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How to Read

Please read this first!

What is this write-up?

This write-up covers everything you need to know (and a little more) about matrix
calculus to pass 10-301/601. You must be fairly comfortable with single-variable calculus
and basic vector algebra before reading this (and for 10-301/601). This does not constitute
as a formal introduction to matrix calculus, but anything necessary for the course is covered.

What topics are covered in this write-up, and when should I read this?

The first section glosses over basic multivariable calculus you need for the class, such as
gradients and partial derivatives. You may skip this section if you are already familiar with
this topic, but please do not skip the first exercise question. Topics in this section will be
covered in the first exam, so it is highly recommended that you read this as early as possible.

The second section introduces basic definitions of matrix derivatives and how the chain
rule is extended to matrix calculus. You do not need any prior knowledge on deep learning.
Aim to fully understand this section before the release of homework 5. This will help you
greatly with the chain rule and back propagation part of the course.

The last section focuses more on how to actually compute the derivatives (who uses the
definition of the derivative to find the derivative of y = 322 + 57). You will learn to use
how to derive different versions of chain rules, and how to compute any derivatives you will
encounter in 10-301/601 starting from considering one element of the result. This section
will be the most helpful section for the homework and exams.

How should I solve the exercises?

Each section includes exercises that help you understand or apply the material. Do NOT
skip the exercises, as they also introduce some new theorems and facts that are greatly
useful for the course. Practice makes perfect, especially for math! The exercises are designed
to be solved (mostly) in order. Some of them may depend on the results derived in previous
exercises.

When/How should I read the solutions?

All exercises are accompanied with fairly detailed solutions, especially for Sections 2
and 3. Avoid reading the solutions before properly attempting to solve the problems. When
you are stuck, read the section again, digest the content, and come back to it later; maybe
collaborate with others if necessary. Please do not resort to the solutions before giving yourself
enough time to think about the question.

Make sure to compare your solutions with the reference solutions. Some questions have
multiple solutions with different approaches, from which you may be able to develop more
intuition. If you find any errors or have a better/more efficient solution or any feedback,
please send me an email!
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1 Multivariable Scalar Functions

This section briefly summarizes some important concepts of multivariable calculus. We
will skip any mathematical details or proofs not necessary for the course. Some important
concepts such as the definition of limit, continuity, differentiability are omitted since they
are not the focus of 10-301/601, but they are not to be made light of.

1.1 R"” — R Functions

In this section, we deal with functions that map a vector R™ to a scalar R. We use
column vectors by default throughout the entire write-up.* Such R™ — R functions can also
be considered to take multiple scalar inputs and yield one scalar output. Some examples
include:

1. The volume of a cone whose radius of the base is r and the height is h is given as:
L,
V(r,h) = 37 h.

The function V maps a vector [r, h]T € R? to a scalar s7r?h € R.
2. The distance between two points a and b on the x-axis is given as:
d(a,b) = |a —bl.
The function d maps a vector [a,b]T € R? to a scalar |a — b| € R.

3. (Important) The Ly norm of a vector x = [x1, o, ,z,]T € R is given as:

) = lIxlly = Il = /o + a3+ + a2

The function f maps a vector x € R” to a scalar \/2? + - -- + 22 € R. This example is
marked as important because you will use Ly norm a lot, and because you will often
see a vector itself being passed to a function. This can be thought of as the following:

f($17$2a"' 7$n)=\/m%+x%+---+x%,

1.2 Partial Derivatives

Recall how we took the derivative of a R — R function. A simple function, say f(r) = 22,
has only one independent variable z, and naturally we take the derivative of 22 with respect
to that independent variable, x. The key point here is that there is only one input, so we
have no other choice but to differentiate with respect to that one variable. Now for R — R
functions, we have n inputs, so we end up with more possible choices—with respect to which
variable do we differentiate f7

*The write-up follows the convention used in class. More about the notation can be found here.
tNote that the subscript 2 can be omitted for Ly norm.


https://www.cs.cmu.edu/~mgormley/courses/10601/slides/10601-notation.pdf

The derivative with respect to a single independent variable is obtained by simply pre-
tending as if all the other variables are constants. For example, consider

[z, y,2) =2y +y* + 22

and say we are taking the derivative with respect to one of the variables, y. Then we treat
x and z as constants, and the result will be:

x4+ xy” L.

We walk through this result term by term. For zy, only y is regarded as a variable and z
is considered as a constant, so the derivative is x. This is analogous to the derivative of 3x
being 3; x is a variable and 3 is a constant. For y*, again, x is treated as a constant so
we have zy*! (just like how (23)" = 3z?). For 2z, the entire term is a constant and the
derivative is zero. We call what we just evaluated a partial derivative of f with respect to
y, and mathematically we write:

g—g =z +ay*t, or
V,f(r,y) = o+ zy* .

The symbol 0 is read “partial,” and V is read “nabla,” “del,” or “gradient.”
Just as we can differentiate a single-variable function multiple times, we may be interested
in evaluating higher order partial derivatives. Recall that higher order derivatives are written

as:
*f d&f d"f
dz?’ dz3’ ' dxn’
Similarly, when we take the partial derivative multiple times with respect to the same vari-
able, we write:

*f O’f of

dx2’ 93’ P
However, because now we have multiple input variables, we do not necessarily have to take the
partial derivative with respect to the same variable every time. For f(z,y, z) = xy+y* + 2z,
we can take the partial derivative with respect to y and then z. This is written as

0? 0

82(:3]; =3, [z 4+ 2y* '] = 0.

