy
dx

dy
dx

dy
dX

Matrix
dY
dx

dY
dx

dY
dX

We only define six of them; the derivatives of a scalar and a vector. Other cases are not
required for 10-301/601. There are many different versions of definitions, but here we use
the denominator-layout notation. Also note that we use d and ∂ interchangeably.

2.1.1 Derivatives of Scalar

We first consider when we take the derivative of a scalar.

1. With respect to a scalar (dy/dx): We already know this case. This is simply the single-
variable function case.

2. With respect to a vector (dy/dx): An example of this case is when y = ∥x∥. This is the
gradient we defined. That is, for x ∈ Rn,

dy

dx
=

dy/dx1
...

dy/dxn

 ∈ Rn = Rn×1.

We also define what happens when we take the derivative of a scalar with respect to a
row vector xT :

dy

dxT
=
[
dy/dx1 · · · dy/dxn

]
∈ R1×n.

3. With respect to a matrix (dy/dX): An example of this case is when y =
√∑m

i=1

∑n
j=1 |Xij|2.∗

∗This is called the Frobenius norm, also denoted ∥X∥F .
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Expanding on the vector case, for X ∈ Rm×n:

dy

dX
=

dy/dX11 · · · dy/dX1n
...

. . .
...

dy/dXm1 · · · dy/dXmn

 ∈ Rm×n.

You will be asked to check if this is a valid generalization of the two definitions above
as an exercise.

One thing to notice here is that when you take the derivative of a scalar, we end up with the
same shape as the variable we took the derivative with respect to. For example, the shape
of dy/dx is the same as the shape of x. This is a nice property of the denominator-layout
notation.

2.1.2 Derivatives of Vector

Now we expand the scalar case to vectors, i.e., dy/dx, dy/dx, and dy/dX. Note that y
here does not necessarily have to be a column vector. The exact same definitions apply to
row vectors as well, including the resulting shapes.

1. With respect to a scalar (dy/dx): An example of this case is d(xv)/dx for a scalar x
and constant vector v ∈ Rn. For y ∈ Rn, this is defined as:

dy

dx
=
[
dy1/dx · · · dyn/dx

]
∈ R1×n.

2. With respect to a vector (dy/dx): An example of this case is y = Ax for a constant
matrix A, and we evaluate dy/dx. For y ∈ Rn and x ∈ Rp, this is defined as

dy

dx
=
[
∇y1(x) ∇y2(x) · · · ∇yn(x)

]
=


dy1/dx1 dy2/dx1 · · · dyn/dx1

dy1/dx2 dy2/dx2 · · · dyn/dx2
...

. . .
...

dy1/dxp dy2/dxp · · · dyn/dxp

 ∈ Rp×n.

Consider when y = Ax for a constant matrix A ∈ Rn×p. Explicit multiplication yields

y = Ax

=

A11 · · · A1p
...

. . .
...

An1 · · · Anp


x1

...
xp


=

A11x1 + A12x2 + · · ·+ A1pxp
...

An1x1 + An2x2 + · · ·+ Anpxp


=


∑p

k=1A1kxk
...∑p

k=1Ankxk

 .
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This gives yi =
∑p

k=1Aikxk, and therefore dyi/dxj = Aij. Hence, we have

dy

dx
=


dy1/dx1 dy2/dx1 · · · dyn/dx1

dy1/dx2 dy2/dx2 · · · dyn/dx2
...

. . .
...

dy1/dxp dy2/dxp · · · dyn/dxp



=


A11 A21 · · · An1

A12 A22 · · · An2
...

. . .
...

A1p A2p · · · Anp


= AT .

Here we have derived one useful result:

d(Ax)

dx
= AT .

3. With respect to a matrix (dy/dX): An example of this case is y = Xv for a constant
vector v, and we evaluate dy/dX. In general, this encodes three dimensional informa-
tion (dyi/dXjk) and is beyond the scope of this class. However, we define the following
two specific cases that will be used throughout the class:

dXv

dX
= vT ,

dvTX

dX
= v,

for a matrix X and constant vector v. Note that the second case is the derivative of a
row vector with respect to a matrix.

2.2 Chain Rule

Recall that for h(x) = f(g(x)) (single-variable functions), the chain rule was

dh

dx
=

df

dg

dg

dx
=

dg

dx

df

dg
.

For the multivariable case h(x) = f(g1(x), g2(x)), the chain rule is extended as

dh

dx
=

∂f

∂g1

dg1
dx

+
∂f

∂g2

dg2
dx

=
dg1
dx

∂f

∂g1
+

dg2
dx

∂f

∂g2
.

Visually, we can represent the two chain rules as Figure 2:

x g f
dg
dx

df
dg

x

g1

g2

f

dg1
dx

dg2
dx

∂f
∂g1

∂f
∂g2

Figure 2: Chain rules visualized.
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This can be thought of as adding all components that contribute to the change of h.
Building on this, we can extend the chain rule to also work in matrix calculus.

Consider x ∈ Rp, y ∈ Rr, z ∈ Rn where z is a function of y, and y is a function of x;
that is, z = f(y), y = g(x), and therefore z = f(g(x)). We can visualize this as Figure 3.
Note how this figure considers the most general possible case.

x1

x2

...

xp−1

xp

y1

y2

...

yr−1

yr

z1

z2

...

zn−1

zn

g f

Figure 3: z = f(g(x)) visualized, where z = f(y) and y = g(x).

Now we derive the chain rule for vectors in matrix calculus. Recall that we have previously
defined dz/dx as

dz

dx
=


dz1/dx1 dz2/dx1 · · · dzn/dx1

dz1/dx2 dz2/dx2 · · · dzn/dx2
...

. . .
...

dz1/dxp dz2/dxp · · · dzn/dxp

 ∈ Rp×n.

By the chain rule,
dzi
dxj

=
r∑

k=1

dzi
dyk

dyk
dxj

=
r∑

k=1

dyk
dxj

dzi
dyk

.

This directly follows from Figure 4, which can be obtained by isolating only xj and zi from
Figure 3:

xj

y1

y2

...

yr−1

yr

zi

dy∗
dxj

dzi
dy∗

Figure 4: Chain rule visualized only considering zi and xj. y∗ denotes any of y1, · · · , yr.
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Apply the scalar chain rule to each element of dz/dx. By the definition of matrix multipli-
cation, observe that

(
dz

dx

)T

=


dz1/dx1 dz1/dx2 · · · dz1/dxp

dz2/dx1 dz2/dx2 · · · dz2/dxp
...

. . .
...

dzn/dx1 dzn/dx2 · · · dzn/dxp

 ∈ Rn×p

=


∑r

k=1
dz1
dyk

dyk
dx1

∑r
k=1

dz1
dyk

dyk
dx2

· · · ∑r
k=1

dz1
dyk

dyk
dxn∑r

k=1
dz2
dyk

dyk
dx1

∑r
k=1

dz2
dyk

dyk
dx2

· · · ∑r
k=1

dz2
dyk

dyk
dxn

...
. . .

...∑r
k=1

dzp
dyk

dyk
dx1

∑r
k=1

dzp
dyk

dyk
dx2

· · · ∑r
k=1

dzp
dyk

dyk
dxn



=


dz1/dy1 dz1/dy2 · · · dz1/dyr
dz2/dy1 dz2/dy2 · · · dz2/dyr

...
. . .

...
dzn/dy1 dzn/dy2 · · · dzn/dyr



dy1/dx1 dy1/dx2 · · · dy1/dxp

dy2/dx1 dy2/dx2 · · · dy2/dxp
...

. . .
...

dyr/dx1 dyr/dx2 · · · dyr/dxp


=

(
dz

dy

)T (
dy

dx

)T

.

Taking the transpose of both sides, we have that the chain rule extends to

dz

dx
=

dy

dx

dz

dy
.

Note the matrix multiplication order; dy/dx comes first.∗ The order did not matter for the
scalar case, but we need to be mindful of the order for the matrix case.

The key idea for this derivation was to manipulate the matrices cleverly and use the
scalar chain rule. When other types of derivatives are involved, this chain rule may change;
some derivatives may be transposed, and the multiplication order may change. The chain
rules also vary depending on how the derivatives are defined. However, the scalar chain rule
must hold no matter what.