The power of the “numerator” means how many times we differentiate, and the “denomina-
tor” determines which variables we take the partial derivatives with respect to and in what
order. Remember that you have to read it right-to-left; 0z0y means with respect to y first,
not z! It is worth mentioning that you can change the order in which partial derivatives are
taken under certain conditions, i.e.,

*f _ 0f

0xdy  Oydx’
A lot of the functions we will encounter have this property. This, however, is not true in
general.”

*This holds when the partial derivatives exist and are continuous in an open region containing the point
at which the partial derivative is evaluated. In 10-301/601, this is almost always the case.



1.3 Gradients

Instead of having to inspect the partial derivatives one by one, what if we want a single
entity that represents the degree of change with respect to all variables altogether? This
motivates the use of gradient, which is simply a vector of all partial derivatives. For example,
for f(x,y,z) = xy + y* + 2z, the gradient is:

of |0z y+y*logy

of oy | = | o+ xy*!
af 0z 2
Mathematically, we write:
y+y“logy
V()= | x+ay*?
2

You may see V in boldface or with an arrow on top to emphasize that it is a vector.

Gradient is extremely important and utilized a lot in machine learning. One of the most
important properties of gradient is that the gradient of a function evaluated at one point is
the direction to take in order to climb up the function the fastest. In other words, the exact
opposite direction of the gradient vector is the direction to take to climb down the function
the fastest (Figure 1).

2 =22 442

Figure 1: Climbing down z = 22 + y? from point (—2,2,8) following the opposite direction
of the gradient vector.



1.4 Exercises

1. In this problem, we will briefly review single-variable calculus with some extremely
useful functions for deep learning.
(a) Evaluate ﬁa(m) where o(z) = 1/(1 + e~*). This is called the sigmoid function.
(b) Express your answer in (a) using only o(z) and constants.

(c) Evaluate L tanh(z) where tanh(z) = (¢* — e™*)/(e” + e~*). This is called the
hyperbolic tangent function.

(d) Express your answer in (c¢) using only tanh(z) and constants.

2. Evaluate the following:

(a) % and 3—5 where f(x,y) = a¥ +y°
b) % and g—i where f(x,y) = sin(y + cosz)
(c) 2 and g—i where f(z,y) = ™ + ylog 3z

(

(d) %, aajgy, aagjng and 3 f where f(x,y) = sin(zy) + cos(zy)

(e) Vof(z,y) and Vyf(a:, y) where f(x,y) = 2'°8¥ + 22 + 2y

(f) Vaf(z,y) and V, f(z,y) where f(x,y) = (z + y)

(g) 2L where f(x) = ||x||> (1 <i<mn) Hint: Recall that ||x||, = \/22 + - + 22
)

ox;
(h) 2L where f(x) = w”x and w is a constant vector (1 < i < n)

ox;
3. Evaluate the following:

(a
(b

) Vf(x,y) where f(x,y) = xy* + 2%y
) Vf(z,y) where f(z,y) = (z +y)*
(c) V2f(x,y) where f(x,y) = sin(e™)
(d) Vf(x) where f(x) = [x];
)
)V
)

(e) Express your answer in (d) using only one variable (no limit on constants).
(f

(g) Express your answer in (f) using only one variable (no limit on constants).

f(x) where f(x) = wlx and w is a constant vector

4. Hayden was taking a nap on a hill at Schenley park, only to realize that he has to
run back to the campus for his next class in two minutes. He approximates the height
h of the hill at position (z,y) as h = 22 — 3y?, and guesses that his current position
s (z,y,h) = (—1,0,1). Which direction should he take to go down the hill as fast as

possible?



2 Basics of Matrix Calculus

In this section, we will cover the basic definitions of matrix calculus and how the chain
rule works in matrix calculus.

2.1 Definitions

In the world of single-variable functions, the options are limited for taking the derivative;

for f: R — R,z +— f(x), the only derivative of our interest is %. But with functions such as

_ _ T . f L dg dg dh _dh
g(x) = Ax and h(x,A) = x" Ax, we can also consider derivatives such as 92, T dA) TS

A, and such. In particular, we have the following nine cases:
Scalar | Vector | Matrix

Scalar Z—Z ;l_)y( (;l_)y(

Vector le_}x’ Z—Z’( g—)};

Matrix % % %

We only define six of them; the derivatives of a scalar and a vector. Other cases are not
required for 10-301/601. There are many different versions of definitions, but here we use
the denominator-layout notation. Also note that we use d and 0 interchangeably.

2.1.1 Derivatives of Scalar

We first consider when we take the derivative of a scalar.

1. With respect to a scalar (dy/dx): We already know this case. This is simply the single-
variable function case.

2. With respect to a vector (dy/dx): An example of this case is when y = ||x||. This is the
gradient we defined. That is, for x € R,

dy/d
@_ y/'xl

R™ = Rnxl‘
dx <

dy/dx,

We also define what happens when we take the derivative of a scalar with respect to a
row vector x':

d
dx_yT = [dy/dz, --- dy/dz,] € R

3. With respect to a matriz (dy/dX): An example of this case is when y = \/2111 > i 1 X > *

*This is called the Frobenius norm, also denoted ||X|| 4.