∗The chain rule is more natural using the numerator-layout notation, which is the transposed version of
our notation (the chain rule is dz/dx = (dz/dy)(dy/dx)). This is one of the reasons why the transposed
definitions are preferred by some.
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2.3 Exercises

1. Recall the definition of the derivative of a scalar with respect to a matrix (dy/dX). We
will now check if this is a valid extension of the scalar and vector case. Evaluate the
derivatives when X ∈ R1×1, X ∈ Rn×1, and X ∈ R1×n. Which definition does each of
them correspond to?

2. We have derived that d(Ax)/dx = AT for x ∈ Rp and A ∈ Rn×p that does not depend
on x. Ax results in a vector, and thus we have used the dy/dx definition. Now consider
d(xTB)/dx for B ∈ Rp×n. Recall that the definition of dy/dx does not change even
when y is a row vector. Evaluate d(xTB)/dx.

3. The quadratic form xTAx is a form we will encounter often.∗ In this question, we are
interested in d(xTAx)/dx. Assume that A is not a function of x.

(a) Evaluate xTAx when x = [x1, x2]
T and the (i, j)-th element of A is Aij. Why do

you think xTAx is called the quadratic form?

(b) Which definition of the derivative do we need in order to evaluate d(xTAx)/dx?

(c) Assume x ∈ R2 and A ∈ R2×2. Evaluate d(xTAx)/dx.

(d) Generalize the previous result to when x ∈ Rn and A ∈ Rn×n and evaluate
d(xTAx)/dx. Can you express the result in matrix form?

(e) What happens when A is a symmetric matrix, i.e., AT = A?

4. One of the most useful properties of differentiation is the linearity. That is, for scalar
functions f : R → R and g : R → R, we have d(f(x)+g(x))/dx = df(x)/dx+dg(x)/dx
and d(a · f(x))/dx = a · df(x)/dx for some constant a ∈ R. We will show that this
extends to matrix calculus as well. Consider functions u : Rn → Rm and v : Rn → Rm.

(a) Show that for x ∈ Rn,

d(u(x) + v(x))

dx
=

du(x)

dx
+

dv(x)

dx
.

(b) Show that for x ∈ Rn and a constant a ∈ R,

d(au(x))

dx
= a

du(x)

dx
.

5. Linear regression is the task of finding the “best” linear fit between labels y ∈ Rn and
attributes X ∈ Rm×n. Concretely, we determine an adequate θ such that y = Xθ. One
of the “best” choices of θ is the one that minimizes the mean-squared error, which is
given as

J(θ) =
1

N
(Xθ − y)T (Xθ − y).

Find the θ that minimizes the mean-squared error. As usual, this is the θ such that
dJ(θ)/dθ = 0.

∗Remember the definition (or one of the definitions) of positive-definite matrix?
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6. Why can we write that
dh

dx
=

df

dg

dg

dx
=

dg

dx

df

dg
,

but not
dz

dx
=

dz

dy

dy

dx
=

dy

dx

dz

dy
?

Which equality does not hold?

7. Evaluate ∂f/∂x and ∂f/∂y for each of the following:∗

(a) f(u, v) = (u− v)eu, where u = xy and v = x2 − y2

(b) f(u, v) = u log v + v log u, where u = x
2
+ 2

y
and v = xey

(c) f(u, v) = u log v, where u = x sin y + y sinx and v = x cos y + y cosx

(d) f(u, v) = (u+ v)/(1− uv), where u = tan x+y
2

and v = tan x−y
2

8. Consider a neural network expressed as the following diagram:

x1

x2

x3

x4

x5

a1

a2

a3

a4

b1

b2

ŷ ℓ

f

g

h L

This can be interpreted as a deep neural network with two hidden layers that accepts
x ∈ R5 as the input and outputs ŷ ∈ R. The hidden layers a and b are computed as
a = f(x) and b = g(a) for some functions f : R5 → R4 and g : R4 → R2. Finally,
the output ŷ is computed as ŷ = h(b) for some function h : R2 → R. Now in order
to update the network parameters, we perform gradient descent. The loss computed
between the ground truth y and the current prediction output ŷ is ℓ = L(y, ŷ).

(a) Express dℓ/db1 in terms of dh/db□ and dℓ/dŷ. The blank (□) must be filled in
with either 1 or 2. Some terms may be reused with a different value in the blank.

(b) Express dℓ/db in terms of dh/db and dℓ/dŷ.

(c) Express dℓ/da2 in terms of db□/da□ and dℓ/da□. The blanks (□) must be filled in
with either 1 or 2. Some terms may be reused with a different value in the blank.

(d) Express dℓ/da in terms of dg/da and dℓ/db.

∗Questions taken almost directly from my undergraduate calculus book.

11



9. One of the extra readings for the neural network lecture is Deep Learning by Goodfel-
low, et al. The chain rule derivation in the book is as follows:

Suppose that x ∈ Rm, y ∈ Rn, g maps from Rm to Rn, and f maps from Rn

to R. If y = g(x) and z = f(y), then

∂z

∂xi

=
∑
j

∂z

∂yj

∂yj
∂xi

. (G6.45)

In vector notation, this may be equivalently written as

∇xz =

(
∂y

∂x

)T

∇yz, (G6.46)

· · · (omitted)

∇xz and ∇yz are gradients of z with respect to x and y, respectively. All vectors,
including gradients, are column vectors.

(a) Verify Eq. (G6.45) by applying the chain rule yourself.

(b) Recall that the derivative convention we are using is called the denominator-layout
notation. There is another set of definitions called the numerator-layout notation,
which transposes all of the definitions we have. Is ∂y/∂x in Eq. (G6.46) defined
using the denominator layout or the numerator layout? Explain why.

(c) Derive Eq. (G6.46) from Eq. (G6.45) using the denominator layout and the nu-
merator layout.

10. Hayden thinks it is odd that all definitions have to be transposed to build a differ-
ent layout. Instead, he proposes a new set of definitions, which transposes only the
derivative of a vector with respect to a vector (dy/dx).∗ He argues that this is more
consistent with well-known mathematical concepts and therefore more convenient (this
way, dy/dx is identical to the gradient and dy/dx is identical to the Jacobian matrix).

(a) For vectors x, y, z where z is a function of y and y is a function of x, express
dz/dx in terms of dz/dy and dy/dx under this definition.

(b) For vectors x, y and scalar z where z is a function of y and y is a function of x,
express dz/dx in terms of dz/dy and dy/dx under this definition.

(c) Compare the result of (b) with Eq. (G6.46) in Question 9. Describe one caveat of
this definition.

∗Some authors actually use this.
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3 Computing the Derivatives

In this section, we focus on how to actually compute various derivatives. We will first
cover the “hacky” way which usually suffices for 10-301/601, and the mathematically rigorous
way in case the hacky method fails.

3.1 Shape Matching

One thing we can take advantage of matrix multiplication is that it is defined only when
the shapes of the operands match. Recall that for two matrices X ∈ Rm×n and Y ∈ Rn×p,
Z = XY ∈ Rm×p is defined as

Z = (Zij), where Zij =
n∑

k=1

XikYkj.

Note the shapes of X and Y. The number of columns of X and the number of rows of Y
have to be equal for XY to be defined. The resultant product has the same number of rows
as X and the same number of column as Y.

With this and the scalar version of the chain rule, we can “derive” the vector chain rule.
Consider x ∈ Rp, y ∈ Rr, z ∈ Rn where z is a function of y, and y is a function of x, and
we derive dz/dx again in this setting. If x, y, and z were all scalars, dz/dx simply would be

dz

dx
=

dz

dy

dy

dx
.

From here, we can guess that dz/dx would be a product of dz/dy and dy/dx. We also
know that the shapes of dz/dx, dz/dy, and dy/dx are p× n, r × n, and p× r, respectively.
Therefore, the correct order of multiplication is

dz

dx
=

dy

dx

dz

dy
.

The new chain rule “derivation” is not rigorous, and technically is not even a proper proof.
However, this shaping matching technique is extremely useful for sanity check (and maybe
also multiple-choice questions; sometimes you can eliminate some options with incorrect
shapes). Typically, the general procedure for this would be:

1. Determine what to evaluate. You may have to do this yourself, or the question may
tell you explicitly.

2. Identify the shape of the final answer. If you are taking the derivative of a scalar, the
shape is the same as the shape of the variable you are taking the derivative with respect
to. If you are taking the derivative of an n-dimensional vector, the shape is something
by n.

3. For multiple choice questions, eliminate any options whose shape does not match or the
operation is not defined. This includes those multiplying or adding matrices of wrong
shapes.

13



4. If you can exactly determine what terms and factors you need, you may be able to
obtain the answer by transposing and matching them until all operations are properly
defined and the final shape is correct.

Of course, this is closer to guessing the answer rather than logically deriving it. Also, this may
fail if the shapes happen to match. For example, for x,y, z ∈ Rn, dz/dx, dz/dy, dy/dx are all
n×n. Selecting and multiplying any two of them in any order is still valid as the shapes are
fine, but the answer will be incorrect. Also, this method cannot be used for any operations
that do not change the shape, such as addition, subtraction, and scalar multiplication.

3.2 Generalizing Single Element

A more logically correct and mathematically rigorous way is to consider a single element
of a matrix, and generalize it to obtain the full matrix. Consider the following four cases,
which were the only non-scalar derivative definitions we have:

1. Case dy/dx (or dy/dxT ): the i-th element is dy/dxi.

2. Case dy/dX: the (i, j)-th element is dy/dXij.

3. Case dy/dx: the i-th element is dyi/dx.

4. Case dy/dx: the (i, j)-th element is dyj/dxi (not dyi/dxj).

As an example, we will derive d(Ax)/dx = AT again here for x ∈ Rp and some constant
matrix A ∈ Rn×p. Let y = Ax ∈ Rn for convenience. Earlier we obtained this by explicitly
computing everything. Here we will try and simplify this by considering only one entry of
dy/dx.

Say we compute one of the elements of dy/dx first; the (i, j)-th one, or dyj/dxi. Through
this, we have reduced the problem to simple scalar differentiation. Now we need to identify
what yj is. By the definition of matrix multiplication,

yj = yj1

=

p∑
k=1

Ajkxk1

=

p∑
k=1

Ajkxk.

Here we interpreted x and y as (vector dimension)× 1 matrices as necessary. Then we have

dyj
dxi

=
d

dxi

p∑
k=1

Ajkxk

= Aji.

This is the (i, j)-th element of the desired derivative. The matrix whose (i, j)-th element is
Aji is A

T , so we conclude that
dy

dx
= AT .
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This method is clearly logically sound and mathematically solid. Another advantage of
this method is that this works for any definition of matrix derivatives as long as we change
the indices accordingly. However, this is more difficult than simple shape matching, and
thinking in terms of indices and one element in a matrix can be tricky.

Also, this can be extended to derivatives of any dimensions. For example, consider we
take the derivative of a 5D tensor T with respect to a matrix X. There are a total of
7 dimensions where values can change, so one element of the “näıve” derivative would be
dTijklm/dXxy. However, not all seven dimensions are necessarily required (i.e., fewer free vari-
ables may suffice). Some elements may always have the same value (usually zero), and some
rows/columns/elements may be repeated. We may choose to omit these pieces of redundant
information as you will see in the exercises.

We have briefly mentioned that the shape matching method fails when the operations
applied do not change the shape. It is easy to see that the single element method can be used
instead. In fact, we can utilize it for any arbitrary well-defined operations. One extremely
common and handy operation in machine learning is element-wise multiplication, also called
the Hadamard product, denoted ⊙. This is also detailed in one of the exercise questions (do
not skip this question).

3.3 Matrix Multiplication Review

Matrix multiplication is simple, but we rarely think about the index-based definition.
However, it is crucial to read sums and/or products of scalars and translate them back to
matrix operations in order to use the single element method. To this end, we will review how
matrix multiplication and some common more specific cases are defined.

1. For a,b ∈ Rn, d = aTb ∈ R is defined as:

d =
n∑

k=1

akbk.

2. For a,b ∈ Rn, D = abT ∈ Rn×n is defined as:

Dij = aibj.

3. For A ∈ Rm×p and v ∈ Rp, w = Av ∈ Rm is defined as

wi =

p∑
k=1

Aikvk.

This can be visualized as the following:

Av =

— A1,:
T —

...
— Am,:

T —

v =

A1,:
Tv
...

Am,:
Tv

 ,
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which gives rise to
wi = Ai,:

Tv.

Notice the transpose operator. The usual convention is to write Ai,: as a column vector
even though it is the i-th row ofA. Here we use the transpose operator (for this section)
to explicitly state that the row selected is represented as a row vector.

The following visualization is also possible:

Av =

 | |
A:,1 · · · A:,p

| |


v1...
vp

 =

 |
A:,1

|

 v1 + · · ·+

 |
A:,p

|

 vp,

which yields

Av =

p∑
k=1

A:,kvk =

p∑
k=1

vkA:,k.

Note that vk can be multiplied both before and after A:,k only because vk is a scalar.

4. For A ∈ Rm×p and u ∈ Rm, y = uTA ∈ R1×p is defined as

yi = y1i =
m∑
k=1

ukAki.

We try similar visualizations. Considering each column of A gives

uTA = uT

 | |
A:,1 · · · A:,p

| |

 =
[
uTA:,1 · · · uTA:,m

]
,

which can be interpreted as
yi = y1i = uTA:,i.

Similarly, focusing on the rows of A, we have

uTA =
[
u1 · · · um

] — A1,:
T —

...
— Am,:

T —


= u1

[
— A1,:

T —
]
+ · · ·+ um

[
— Am,:

T —
]
,

which is equivalent to

uTA =
m∑
k=1

ukAk,: =
m∑
k=1

Ak,:uk.

Again, uk can come both before and after Ak,: only because uk is a scalar.
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5. For A ∈ Rm×p and B ∈ Rp×n, C = AB ∈ Rm×n is defined as

Cij =

p∑
k=1

AikBkj.

Again, this can be thought of as

C = AB =

— A1,:
T —

...
— Am,:

T —


 | |
B:,1 · · · B:,n

| |

 =

A1,:
TB:,1 · · · A1,:

TB:,n
...

. . .
...

Am,:
TB:,1 · · · Am,:

TB:,n

 ,

and we derive the expression
Cij = Ai,:

TB:,j,

or from a different perspective,

C = AB =

 | |
A:,1 · · · A:,p

| |


— B1,:

T —
...

— Bp,:
T —


=

 |
A:,1

|

 [— B1,:
T —

]
+ · · ·+

 |
A:,p

|

 [— Bp,:
T —

]
,

which gives

C =

p∑
k=1

A:,pBp,:
T .

These visualizations break apart both matrices into vectors. Now we try leaving one
of the matrices as is, which yields the following:

C = AB = A

 | |
B:,1 · · · B:,n

| |

 =

 | |
AB:,1 · · · AB:,n

| |

 ,

in other words,
C:,i = AB:,i.

Similarly, leaving B as is,

C = AB =

— A1,:
T —

...
— Am,:

T —

B =

— A1,:
TB —
...

— Am,:
TB —

 ,

and we have the final interpretation:

Ci,:
T = Ai,:

TB.

Finally, remember that matrix multiplication is not commutative, but associative. It is
extremely easy to show that it is not commutative; pick any two arbitrary matrices and likely
they will work as a counterexample. Associativity can be shown by comparing the (i, j)-th
element of (AB)C and A(BC).
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3.4 Exercises

1. Recall for scalar functions f and g, the product rule is (fg)′ = f ′g+fg′. In this problem,
we extend this to vector functions. Consider vectors u,v ∈ Rn that are functions of
x ∈ Rm.∗ We are interested in d(uTv)/dx.

(a) What is the expected shape of d(uTv)/dx?

(b) Select all that apply:Which of the following have the same shape as d(uTv)/dx?

□
du

dx

dv

dx

□ u
du

dx
+ v

dv

dx

□
du

dx
v + u

dv

dx

□
du

dx
v +

dv

dx
u

□
dv

dx

du

dx

□ v
du

dx
+ u

dv

dx

□
du

dx
v − u

dv

dx

□
du

dx
u+

dv

dx
v

(c) What is one element of d(uTv)/dx? Also specify the index of that element.

(d) Generalize the answer of (c) to evaluate d(uTv)/dx.

2. Element-wise operations are very common for vectors and matrices. We will explore
the derivatives when these operations are involved.

(a) For x ∈ Rn and f : R → R, define y as yi = f(xi). Evaluate dy/dx.

(b) For x,y ∈ Rn, define z = x⊙ y as zi = xiyi. Evaluate dz/dx.