Expanding on the vector case, for X € R"*":

dy/dXy --- dy/dXy,
dy _ | A [
dX '

You will be asked to check if this is a valid generalization of the two definitions above
as an exercise.

One thing to notice here is that when you take the derivative of a scalar, we end up with the
same shape as the variable we took the derivative with respect to. For example, the shape
of dy/dx is the same as the shape of x. This is a nice property of the denominator-layout
notation.

2.1.2 Derivatives of Vector

Now we expand the scalar case to vectors, i.e., dy/dz, dy/dx, and dy/dX. Note that y
here does not necessarily have to be a column vector. The exact same definitions apply to
row vectors as well, including the resulting shapes.

1. With respect to a scalar (dy/dx): An example of this case is d(xv)/dx for a scalar x
and constant vector v € R". For y € R”, this is defined as:
dy 1xn
T [dyr/dx -~ dy,/dx] € R,
2. With respect to a vector (dy/dx): An example of this case is y = Ax for a constant
matrix A, and we evaluate dy/dx. For y € R” and x € RP?, this is defined as

dy,/dzy  dys/dxy -+ dy,/dxy
d dyi/dzy dys/dxy -+ dyn/drs o
= [Vinl@) Viala) - Vo) = | § | R
dy,/dx, dys/dx, --- dy,/dz,

Consider when y = Ax for a constant matrix A € R™*P. Explicit multiplication yields

y = Ax
-A11 s Alp T
A o Anp| |2

[ Apyzy 4 Ajazg + - + A1pzy

_Anlxl + An2$2 + o+ Anpxp
(> Ay

| > ket Ani



This gives y; = Y »_, Ay, and therefore dy;/dz; = A;;. Hence, we have

_dyl/dxl dys/dxy -+ dy,/dxy
dy dyy /dxy dys/dxy -+ dy,/dzy
dx : :

| dy1/dxy, dyo/dz, - dy,/dxy

-A11 Ay o Anm

B Ap Ag Ana

_Alp A2p Anp

= AT,
Here we have derived one useful result:
d(Ax) _ AT
dx

. With respect to a matriz (dy/dX): An example of this case is y = Xv for a constant
vector v, and we evaluate dy/dX. In general, this encodes three dimensional informa-
tion (dy;/dX ;i) and is beyond the scope of this class. However, we define the following
two specific cases that will be used throughout the class:

dXv T dvl'X

-~ — VvV, =V,

dX dX
for a matrix X and constant vector v. Note that the second case is the derivative of a
row vector with respect to a matrix.

2.2 Chain Rule

Recall that for h(z) = f(g(z)) (single-variable functions), the chain rule was
dh_dfdy _dgf
de  dgdr dxdg

For the multivariable case h(z) = f(g1(z), g2(2)), the chain rule is extended as

dh_ 0 dy | Of dos _don Of | dos0f
dr  0g; dx  0gy dx dr dg1  dx Ogy

Visually, we can represent the two chain rules as Figure 2:

dgi of
Ao T <01
T g f / \
d_g ﬁ x f
dx dg
EAQQ a/_f
dx 099

Figure 2: Chain rules visualized.



This can be thought of as adding all components that contribute to the change of h.
Building on this, we can extend the chain rule to also work in matrix calculus.

Consider x € R?, y € R", z € R” where z is a function of y, and y is a function of x;
that is, z = f(y), y = g(x), and therefore z = f(g(x)). We can visualize this as Figure 3.
Note how this figure considers the most general possible case.

Tp Yr Zn

Figure 3: z = f(g(x)) visualized, where z = f(y) and y = g(x).

Now we derive the chain rule for vectors in matrix calculus. Recall that we have previously
defined dz/dx as

dzi/dxy dzo/dxy -+ dz,/dzy
d_z _ dzi/dxs dzo/dxe -+ dz,/dxs —
dx : :

dz/dz, dzo/dx, --- dz,/dz,

By the chain rule,
dz; " dz dyr ! dyy dz;

dr; = dyydr; 4= d; dyr

This directly follows from Figure 4, which can be obtained by isolating only x; and z; from
Figure 3:

n

Y2

N\

Zi

r—

V%

QU

*

oy Y

Figure 4: Chain rule visualized only considering z; and z;. y, denotes any of y1, - - -, yy.



Apply the scalar chain rule to each element of dz/dx. By the definition of matrix multipli-
cation, observe that

[dz [dxy  dz/dxy - dz/dax,
% T _ dzy/dxy dzp/dxe --- dzp/dx, J—
dx : - :
dzp/dxy dz,/dxe --- dz,/dx,
'22:1 %é% 2221 %g% T 22:1 jﬁ%
T dzo T dzo r dzo
_ Zk:l @ﬁ Zk:l @ﬁ Zk:l @ﬁ
r .dzp d r  dzp .d r .dzp d
_Zkzl @ﬁ Zk:1 @ﬁ e Zk:l @%
dz/dyy  dzn/dyy -+ dz/dy.| |dyi/dxy dyi/dxs -+ dyi/dz,
B dzo/dyy  dza/dys -+ dzo/dy, | |dye/dxy dya/dxs --- dys/dz,
|dzn/dyy dznfdys -+ dzo/dy,| |dye/dxy dy./dxs --- dy./dxy,

([ dz T dy T
-~ \dy dx )
Taking the transpose of both sides, we have that the chain rule extends to

dn _ dy i
dx  dxdy’

Note the matrix multiplication order; dy/dx comes first.* The order did not matter for the
scalar case, but we need to be mindful of the order for the matrix case.