(c) For x,y ∈ Rn, define z as zi = f(xi, yi). Evaluate dz/dx.

3. We have previously defined that d(Xv)/dX = vT without reasoning about it; we will
justify this definition in this problem. Consider a matrix X ∈ Rm×n and a constant
vector v ∈ Rn. y ∈ Rm is defined as y = Xv.

(a) Observe that some elements of d(Xv)/dX are always zero. What is the relation
of i, j and k when dyi/dXjk is necessarily zero?

(b) Evaluate dyi/dXjk only where it can be nonzero; i.e., evaluate the value only
where i, j, and k do not satisfy (a).

(c) Say we only want to compute dy/dX for only where dyi/dXjk can be nonzero.
Argue that this information can be represented as a 2D matrix.

(d) Argue further that the matrix in (c) can be represented as a vector.

(e) Construct the vector in (d) so that dy/dX = d(Xv)/dX = vT .

(f) After all, we forced the vector in (d) to fit our definition. We might as well have
transposed the matrix in (c) and said d(Xv)/dX = v. What is one advantage of
not doing so; i.e., why define d(Xv)/dX = vT ?

∗You can consider this as u = f(x), v = g(x) for some functions f, g : Rm → Rn.

18



4. The chain rule can be extended to when derivatives of a scalar with respect to a matrix
are involved. We will specifically consider the case where z ∈ R is a function of row
vector y, where y = vTX for some matrix X ∈ Rm×n and a constant vector v ∈ Rm.
Then by the chain rule, dz/dX can be represented as a product of dy/dX and dz/dy.

(a) Derive the chain rule by matching the shapes. Hint: dy/dX = d(vTX)/dX =?

(b) Evaluate dz/dX by considering one element of dz/dX first, then use the scalar
chain rule. Do not use the known result of dy/dX itself.

(c) Compare the answers to (a) and (b) and justify our definition of d(vTX)/dX.

5. Consider a neural network that accepts x ∈ Rn as the input and outputs ŷ ∈ Rm. The
intermediate activations a, the output ŷ, and the loss ℓ ∈ R between ŷ and the ground
truth y ∈ Rm are calculated as follows:

a = f(Mx),

ŷ = g(Na),

ℓ = h(ŷ,y),

for matrices M ∈ Rp×n and N ∈ Rm×p, and functions f, g : R → R and h : Rm → R.
f and g are applied element-wise.

(a) Express dℓ/dN in terms of dℓ/dŷ and dŷ/dN.

(b) Express your answer in (a) with the only derivative not evaluated being dℓ/dŷ.

(c) Fill in the blanks (□) so that the equality holds:

dℓ

dM
=

d□
d□

d□
d□

d□
d□

.

The blanks can only be one of ℓ, a, x, y, ŷ, M, and N. Some may be reused. One
of the factors must be dℓ/dŷ.

(d) Express your answer in (c) with the only derivative not evaluated being dℓ/dŷ.

(e) In practice, neural networks are often updated by using a set of inputs x1, · · · ,xB.
∗

The final loss used for the network update is the arithmetic mean of individual
losses obtained by passing the inputs one by one. Describe how dℓ/dM and dℓ/dN
change under this setting.

∗This set of inputs is called a batch or a mini-batch, and the subscript B is from “Batch size.”
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6. The forward-backward algorithm for HMM (Hidden Markov Model) follows the update
rules given as

αt(j) = Ajxt

J∑
k=1

αt−1(k)Bkj,

βt(j) =
J∑

k=1

Akxt+1βt+1(k)Bjk.

Conceptual understanding of the algorithm is not required for this question. Interpret
A as a J ×W matrix, and B as a J × J matrix. xt is a fixed sequence of integers in
range [1,W ]. j is an integer in range [1, J ]. J and W are fixed integers. Assume that
αt, αt−1, βt, and βt+1 are all well-defined (i.e., ignore cases such as when t = 0).

When we use these rules as they are, we have to iterate over every single possible j and
update the values one by one. In this problem, we are interested in deriving the matrix
form of these rules so that we can update them all at the same time. Concretely, we
define vectors αt and βt as

αt = [αt(1), · · · , αt(J)]
T ,

βt = [βt(1), · · · , βt(J)]
T

and you are to derive new update rules

αt = (some expression involving αt−1),

βt = (some expression involving βt+1)

which are equivalent to the original update rules. Express the update rules in matrix
form.

7. Consider column vectors x,y ∈ Rn and matrices A,B ∈ Rn×n. Each of the following is
one element, row, or vector of a vector or matrix obtained by multiplying some of x, y,
A, B, xT , yT , AT , and BT , or the result itself. Write the matrix multiplication forms
generalizing the following expressions. Any vectors given in the following are column
vectors. For example, Ai,: is the i-th row of A as a column vector.

(a)
∑N

i=1Aijxiyi

(b)
∑N

i=1Aijxi

(c)
∑N

j=1Aijxjyj

(d)
∑N

j=1

∑N
k=1AkiBkjxj

(e)
∑N

i=1 x
TAi,:A

T
i,:

(f)
∑N

j=1Aijxiyj

(g)
∑N

i=1A:,iB
T
:,ix

(h) xiyjAij
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End of main content

Solutions on the next page
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4 Solutions

Clicking a question number will take you to that question.

4.1 Section 1

1. (a) σ′(x) = ((1 + e−x)−1)′ = e−x/(1 + e−x)2

(b) e−x/(1 + e−x)2 = (1 + e−x − 1)/(1 + e−x)2 = σ(x)(1− σ(x))

(c) tanh′(x) = ((ex + e−x)2 − (ex − e−x)2)/(ex + e−x)2

(d) ((ex + e−x)2 − (ex − e−x)2)/(ex + e−x)2 = 1− tanh2(x)

Please remember the results of (b) and (d), just like how you can say directly
from memory that sin′(x) = cos(x). σ′(x) = σ(x)(1−σ(x)) and tanh′(x) = 1−tanh2(x)
without derivation from now on.

2. (a) yxy−1 + yx log y, xy log x+ xyx−1

(b) sin(x)(− cos(y + cosx)), cos(y + cosx)

(c) y(exy + 1/x), xexy + log 3x

(d) −y2[sin(xy) + cos(xy)], −xy sin(xy)− sin(xy)− xy cos(xy) + cos(xy),
−xy sin(xy)− sin(xy)− xy cos(xy) + cos(xy), −x2[sin(xy) + cos(xy)]

(e) log(y) · x−1+log y, 2 + log(x)xlog(y)(1/y)

(f) 2(x+ y), 2(x+ y)

(g) 2xi

(h) wi

The most important ones here are (g) and (h).

3. (a) [y(2x+ y), x(x+ 2y)]T

(b) [2(x+ y), 2(x+ y)]T

(c)

[
y2exy [cos(exy)− exy sin(exy)] exy [cos(exy)(1 + xy)− xyexy sin(exy)]

exy [cos(exy)(1 + xy)− xyexy sin(exy)] x2exy [cos(exy)− exy sin(exy)]

]
(d) [2x1, 2x2, · · · , 2xn]

T

(e) [2x1, 2x2, · · · , 2xn]
T = 2[x1, x2, · · · , xn]

T = 2x

(f) [w1, w2, · · · , wn]
T

(g) w

The most important ones here are (d), (e), (f) and (g).

4. ∇z = [2x,−6y]T , so the direction to take is −∇z|x=−1,y=0 = [2, 0]T .
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4.2 Section 2

1. Same as dy/dx, dy/dx, and dy/dxT , respectively. Note that R1×1 is a scalar, Rn×1 is a
column vector, and R1×n is a row vector, so this result is expected.

2. Similar to how we derived the d(Ax)/dx case, we directly compute xTB first.

xTB =
[
x1 · · · xp

] B11 · · · B1n
...

. . .
...

Bp1 · · · Bpn


=
[
B11x1 +B21x2 + · · ·+Bp1xp · · · B1nx1 +B2nx2 + · · ·+Bpnxp

]
=
[∑p

k=1Bk1xk · · · ∑p
k=1Bknxk

]
.

The i-th element of xTB is
∑p

k=1Bkixk, and therefore dyi/dxj = Bji (y = xTB).
Hence, we have

d(xTB)

dx
=


dy1/dx1 dy2/dx1 · · · dyn/dx1

dy1/dx2 dy2/dx2 · · · dyn/dx2
...