The key idea for this derivation was to manipulate the matrices cleverly and use the
scalar chain rule. When other types of derivatives are involved, this chain rule may change;
some derivatives may be transposed, and the multiplication order may change. The chain
rules also vary depending on how the derivatives are defined. However, the scalar chain rule
must hold no matter what.

*The chain rule is more natural using the numerator-layout notation, which is the transposed version of
our notation (the chain rule is dz/dx = (dz/dy)(dy/dx)). This is one of the reasons why the transposed
definitions are preferred by some.



2.3 Exercises

1.

Recall the definition of the derivative of a scalar with respect to a matrix (dy/dX). We
will now check if this is a valid extension of the scalar and vector case. Evaluate the
derivatives when X € R X € R™! and X € R"". Which definition does each of

them correspond to?

We have derived that d(Ax)/dx = AT for x € RP and A € R™? that does not depend
on x. Ax results in a vector, and thus we have used the dy/dx definition. Now consider
d(x"B)/dx for B € RP*". Recall that the definition of dy/dx does not change even
when y is a row vector. Evaluate d(x”B)/dx.

The quadratic form x” Ax is a form we will encounter often.* In this question, we are
interested in d(x? Ax)/dx. Assume that A is not a function of x.

(a) Evaluate x” Ax when x = [z, 5])7 and the (i, j)-th element of A is A;;. Why do
you think x? Ax is called the quadratic form?

(b) Which definition of the derivative do we need in order to evaluate d(x” Ax)/dx?

(c) Assume x € R? and A € R**2. Evaluate d(x” Ax)/dx.

(d) Generalize the previous result to when x € R™ and A € R™™ and evaluate
d(x” Ax)/dx. Can you express the result in matrix form?

(e) What happens when A is a symmetric matrix, i.e., AT = A?
One of the most useful properties of differentiation is the linearity. That is, for scalar
functions f : R — Rand g : R — R, we have d(f(z)+g(x))/dz = df (x)/dz+dg(z)/dx
and d(a - f(x))/dx = a - df(z)/dz for some constant a € R. We will show that this

extends to matrix calculus as well. Consider functions v : R® — R™ and v : R — R™.
(a) Show that for x € R",

du(x) +v(x))  du(x) dv(x)
dx Cdx + dx

(b) Show that for x € R” and a constant a € R,

d(au(x)) CLdu(x)‘

dx dx

Linear regression is the task of finding the “best” linear fit between labels y € R™ and
attributes X € R™*"™. Concretely, we determine an adequate @ such that y = X60. One
of the “best” choices of @ is the one that minimizes the mean-squared error, which is

given as

7(8) = (X0 y) (X0~ y).

Find the 0 that minimizes the mean-squared error. As usual, this is the 8 such that
dJ(0)/dé = 0.

*Remember the definition (or one of the definitions) of positive-definite matrix?

10



6. Why can we write that
dh _dfdy _dgdf
de  dgdr dxdg’
but not
dz  dzdy dydz

—_— = =7

dx dydx dxdy
Which equality does not hold?

7. Evaluate 0f/0z and 0f /0y for each of the following:*

(a) f(u,v) = (u—wv)e*, where u = ry and v = x? — 32

(b) f(u,v) =ulogv + vlogu, whereu:g—i—%andv:xey

(¢) f(u,v) =ulogv, where u = xsiny + ysinz and v = x cosy + ycosx
(d) f(u,v) = (u+v)/(1 —w), where u = tan ¥ and v = tan %5

vy f

1>a1 g
Qf2\a2>¢bl h

x3< >< >y £y
e

T

4\a4/

.%'5/

This can be interpreted as a deep neural network with two hidden layers that accepts
x € R as the input and outputs ¢ € R. The hidden layers a and b are computed as
a = f(x) and b = g(a) for some functions f : R® — R* and g : R* — R2. Finally,
the output ¢ is computed as § = h(b) for some function h : R?> — R. Now in order
to update the network parameters, we perform gradient descent. The loss computed
between the ground truth y and the current prediction output ¢ is £ = L(y, 9).

(a) Express df/dby in terms of dh/dbg and d¢/dy. The blank (O) must be filled in
with either 1 or 2. Some terms may be reused with a different value in the blank.

(b) Express d¢/db in terms of dh/db and d¢/dy.

(¢) Express dl/das in terms of dbn/dap and df/dap. The blanks (CJ) must be filled in
with either 1 or 2. Some terms may be reused with a different value in the blank.

(d) Express d¢/da in terms of dg/da and d¢/db.

*Questions taken almost directly from my undergraduate calculus book.

11



9. One of the extra readings for the neural network lecture is Deep Learning by Goodfel-
low, et al. The chain rule derivation in the book is as follows:

Suppose that x € R™, y € R", g maps from R™ to R", and f maps from R"
to R. If y = g(x) and z = f(y), then

0z 0z 0y,
5o, = ; 5y B (G6.45)

In vector notation, this may be equivalently written as

ay\"
Vyz = I Vyz, (G6.46)

-+« (omitted)

Vxz and Vyz are gradients of z with respect to x and y, respectively. All vectors,
including gradients, are column vectors.

(a) Verify Eq. (G6.45) by applying the chain rule yourself.

(b) Recall that the derivative convention we are using is called the denominator-layout
notation. There is another set of definitions called the numerator-layout notation,
which transposes all of the definitions we have. Is dy/0x in Eq. (G6.46) defined
using the denominator layout or the numerator layout? Explain why.

(¢) Derive Eq. (G6.46) from Eq. (G6.45) using the denominator layout and the nu-
merator layout.

10. Hayden thinks it is odd that all definitions have to be transposed to build a differ-
ent layout. Instead, he proposes a new set of definitions, which transposes only the
derivative of a vector with respect to a vector (dy/dx).” He argues that this is more
consistent with well-known mathematical concepts and therefore more convenient (this
way, dy/dx is identical to the gradient and dy/dx is identical to the Jacobian matrix).

(a) For vectors x, y, z where z is a function of y and y is a function of x, express
dz/dx in terms of dz/dy and dy/dx under this definition.

(b) For vectors x, y and scalar z where z is a function of y and y is a function of x,
express dz/dx in terms of dz/dy and dy/dx under this definition.

(c) Compare the result of (b) with Eq. (G6.46) in Question 9. Describe one caveat of
this definition.

*Some authors actually use this.

12



3 Computing the Derivatives

In this section, we focus on how to actually compute various derivatives. We will first
cover the “hacky” way which usually suffices for 10-301/601, and the mathematically rigorous
way in case the hacky method fails.

3.1 Shape Matching

One thing we can take advantage of matrix multiplication is that it is defined only when
the shapes of the operands match. Recall that for two matrices X € R™*"™ and Y € R"*P,
Z = XY € R™*P is defined as

7 = (Zij)7 where Zij = Zszij
k=1

Note the shapes of X and Y. The number of columns of X and the number of rows of Y
have to be equal for XY to be defined. The resultant product has the same number of rows
as X and the same number of column as Y.

With this and the scalar version of the chain rule, we can “derive” the vector chain rule.
Consider x € RP, y € R", z € R™ where z is a function of y, and y is a function of x, and
we derive dz/dx again in this setting. If x, y, and z were all scalars, dz/dx simply would be

dz dzdy

dr  dydz’

From here, we can guess that dz/dx would be a product of dz/dy and dy/dx. We also
know that the shapes of dz/dx, dz/dy, and dy/dx are p x n, r X n, and p X r, respectively.
Therefore, the correct order of multiplication is

dz dy dz

dx ~ dxdy’
The new chain rule “derivation” is not rigorous, and technically is not even a proper proof.
However, this shaping matching technique is extremely useful for sanity check (and maybe

also multiple-choice questions; sometimes you can eliminate some options with incorrect
shapes). Typically, the general procedure for this would be:

1. Determine what to evaluate. You may have to do this yourself, or the question may
tell you explicitly.

2. Identify the shape of the final answer. If you are taking the derivative of a scalar, the
shape is the same as the shape of the variable you are taking the derivative with respect
to. If you are taking the derivative of an n-dimensional vector, the shape is something
by n.

3. For multiple choice questions, eliminate any options whose shape does not match or the
operation is not defined. This includes those multiplying or adding matrices of wrong
shapes.

13



4. If you can exactly determine what terms and factors you need, you may be able to
obtain the answer by transposing and matching them until all operations are properly
defined and the final shape is correct.

Of course, this is closer to guessing the answer rather than logically deriving it. Also, this may
fail if the shapes happen to match. For example, for x,y,z € R", dz/dx, dz/dy, dy /dx are all
n X n. Selecting and multiplying any two of them in any order is still valid as the shapes are
fine, but the answer will be incorrect. Also, this method cannot be used for any operations
that do not change the shape, such as addition, subtraction, and scalar multiplication.

3.2 Generalizing Single Element

A more logically correct and mathematically rigorous way is to consider a single element
of a matrix, and generalize it to obtain the full matrix. Consider the following four cases,
which were the only non-scalar derivative definitions we have:

1. Case dy/dx (or dy/dxT): the i-th element is dy/dx;.

[\

. Case dy/dX: the (i, j)-th element is dy/dX;;.
3. Case dy/dz: the i-th element is dy;/dx.
4. Case dy/dx: the (7, j)-th element is dy;/dx; (not dy;/dx;).

As an example, we will derive d(Ax)/dx = AT again here for x € R? and some constant
matrix A € R™?. Let y = Ax € R" for convenience. Earlier we obtained this by explicitly
computing everything. Here we will try and simplify this by considering only one entry of
dy /dx.