. . .
...

dy1/dxp dy2/dxp · · · dyn/dxp



=


B11 B12 · · · B1n

B21 B22 · · · B2n
...

. . .
...

Bp1 Bp2 · · · Bpn


= B.

3. (a)

xTAx =
[
x1 x2

] [A11 A12

A21 A22

] [
x1

x2

]
=
[
x1 x2

] [A11x1 + A12x2

A21x1 + A22x2

]
= A11x

2
1 + (A12 + A21)x1x2 + A22x

2
2

Each term is a polynomial of degree 2, so this is a quadratic.

(b) xTAx is a scalar and x is a vector. Therefore, we need the definition of the
derivative of a scalar with respect to a vector.

(c) Under this assumption, xTAx = A11x
2
1 + (A12 +A21)x1x2 +A22x

2
2 as we found in
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part (a). Then

d(xTAx)

dx
=

[
d(A11x2

1+(A12+A21)x1x2+A22x2
2)

dx1
d(A11x2

1+(A12+A21)x1x2+A22x2
2)

dx2

]

=

[
2A11x1 + (A12 + A21)x2

(A12 + A21)x1 + 2A22x2

]
=

[
(A11 + A11)x1 + (A12 + A21)x2

(A21 + A12)x1 + (A22 + A22)x2

]
=

[
A11x1 + A12x2

A21x1 + A22x2

]
+

[
A11x1 + A21x2

A12x1 + A22x2

]
=

[
A11 A12

A21 A22

] [
x1

x2

]
+

[
A11 A21

A12 A22

] [
x1

x2

]
= Ax+ATx

= (A+AT )x.

(d)

xTAx =
[
x1 · · · xn

] A11 · · · A1n
...

. . .
...

An1 · · · Ann


x1

...
xn


=
[
x1 · · · xn

] 
∑n

j=1A1jxj

...∑n
j=1Anjxj


=

n∑
i=1

xi

(
n∑

j=1

Aijxj

)
.

Now we will determine which terms contain the factor xk. This is to find d(xTAx)/dxk,
which will be the k-th element of d(xTAx)/dx. xk can appear when i = k and/or
j = k. When i = k, we have terms

∑n
j=1Akjxjxk, and when j = k, we have terms
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∑n
i=1Aikxixk. Therefore

d(xTAx)

dxk

=
d

dxk

[(
n∑

i=1

Aikxi +
n∑

j=1

Akjxj

)
xk − Akkx

2
k

]
(∵ i = j = k counted twice)

=
d

dxk

[(∑
i ̸=k

Aikxi +
∑
j ̸=k

Akjxj

)
xk + 2Akkx

2
k − Akkx

2
k

]

=

(∑
i ̸=k

Aikxi +
∑
j ̸=k

Akjxj

)
+ 2Akkxk

=
n∑

i=1

Aikxi +
n∑

j=1

Akjxj

= [ATx]k + [Ax]k

= [(A+AT )x]k.

As this is the k-th element of d(xTAx)/dx, it follows that

d(xTAx)

dx
= (A+AT )x.

(e) AT = A, so the result is simplified to (A+AT )x = 2Ax.

4. Say u(x) = [u1, · · · , um]
T and v(x) = [v1, · · · , vm]T . To show the two matrices are

equivalent, it suffices to show that the (i, j)-th elements are the same for any i and j.

(a) LHS: u(x)+v(x) = [u1+v1, · · · , um+vm]
T , so the (i, j)-th element of d(u+v)/dx

is d((u+ v)j)/dxi = d(uj + vj)/dxi. Because these are all scalars, using the scalar
differentiation linearity, d(uj + vj)/dxi = duj/dxi + dvj/dxi.

RHS: The (i, j)-th element of du/dx is duj/dxi, and (i, j)-th element of dv/dx is
dvj/dxi. Therefore, the (i, j)-th element of du/dx + dv/dx is duj/dxi + dvj/dxi.
The LHS and the RHS have the same (i, j)-th element.

(b) au(x) = [au1, · · · , aum]
T . The (i, j)-th element of d(au)/dx is d(auj)/dxi, and

again by the scalar differentiation linearity, a · duj/dxi. The (i, j)-th element of
a · du/dx is a · duj/dxi. The LHS and the RHS have the same (i, j)-th element.

5. Expanding everything (we have not derived the product rule, so we cannot take the
derivative of this as is), we first have

J(θ) =
1

N
(Xθ − y)T (Xθ − y)

=
1

N
(θTXT − yT )(Xθ − y)

=
1

N
(θTXTXθ − θTXTy − yTXθ + yTy).
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Observe that d(θTXTXθ)/dθ = 2XTXθ, since XTX is a symmetric matrix and this
follows directly from the previous problem. Also using the properties we have de-
rived, d(θTXTy)/dθ = XTy and d(yTXθ)/dθ = XTy. yTy does not depend on θ, so
d(yTy)/dθ = 0. Therefore, we have

dJ(θ)

dθ
=

1

N

(
d(θTXTXθ)

dθ
− d(θTXTy)

dθ
− d(yTXθ)

dθ
+

d(yTy)

dθ

)
=

1

N
(2XTXθ −XTy −XTy + 0)

=
2

N
(XTXθ −XTy).

Solving dJ(θ)/dθ = 0 is therefore equivalent to solving XTXθ −XTy = 0. Assuming
that XTX is invertible, we have

XTXθ −XTy = 0

⇒ XTXθ = XTy

⇒ θ = (XTX)−1XTy.

6. df/dg and dg/dx are both scalars, and scalar multiplication is commutative. There-
fore, we can safely swap the order of the multiplication and say (df/dg)(dg/dx) =
(dg/dx)(df/dx).

On the other hand, dz/dy and dy/dx are both matrices, and matrix multiplication is
not commutative. Therefore, we cannot swap the order of the multiplication. Specif-
ically, dz/dx ̸= (dz/dy)(dy/dx); this multiplication is not even defined when the di-
mensions of x and z do not match.

7. (a)

∂f

∂u
= (u− v + 1)eu,

∂f

∂v
= −eu,

∂u

∂x
= y,

∂u

∂y
= x,

∂v

∂x
= 2x,

∂v

∂y
= −2y.

By the chain rule,

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
= (u− v + 1)euy − 2xeu

= (xy − x2 + y2 + 1)yexy − 2xexy,

∂f

∂y
=

∂f

∂u

∂u

∂y
+

∂f

∂v

∂v

∂y
= (u− v + 1)eux+ 2yeu

= (xy − x2 + y2 + 1)xexy + 2yexy.
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(b)

∂f

∂u
= log v +

v

u
,

∂f

∂v
= log u+

u

v
,

∂u

∂x
=

1

2
,

∂u

∂y
= − 2

y2
,

∂v

∂x
= ey,

∂v

∂y
= xey.

By the chain rule,

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
=

1

2

(
log v +

v

u

)
+
(
log u+

u

v

)
ey

=
1

2

(
log x+ y +

xey

x
2
+ 2

y

)
+

(
log

(
x

2
+

2

y

)
+

x
2
+ 2

y

xey

)
ey,

∂f

∂y
=

∂f

∂u

∂u

∂y
+

∂f

∂v

∂v

∂y
= − 2

y2

(
log v +

v

u

)
+
(
log u+

u

v

)
xey

= − 2

y2

(
log x+ y +

xey

x
2
+ 2

y

)
+

(
log

(
x

2
+

2

y

)
+

x
2
+ 2

y

xey

)
xey.

(c)

∂f

∂u
= log v,

∂f

∂v
=

u

v
,

∂u

∂x
= sin y + y cosx,

∂u

∂y
= x cos y + sinx,

∂v

∂x
= cos y − y sinx,

∂v

∂y
= −x sin y + cosx.

By the chain rule,

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x

= (sin y + y cosx) log v + (cos y − y sinx)
u

v

= (sin y + y cosx) log(x cos y + y cosx) + (cos y − y sinx)
x sin y + y sinx

x cos y + y cosx
,

∂f

∂y
=

∂f

∂u

∂u

∂y
+

∂f

∂v

∂v

∂y

= (x cos y + sinx) log v + (cosx− x sin y)
u

v

= (x cos y + sinx) log(x cos y + y cosx) + (cos x− x sin y)
x sin y + y sinx

x cos y + y cosx
.
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(d)

∂f

∂u
=

v2 + 1

(1− uv)2
,

∂f

∂v
=

u2 + 1

(1− uv)2
,

∂u

∂x
=

1

2
sec2

x+ y

2
,

∂u

∂y
=

1

2
sec2

x+ y

2
,

∂v

∂x
=

1

2
sec2

x− y

2
,

∂v

∂y
= −1

2
sec2

x− y

2
,

where secx = 1/ cosx. By the chain rule and using that 1 + tan2 x = sec2 x,

∂f

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x

=
v2 + 1

2(1− uv)2
sec2

x+ y

2
+

u2 + 1

2(1− uv)2
sec2

x− y

2

=
1 + tan2 x−y

2

2
(
1− tan x+y

2
tan x−y

2

)2 sec2 x+ y

2
+

1 + tan2 x+y
2

2
(
1− tan x+y

2
tan x−y

2

)2 sec2 x− y

2

=
sec2 x−y

2
sec2 x+y

2

2
(
1− tan x+y

2
tan x−y

2

)2 +
sec2 x+y

2
sec2 x−y

2

2
(
1− tan x+y

2
tan x−y

2

)2
=

sec2 x−y
2

sec2 x+y
2(

1− tan x+y
2

tan x−y
2

)2
=

1(
cos x+y

2
cos x−y

2
− sin x+y

2
sin x−y

2

)2
=

1

cos2
(
x+y
2

+ x−y
2

)
=

1

cos2 x
= sec2 x,

∂f

∂y
=

∂f

∂u

∂u

∂y
+

∂f

∂v

∂v

∂y

=
v2 + 1

2(1− uv)2
sec2

x+ y

2
− u2 + 1

2(1− uv)2
sec2

x− y

2

=
1 + tan2 x−y

2

2
(
1− tan x+y

2
tan x−y

2

)2 sec2 x+ y

2
− 1 + tan2 x+y

2

2
(
1− tan x+y

2
tan x−y

2

)2 sec2 x− y

2

=
sec2 x−y

2
sec2 x+y

2

2
(
1− tan x+y

2
tan x−y

2

)2 − sec2 x+y
2

sec2 x−y
2

2
(
1− tan x+y

2
tan x−y

2

)2
= 0.

Did you notice that (u+ v)/(1− uv) with u = tan x+y
2

and v = tan x−y
2

is simply

tan x+y
2

+ tan x−y
2

1− tan x+y
2

tan x−y
2

= tan

(
x+ y

2
+

x− y

2

)
= tanx,

so ∂f/∂x = sec2 x and ∂f/∂y = 0?
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8. (a) By the chain rule,
dl

db1
=

dŷ

db1

dl

dŷ
.

You may be more familiar with the form that has the multiplication in the reversed
order: dl/db1 = (dl/dŷ)(dŷ/db1). Switching the order does not matter as these are
scalars, but this order is more consistent with the vector version.

Now ŷ = h(b) = h(b1, b2). Therefore, dŷ/db1 is simply ∂h/∂b1, and the answer is

dl

db1
=

dh

db1

dl

dŷ
.

Here we are writing that dŷ/db1 = dh(b)/db1 = dh/db1. We are also slightly
abusing the notation here (as we always have) and writing ∂ as d.

(b) Similarly, dl/db2 = (dh/db2)(dl/dŷ).

dl

db
=

[
dl

db1
,

dl

db2

]T
=

[
dh

db1

dl

dŷ
,
dh

db2

dl

dŷ

]T
=

[
dh

db1
,
dh

db2

]T
dl

dŷ

=
dh

db

dl

dŷ
.

(c) Isolating only a2 from the diagram, we know that the chain rule should be

dl

da2
=

db1
da2

dl

db1
+

db2
da2

dl

db2
.

(d) By the chain rule, we have
dl

da
=

db

da

dl

db
.

Now notice that b = g(a), so db/da is simply dg/da. Therefore, the answer is

dl

da
=

dg

da

dl

db
.

9. (a) Again, we draw the diagram:

xi

y1

y2

...

yn−1

yn

z

dyj
dxi

dz
dyj
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The result directly follows from the diagram. Each xi → yj → z path gives
(dyj/dxi)(dz/dyj), and we add it for all possible values of j.

(b) This is defined in the numerator layout. ∇xz ∈ Rm and ∇xy ∈ Rn, so (∂y/∂x)T

has to be Rm×n, which means ∂y/∂x itself is Rn×m. This is the shape when we
use the numerator-layout notation.

(c) We have already derived the version using the denominator-layout notation, which
was ∇xz = (∂y/∂x)∇yz. Note that with our definition, ∇xz = ∂z/∂x and ∇yz =
∂z/∂y. Therefore, this is exactly the same as the chain rule we have derived:
∂z/∂x = (∂y/∂x)(∂z/∂y).

Now we consider the numerator-layout notation. In this convention, all definitions
are transposed from the ones we used so far, so the derivation for the general case
(x ∈ Rp, y ∈ Rr, z ∈ Rn where z is a function of y, and y is a function of x)
becomes:

dz

dx
=


dz1/dx1 dz1/dx2 · · · dz1/dxp

dz2/dx1 dz2/dx2 · · · dz2/dxp
...

. . .
...

dzn/dx1 dzn/dx2 · · · dzn/dxp

 ∈ Rn×p

=


∑r

k=1
dz1
dyk

dyk
dx1

∑r
k=1

dz1
dyk

dyk
dx2

· · · ∑r
k=1

dz1
dyk

dyk
dxn∑r

k=1
dz2
dyk

dyk
dx1

∑r
k=1

dz2
dyk

dyk
dx2

· · · ∑r
k=1

dz2
dyk

dyk
dxn

...
. . .

...∑r
k=1

dzp
dyk

dyk
dx1

∑r
k=1

dzp
dyk

dyk
dx2

· · · ∑r
k=1

dzp
dyk

dyk
dxn



=


dz1/dy1 dz1/dy2 · · · dz1/dyr
dz2/dy1 dz2/dy2 · · · dz2/dyr

...
. . .

...
dzn/dy1 dzn/dy2 · · · dzn/dyr



dy1/dx1 dy1/dx2 · · · dy1/dxp

dy2/dx1 dy2/dx2 · · · dy2/dxp
...

. . .
...

dyr/dx1 dyr/dx2 · · · dyr/dxp


=

dz

dy

dy

dx
.

For this problem, z is a scalar, which can be considered as a z ∈ R1 vector.
Therefore, we have dz/dx = (dz/dy)(dy/dx). Compare this to Eq. (G6.46). No-
tice that ∇xz = (dz/dx)T and ∇yz = (dz/dy)T with the transposed defini-
tions. Taking the transpose of both sides of dz/dx = (dz/dy)(dy/dx), we obtain
(dz/dx)T = (dy/dx)T (dz/dy)T , or equivalently ∇xz = (dy/dx)T∇yz, which is
identical to Eq. (G6.46).

10. (a) By the exactly same derivation from the previous problem,

dz

dx
=

dz

dy

dy

dx
.

(b) Keeping in mind that dz/dx is equivalent to the gradient (column vector), we
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have for x ∈ Rp and y ∈ Rr,(
dz

dx

)T

=

[
dz

dx1

· · · dz

dxp

]
=

[
r∑

k=1

dz

dyk

dyk
dx1

· · ·
r∑

k=1

dz

dyk

dyk
dxp

]

=

[
dz

dy1
· · · dz

dyr

]


dy1
dx1

dy1
dx2

· · · dy1
dxp

dy2
dx1

dy2
dx2

· · · dy2
dxp

...
. . .

...
dyr
dx1

dyr
dx2

· · · dyr
dxp


=

(
dz

dy

)T
dy

dx
.

Another way of thinking about this is that if dz/dx were transposed as well, we
can use the chain rule from the numerator layout. Therefore, we simply transpose
dz/dx and dz/dy, then apply the same rule.

(c) Taking the transpose of the result from part (b), we have

dz

dx
=

(
dy

dx

)T
dz

dy
,

which is equivalent to Eq. (G6.46) (in this definition, ∇vz = dz/dv). Although
the derived chain rule is the same, the reasoning is different. For Question 9, we
can simply derive the general chain rule for dz/dx, then argue that a scalar is
a one-dimensional vector and therefore is just a special case of the general case.
This works because dy/dx = dy/dx when we interpret y ∈ R as y = [y]T ∈ R1.
However, this does not hold under the new definition, which means we have to
derive the chain rule specifically for dz/dx (or appropriately transpose the result
from a different set of definitions). The caveat is that we have to be careful when
scalar derivatives and vector derivatives cross paths.
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4.3 Section 3

1. (a) uTv is a scalar, so the expected shape is the same as that of x. d(uTv)/dx ∈ Rm.