Say we compute one of the elements of dy/dx first; the (4, j)-th one, or dy;/dz;. Through
this, we have reduced the problem to simple scalar differentiation. Now we need to identify
what y; is. By the definition of matrix multiplication,

Y; = Y1

p

= E Ajk9€k1
k=1
p

= E Ajkﬂfk.
k=1

Here we interpreted x and y as (vector dimension) x 1 matrices as necessary. Then we have

dy;  d &
k

This is the (i, j)-th element of the desired derivative. The matrix whose (i, 7)-th element is
Aj;i is AT, so we conclude that

dy

AT

dx

14



This method is clearly logically sound and mathematically solid. Another advantage of
this method is that this works for any definition of matrix derivatives as long as we change
the indices accordingly. However, this is more difficult than simple shape matching, and
thinking in terms of indices and one element in a matrix can be tricky.

Also, this can be extended to derivatives of any dimensions. For example, consider we
take the derivative of a 5D tensor T with respect to a matrix X. There are a total of
7 dimensions where values can change, so one element of the “naive” derivative would be
dT;jkim/d X4, However, not all seven dimensions are necessarily required (i.e., fewer free vari-
ables may suffice). Some elements may always have the same value (usually zero), and some
rows,/columns/elements may be repeated. We may choose to omit these pieces of redundant
information as you will see in the exercises.

We have briefly mentioned that the shape matching method fails when the operations
applied do not change the shape. It is easy to see that the single element method can be used
instead. In fact, we can utilize it for any arbitrary well-defined operations. One extremely
common and handy operation in machine learning is element-wise multiplication, also called
the Hadamard product, denoted ®. This is also detailed in one of the exercise questions (do
not skip this question).

3.3 Matrix Multiplication Review

Matrix multiplication is simple, but we rarely think about the index-based definition.
However, it is crucial to read sums and/or products of scalars and translate them back to
matrix operations in order to use the single element method. To this end, we will review how
matrix multiplication and some common more specific cases are defined.

1. For a,b € R", d = a’b € R is defined as:
d= Zakbk
k=1

2. For a,b € R", D = ab” € R"*" is defined as:

Dij = (libj.

3. For A e R™*P and v € RP, w = Av € R™ is defined as

p
k=1

This can be visualized as the following:

— A — ATy
Av = : v=1| |,
- Am,:T - Am :TV
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which gives rise to
w; = Ai7:TV.

Notice the transpose operator. The usual convention is to write A; . as a column vector
even though it is the i-th row of A. Here we use the transpose operator (for this section)
to explicitly state that the row selected is represented as a row vector.

The following visualization is also possible:

| e T |
Av=|A., - A:,p L= A:’l (N R A:,p Up,

)

| e, | |

which yields

Av = iA:,kvk = iUkA:,k'
k=1

k=1

Note that v can be multiplied both before and after A.j only because vy is a scalar.

. For A € R™ and u € R™, y = ul’ A € R'*? is defined as

Yi =i = Z g Api-
k=1

We try similar visualizations. Considering each column of A gives

| |
LITA — uT A:71 e A: = |:uTA111 s uTA:,m] )

P

which can be interpreted as
Yi = Y1i = UTA:,z'-

Similarly, focusing on the rows of A, we have

_ AL:T _
WA= [un o ) :
_ T __

m,:

=u [— AT —] 4+ tun [— AT —],

which is equivalent to
m m
llTA = Z ukAh: = Z Ak7:uk.
k=1 k=1

Again, uj, can come both before and after A . only because uy is a scalar.
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5. For A € R™*? and B € RP*" C = AB € R™*" is defined as
p
Cij =) AuBu;.
k=1

Again, this can be thought of as

- Al,:T - | | Al,:TB:,l e Al,:TB:,n
C=AB= : B, - B,| = : : ,
- Am,:T - | | Am,:TB:,l e Am,:TB:,n
and we derive the expression
T
Cz] - Ai,: B:,j7
or from a different perspective,
[ | 7 Byt —
C prn A_B = A_:71 “ .. A:7p E
| |1 |— B,.T —

which gives

These visualizations break apart both matrices into vectors. Now we try leaving one
of the matrices as is, which yields the following:

| | | |
C = A.B = A. B;,l e B:,n — AB:,l e AB:,n )
| | | |

in other words,

C:,i = AB:,i~
Similarly, leaving B as is,
- Al,:T - - Al,;TB —
C=AB= : B = : :
- Am,:T - - Am,:TB -

and we have the final interpretation:
Ci,:T = Ai,:TB-

Finally, remember that matrix multiplication is not commutative, but associative. It is
extremely easy to show that it is not commutative; pick any two arbitrary matrices and likely
they will work as a counterexample. Associativity can be shown by comparing the (i, j)-th

element of (AB)C and A(BC).

17



3.4 Exercises

1. Recall for scalar functions f and g, the product ruleis (fg)" = f’g+ f¢’. In this problem,
we extend this to vector functions. Consider vectors u,v € R" that are functions of
x € R™.* We are interested in d(u’v)/dx.
(a) What is the expected shape of d(u’v)/dx?
(b) Select all that apply: Which of the following have the same shape as d(u?v)/dx?

DuZ—Z—%VZ—; va—eruZ—;
DEZZ_ZV+UZ_:< DZ_;IV_UZ_:(
Dj—zv—l—fl—;u Dz—zu—l—j—lv

(c) What is one element of d(u”v)/dx? Also specify the index of that element.
(d) Generalize the answer of (c) to evaluate d(u”v)/dx.
2. Element-wise operations are very common for vectors and matrices. We will explore
the derivatives when these operations are involved.
(a) Forx e R" and f:R — R, define y as y; = f(z;). Evaluate dy/dx.
(b) For x,y € R", define z=x®Yy as z; = x;y;. Evaluate dz/dx.
(c) For x,y € R", define z as z; = f(x;,y;). Evaluate dz/dx.
3. We have previously defined that d(Xv)/dX = v’ without reasoning about it; we will

justify this definition in this problem. Consider a matrix X € R™*" and a constant
vector v € R". y € R™ is defined as y = Xv.