(b) du/dx, dv/dx ∈ Rm×n and u,v ∈ Rm. Options traversed from left to right, then
from up to down.

• (du/dx)(dv/dx) is not defined.

• (dv/dx)(du/dx) is not defined.

• u(du/dx) is not defined.

• v(du/dx) is not defined.

• u(dv/dx) is not defined (faintly surprising that this is not the answer?).

• u(dv/dx) is not defined.

• (du/dx)v is defined and in Rm. (dv/dx)u is also defined and in Rm. Adding
the two gives Rm, which is the expected shape. This can potentially be the
answer.

• (du/dx)u is defined and in Rm. (dv/dx)v is also defined and in Rm. Adding
the two gives Rm, which is the expected shape. This can potentially be the
answer.

Therefore, the last two options can potentially be the answer. This shows the lim-
itation of shape matching; sometimes you are left with multiple possible options.

(c) The i-th element of d(uTv)/dx is d(uTv)/dxi. u
Tv = u1v1+ · · ·+unvn. Applying

the scalar chain rule,

d(uTv)

dxi

=
d

dxi

(u1v1 + · · ·+ unvn)

=
d

dxi

u1v1 + · · ·+ d

dxi

unvn

=

(
du1

dxi

v1 + u1
dv1
dxi

)
+ · · ·+

(
dun

dxi

vn + un
dvn
dxi

)
=

(
du1

dxi

v1 + · · ·+ dun

dxi

vn

)
+

(
u1

dv1
dxi

+ · · ·+ un
dvn
dxi

)
.

(d) d(uTv)/dxi is the sum of two vector inner products. Observe that

du1

dxi

v1 + · · ·+ dun

dxi

vn =
du

dxi

v,

u1
dv1
dxi

+ · · ·+ un
dvn
dxi

=
dv

dxi

u.

Recall that du/dxi and dv/dxi are row vectors, so the multiplication results are
scalars. Generalizing this to the entire vector, we have

d(uTv)

dx
=

du

dx
v +

dv

dx
u.
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2. (a) dy/dx is the derivative of a vector with respect to a vector. Therefore, the deriva-
tive is a matrix. The (i, j)-th element of dy/dx is dyj/dxi. Notice that this is
nonzero only where i = j; dyi/dxi = df(xi)/dxi, and zero everywhere else. There-
fore,

dy

dx
=



f ′(x1)

f ′(x2) 0
. . .

0 f ′(xn−1)
f ′(xn)


= diag(f ′(x1), · · · , f ′(xn))

= diag(f ′(x)).

where f ′ is the derivative of f and is applied element-wise to x.

diag is a function you will see often, which creates a matrix with the argument as
the main diagonal.

(b) Again, the derivative is a matrix. The (i, j)-th element of dz/dx is dzj/dxi. This
can be nonzero only where i = j; dzi/dxi = yi, and zero everywhere else. There-
fore,

dz

dx
= diag(y).

⊙, the element-wise product, is also called the Hadamard product.

(c) This generalizes the previous part of this question, and now dzj/dxi = df(xj, yj)/dxi.
Again, this is only nonzero along the main diagonal of the matrix. Therefore,

dz

dx
= diag

(
∂f

∂x1

, · · · , ∂f

∂xn

)
.

3. (a) yi =
∑n

p=1Xipvp. This means that yi depends only on Xi1, · · · , Xin. Therefore,
dyi/dXjk is necessarily zero where i ̸= j.

(b) We consider dyi/dXjk only when i = j. Then dyi/dXjk = dyi/dXik = vk.

(c) We are essentially computing only the values of dyi/dXik. There are only two free
variables here, namely i and k. This means the information can be represented as
a 2D matrix; say M ∈ Rm×n where Mij = dyi/dXij = vj.

(d) The matrix constructed in (c) is v1 · · · vn
...

. . .
...

v1 · · · vn

 .

All rows of the matrix are the same, so they are redundant. No matter how you
construct the matrix in (c), Mij having two free variables and vi having only one
means that one of the free variables of Mij is unnecessary.
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(e) We delete all rows except one, and say the answer is [v1, · · · , vn]T = vT .

(f) Say X = xT = [x1, · · · , xn]
T . This is now the derivative of a scalar with respect to

a (row) vector, and by the definition we have, this is vT = [v1, · · · , vn]T . Defining
the answer to be vT is a smooth generalization.

4. (a) dy/dX = d(vTX)/dX = v ∈ Rm×1, dz/dX ∈ Rm×n, and dz/dy ∈ R1×n. We
expect the answer to be

dz

dX
=

dy

dX

dz

dy
.

(b) We start by considering the (i, j)-th element of dz/dX, dz/dXij. Recall that y
is a row vector; we denote its k-th element as yk. Now we apply the scalar chain
rule. Drawing the usual diagram for the chain rule, we first have:

X y z

As y = vTX, yj =
∑m

k=1 vkXkj. This means that yj only depends onX1j, · · · , Xmj,
so the diagram can be specified as:

...

X1j

...

Xmj

...

...

yj

...

z

Finally, considering only one element of X, namely Xij, the diagram is simplified
as:

Xij yj z

Applying the scalar chain rule here, we have

dz

dXij

=
dz

dyj

dyj
dXij

.

Since we already know that yj =
∑m

k=1 vkXkj, we have that dyj/dXij = vi, and
therefore

dz

dXij

=
dz

dyj
vi = vi

dz

dyj
.

Recall that for vectors a and b, D = abT is defined as Dij = aibj. Here with
a = v and bT = dz/dy, we can conclude that

dz

dX
= v

dz

dy
.
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Note that bT (not just b) should be matched with dz/dy, because dz/dy is a row
vector.

(c) Comparing the answers of (a) and (b), dy/dX = v as we have defined. It is valid
to justify the definition this way as we have never relied on dy/dX = v to derive
(b). However, note that this does not constitute as a formal proof of dy/dX = v.

5. (a) This is a typical neural network update situation.

x

M

a

N

ŷ

y

ℓ

f g

h

By the chain rule, we have
dℓ

dN
=

dℓ

dŷ

dŷ

dN
.

Note that this looks slightly different from what we had so far. This can be
“derived” using shape matching, and we can also prove this formally. First observe
that

dℓ

dNij

=
dŷi
dNij

dℓ

dŷi
.

An easy thought process to obtain this is to first consider Nij. We know N will
affect ŷ, and we see that ŷ = g(Na). The k-th element of the vector ŷ is defined
as g(

∑
pNkpap), and here we know that Nij contributes to ŷi. Then ŷi affects ℓ.

Now we convert it back to vectors/matrices. Again, this matches D = vwT where
vi = dℓ/dŷi, wj = dŷi/dNij, and therefore v = dℓ/dŷ and wT = dŷ/dN with
D = dℓ/dN.

(b) From the scalar chain rule,

dℓ

dNij

=
dŷi
dNij

dℓ

dŷi

=
dg(
∑p

k=1Nikak)

dNij

dℓ

dŷi

= ajg
′(ŷi)

dℓ

dŷi
.

We match this again with D = vwT . Dij = viwj, so vi = g′(ŷi)(dℓ/dŷi) and
wj = aj naturally works. Therefore, w = a. v is a little trickier; vi = g′(ŷi)(dℓ/dŷi)
can be interpreted as an element-wise product, which gives v = g′(ŷ) ⊙ (dℓ/dŷ)
where g′ is the derivative of g and is applied element-wise. Hence,

dℓ

dN
=

(
g′(ŷ)⊙ dℓ

dŷ

)
aT .
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(c) Observe the diagram we obtain when we isolate only M, a and ℓ, and only N, ŷ
and ℓ.

M

a ℓ

f
N

ŷ ℓ

g

The diagrams and the definitions of a and ŷ imply that we can directly reuse the
result from (a). Therefore,

dℓ

dM
=

dℓ

da

da

dM
.

Also isolating only a, ŷ, and ℓ, we also have

a ŷ ℓ

which is the case we can apply the vector chain rule we have derived. This gives

dℓ

da
=

dŷ

da

dℓ

dŷ
.

We can thus conclude that

dℓ

dM
=

dŷ

da

dℓ

dŷ

da

dM
.

Alternatively, we can derive this starting from one element again. Consider dℓ/dMij:

dℓ

dMij

=
dai
dMij

p∑
k=1

dŷk
dai

dℓ

dŷk

=

(
p∑

k=1

dŷk
dai

dℓ

dŷk

)
dai
dMij

.

Inside the parentheses is the i-th element of (dy/da)(dℓ/dŷ), and dai/dMij is the
j-th element of da/dM. Therefore, we have the same chain rule.

(d) We also reuse the result from (b) to acquire

dℓ

dM
=

(
f ′(a)⊙ dℓ

da

)
xT .

Applying the vector chain rule to dℓ/da again yields

dℓ

dM
=

(
f ′(a)⊙ dŷ

da

dℓ

dŷ

)
xT .

dŷ/da can be directly evaluated, whose (i, j)-th element is dŷj/dai = dg(
∑

k Njkak)/dai =
g′(ŷj)Nji. Therefore, dŷ/da = g′(ŷT )⊙NT . The element-wise multiplication here
should be broadcasted (the j-th column is g′(ŷj)N

T
:,j). With this, we finally have

dℓ

dM
=

[
f ′(a)⊙

(
g′(ŷT )⊙NT

) dℓ

dŷ

]
xT .
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(e) We revise the definitions as follows for i = 1, · · · , B:

ai = f(Mxi),

ŷi = g(Nai),

ℓi = h(ŷi,yi).

As stated in the question, the new loss value ℓ is ℓ = 1
B

∑B
i=1 ℓi. We can evaluate

dℓi/dM and dℓi/dN exactly the same way as how we did for the previous part of
this question. The new gradients are simply

dℓ

dM
=

1

B

B∑
i=1

dℓi
dM

,

dℓ

dN
=

1

B

B∑
i=1

dℓi
dN

by linearity.

6. αt(j) = Ajxt

∑J
k=1 αt−1(k)Bkj is one element of a vector (the j-th element of αt).

Visualizing
∑J

k=1 αt−1(k)Bkj, we have

[
αt−1(1) · · · αt−1(J)

] B1j

· · · ... · · ·
BJj


which can be expressed as αT

t−1B:,j. We multiply Ajxt to each element, which yields

αt =

A1xtα
T
t−1B:,1
...

AJxtα
T
t−1B:,J


= A:,xt ⊙

α
T
t−1B:,1
...

αT
t−1B:,J

 .

B:,1, · · · ,B:,J as columns is unnatural (we are aligning different columns vertically),
which motivates us to transpose this to obtain

= A:,xt ⊙
[
αT

t−1B:,1 · · · αT
t−1B:,J

]T
= A:,xt ⊙

(
αT

t−1

[
B:,1 · · · B:,J

])T
= A:,xt ⊙

(
αT

t−1B
)T

= A:,xt ⊙BTαt−1.
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Alternatively, we can try a different way of visualizing
∑J

k=1 αt−1(k)Bkj:
...

BT
j1 · · · BT

jJ
...


αt−1(1)

...
αt−1(J)


or equivalentlyBT

j,:αt−1.B
T
j,: should be interpreted as a row vector which corresponds to

the j-th row of BT . This is slightly different from the notation in Section 3. Multiplying
Ajxt to each element again gives

αt =

A1xtB
T
1,:αt−1
...

AJxtB
T
J,:αt−1


= A:,xt ⊙

B
T
1,:αt−1
...

BT
J,:αt−1


= A:,xt ⊙

B
T
1,:
...

BT
J,:

αt−1

= A:,xt ⊙BTαt−1.

Now we derive the vector form of βt(j) =
∑J

k=1Akxt+1βt+1(k)Bjk. Recall that for
C = AB, Cij =

∑
k AikBkj. Focus on the colors, not the letters! The color of the

variable being summed over is olive, the variable before the olive variable is in red,
and the one after it is in blue. To follow this, we reorder

∑J
k=1 Akxt+1βt+1(k)Bjk as∑J

k=1BjkAkxt+1βt+1(k). Akxt+1 is the k-th element of the xt+1-th column of A, and
βt+1(k) is the k-th element of the column vector βt+1. Akxt+1βt+1(k) is therefore the
k-th element of A:,xt+1 ⊙ βt+1. This means

βt(j) =
J∑

k=1

Akxt+1βt+1(k)Bjk

=
J∑

k=1

Bjk

[
A:,xt+1 ⊙ βt+1

]
k
,

and therefore
βt = B

(
A:,xt+1 ⊙ βt+1

)
.

7. (a) There is only one free variable j, so this indicates this is the j-th element of a
vector. Visualizing

∑N
i=1Aijxiyi, we have A1j

· · · ... · · ·
Anj


x1y1

...
xnyn


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which is not valid matrix multiplication. To fix this, we transpose A and obtain
...

AT
j1 · · · AT

jn
...


x1y1

...
xnyn

.
Therefore, v = AT (x⊙ y).

(b)
∑N

i=1Aijxi is the same as (a) but with yi removed. We have v = ATx.

(c)
∑N

j=1 Aijxjyj is almost the same as (a). Swapping i and j, we have
∑N

i=1Ajixiyi.
The only difference is that Aij in (a) is now Aji, which means v = A(x⊙ y).

(d)
∑N

j=1

∑N
k=1AkiBkjxj has only one free variable, i. Therefore, this is the i-th ele-

ment of vector v. First observe that

N∑
j=1

N∑
k=1

AkiBkjxj =
N∑
k=1

N∑
j=1

AkiBkjxj

=
N∑
k=1

Aki

N∑
j=1

Bkjxj.∑N
j=1 Bkjxj is the k-th element of Bx, which means

=
N∑
k=1

Aki(Bx)k

=
N∑
k=1

AT
ik(Bx)k

= ATBx.

(e)
∑N

i=1 x
TAi,:A

T
i,: has no free variables, so this represents the multiplication result it-

self. xT does not depend on i, which allows us to rearrange this to xT
∑N

i=1 Ai,:A
T
i,:.

Now consider Ai,:A
T
i,::

Ai,:A
T
i,: =

Ai1
...

Ain

 [Ai1 · · · Ain

]
=

Ai1Ai1 · · · Ai1Ain
...

. . .
...

AinAi1 · · · AinAin,


which means the (j, k)-th element of Ai,:A

T
i,: is AijAik = AT

jiAik. It naturally

follows that the (j, k)-th element of
∑N

i=1Ai,:A
T
i,: is then simply

∑N
i=1A

T
jiAik,

which is the (j, k)-th element of ATA. Therefore,
∑N

i=1Ai,:A
T
i,: = ATA, and we

finally conclude that
∑N

i=1 x
TAi,:A

T
i,: = xTATA.

Note that AT
i,: can be interpreted either as the i-th row of AT in column vector,

or as the i-th row of A in column vector transposed to a row vector. Ai,:A
T
i,: is

only defined for the latter case.
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(f)
∑N

j=1 Aijxiyj has i as the only free variable, so this is a vector. xi does not depend

on j, which gives
∑N

j=1 Aijxiyj = xi

∑N
j=1 Aijyj.

∑N
j=1 Aijyj is the i-th element of

Ay, and xi is multiplied to this. Therefore, v = x⊙Ay.

(g)
∑N

i=1 A:,iB
T
:,ix does not have any free variables, so this is the result itself. x does

not depend on i, so
∑N

i=1A:,iB
T
:,ix =

(∑N
i=1A:,iB

T
:,i

)
x. A:,iB

T
:,i can be seen as

A:,iB
T
:,i =

A1i
...

Ani

 [B1i · · · Bni

]
=

A1iB1i · · · A1iBni
...

. . .
...

AniB1i · · · AniBni

 .

The (j, k)-th element of A:,iB
T
:,i is therefore AjiBki = AjiB

T
ik. Following the logic

in (e), the answer is ABTx.

(h) xiyjAij has two free variables i and j. xiyj is the (i, j)-th element of xyT , and
Aij is the (i, j)-th element of A. Therefore, the matrix whose (i, j)-th element is
xiyjAij is xy

T ⊙A.

Note that there is another solution which has xiyjAij as the (j, i)-th element,
yxT ⊙AT .
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