(a) Observe that some elements of d(Xv)/dX are always zero. What is the relation
of i, j and k when dy;/d X} is necessarily zero?

(b) Evaluate dy;/dX;; only where it can be nonzero; i.e., evaluate the value only
where 7, j, and k do not satisfy (a).

(c¢) Say we only want to compute dy/dX for only where dy;/dX;; can be nonzero.
Argue that this information can be represented as a 2D matrix.

(d) Argue further that the matrix in (¢) can be represented as a vector.

(e) Construct the vector in (d) so that dy/dX = d(Xv)/dX = vT.

(f) After all, we forced the vector in (d) to fit our definition. We might as well have
transposed the matrix in (¢) and said d(Xv)/dX = v. What is one advantage of
not doing so; i.e., why define d(Xv)/dX = v1?

*You can consider this as u = f(x), v = g(x) for some functions f,g: R™ — R™.
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4. The chain rule can be extended to when derivatives of a scalar with respect to a matrix
are involved. We will specifically consider the case where z € R is a function of row
vector y, where y = vI'X for some matrix X € R™*" and a constant vector v € R™.
Then by the chain rule, dz/dX can be represented as a product of dy/dX and dz/dy.

(a) Derive the chain rule by matching the shapes. Hint: dy/dX = d(v'X)/dX =?

(b) Evaluate dz/dX by considering one element of dz/dX first, then use the scalar
chain rule. Do not use the known result of dy/dX itself.

(c) Compare the answers to (a) and (b) and justify our definition of d(v'X)/dX.

5. Consider a neural network that accepts x € R™ as the input and outputs y € R™. The
intermediate activations a, the output y, and the loss ¢ € R between y and the ground
truth y € R™ are calculated as follows:

a = f(Mx),
y = g(Na),
(= h(y,y),

for matrices M € RP*"™ and N € R™*? and functions f,¢g: R — R and h : R"™ — R.
f and g are applied element-wise.

(a) Express d¢/dN in terms of d¢/dy and dy/dN.
(b) Express your answer in (a) with the only derivative not evaluated being d¢/dy.
(c) Fill in the blanks () so that the equality holds:

. dOdOdo

dM ~ dO0dOd0O

The blanks can only be one of /, a, x, y, y, M, and N. Some may be reused. One
of the factors must be d¢/dy.

(d) Express your answer in (c¢) with the only derivative not evaluated being d¢/dy.

(e) In practice, neural networks are often updated by using a set of inputs x;,- - - , xg."

The final loss used for the network update is the arithmetic mean of individual
losses obtained by passing the inputs one by one. Describe how d¢/dM and d¢/dN
change under this setting.

*This set of inputs is called a batch or a mini-batch, and the subscript B is from “Batch size.”
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6. The forward-backward algorithm for HMM (Hidden Markov Model) follows the update
rules given as

J
() = Aja, Y ar1(k) By,
h=1

J
Bt(j) = Z Akwtﬂ/Bt-l-l(k)Bjk'
k=1

Conceptual understanding of the algorithm is not required for this question. Interpret
A as a J x W matrix, and B as a J x J matrix. x; is a fixed sequence of integers in
range [1,W]. j is an integer in range [1,J]. J and W are fixed integers. Assume that
ay, a1, By, and f;4; are all well-defined (i.e., ignore cases such as when t = 0).

When we use these rules as they are, we have to iterate over every single possible 7 and
update the values one by one. In this problem, we are interested in deriving the matrix
form of these rules so that we can update them all at the same time. Concretely, we
define vectors a;; and 3, as

and you are to derive new update rules

o; = (some expression involving oy_1),

B, = (some expression involving B, )

which are equivalent to the original update rules. Express the update rules in matrix
form.

7. Consider column vectors x,y € R" and matrices A, B € R"*". Each of the following is
one element, row, or vector of a vector or matrix obtained by multiplying some of x, y,
A, B, xT, y'' AT and BT, or the result itself. Write the matrix multiplication forms
generalizing the following expressions. Any vectors given in the following are column
vectors. For example, A, . is the i-th row of A as a column vector.

(2) 2oL, Ay, (
(b) YN, Ay (
(c) Zj\; Aijy; (
(d) S0y Yoesy AriBrja; (
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End of main content

Solutions on the next page
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4 Solutions

Clicking a question number will take you to that question.

4.1 Section 1
L (a) o'(x) = ((1+e™)7) =e7/(1+e7)?
(b) e/(1+ e =(L+e*=1)/(L+e)? = o(z)(1 - o(x))
(c) tanh’(z) = ((e” +e7%)* — (" — e7")?) /(" + €7")?
(d) ((e® 4+ e )2 = (e* —e ™)) /(e* + e )2 =1 — tanh?(z)
Please remember the results of (b) and (d), just like how you can say directly

from memory that sin’(z) = cos(z). o’(z) = o(z)(1—0o(x)) and tanh’(x) = 1—tanh?(z)
without derivation from now on.

2. (a) yx¥ ' +yTlogy, 2¥logx + zy*~
(b

(c
(d

sin(z)(— cos(y + cos z)), cos(y + cosx)
y(e™ +1/x), ze™ + log 3z

—y?[sin(zy) + cos(xy)], —zysin(xy) — sin(zy) — xy cos(xy) + cos(zy),
—xysin(zy) — sin(zy) — zy cos(xy) + cos(zy), —z*[sin(xy) + cos(zy)]

log(y) - 7 1H18Y 2 4 log(z)2'8®) (1/y)

)
)
)
)

3. (a) [z +y), z(z+2y)]"
(b) 2(z +y),2(z+y)]"

(©) y2e™ [cos(e™) — e sin(e™ )] e™¥ [cos(e™) (1 + xy) — zye™ sin(e™?)]
e™ [cos(e™) (1 + zy) — xye™ sin(e™))] z?e™ [cos(e™) — e™ sin(e™)]

(d) [21,219, -+, 22,]7

(e) [2x1,2x9, -+, 22,7 = 2[xy, @0, -+, 1,7 = 2x

() [wy,wg, - wy|"

The most important ones here are (d), (e), (f) and (g).

4. Vz = [2z,—6y]", so the direction to take is —Vz|,—_1 -0 = [2,0]".
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4.2 Section 2

1. Same as dy/dz, dy/dx, and dy/dx", respectively. Note that R'*! is a scalar, R"*! is a
column vector, and R " is a row vector, so this result is expected.

2. Similar to how we derived the d(Ax)/dx case, we directly compute x' B first.

Bll U Bln
<'B = [3;1 xp} S :
By By,
= [Buwzi + Buao+ -+ Buay -+ Biaxi + Bogto 4 -+ + By
= 20— Bz -+ Yp_ Brai] -

The i-th element of x"B is > }_, Byixg, and therefore dy;/dz; = Bj (y = x'B).
Hence, we have

_dyl/dxl dys/dxy -+ dy,/dxy
d(XTB)_ dyl/dl'g dyg/dIQ dyn/dIQ
dx : :
| dyi/dxy  dya/dxy, - dyy/dxy,

By, By, -+ DB,
B Byy By -+ DBy,

_Bp1 By -+ Bpm
= B.

A A x
TAx — 11 12] { 1}
* A [xl xﬂ {Am Aga| |22

_ [x . } Anzy + Az
b Agyzy + Aoz

= AHI% + (A12 + Agl)l’ll’g + Aggxg

Each term is a polynomial of degree 2, so this is a quadratic.

(b) xTAx is a scalar and x is a vector. Therefore, we need the definition of the
derivative of a scalar with respect to a vector.

(c) Under this assumption, x? Ax = Ay127 + (A1z + A9 ) 2129 + Az as we found in
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part (a). Then

d(XTAX) [d(A11224+(A19+ A1) z1 22+ A2022)

T T dz
dx d(A11224(A12+A21)T1 72+ A2223)

L dxo
-21411.1‘1 + (Alg + Agl)xz
(A12 + Agy)xy + 24979

(A2 + Ay

_ -An A12:| {1‘1} + {An
_Agl A22 T2 A12

=Ax+ ATx
= (A +A")x.
(d)
[An - Ay,
x"Ax=[z; - @] | ¢

_Anl T Ann
>0 Ay
D i1 Ay

=1 j=1

(A1 + An)zy + (A + Agi)xe
(Ao + A12)$1 + (A22 + Ago) o
_ ] |:A11«T1 + Ag1zo

| Ao1m1 + Aoy Az + Ay

Now we will determine which terms contain the factor x;. This is to find d(x? Ax)/dxy,
which will be the k-th element of d(x” Ax)/dx. x), can appear when ¢ = k and/or
j = k. When ¢ = k, we have terms Z;'L:1 Ayjxjrr, and when j = k, we have terms
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Yoy Axixy. Therefore

dxTAx) d [[& "

(i = j = k counted twice)

j=1
p _
koL \izk £k
itk £k
= Z Azkl’z + Z Ak;jxj
=1 j=1
= [ATX];, + [Ax];
= [(A + AT)x];.

As this is the k-th element of d(x? Ax)/dx, it follows that

d(xT Ax)

= (A + AD)x.
T (A+A")x

(e) AT = A, so the result is simplified to (A + AT)x = 2Ax.
4. Say u(x) = [ug, - ,un|’ and v(x) = [v1, -+ ,v,|T. To show the two matrices are
equivalent, it suffices to show that the (i, j)-th elements are the same for any i and j.

(a) LHS: u(x)+v(x) = [ug +v1, -+, U +vm)", so the (i, j)-th element of d(u+v)/dx
is d((u+v);)/dx; = d(u; +v;)/dx;. Because these are all scalars, using the scalar
differentiation linearity, d(u; + v;)/dx; = du;/dz; + dv;/dz;.

RHS: The (i, j)-th element of du/dx is du;/dx;, and (i, j)-th element of dv/dx is
dvj/dx;. Therefore, the (i, j)-th element of du/dx + dv/dx is du;/dz; + dv;/dx;.
The LHS and the RHS have the same (i, j)-th element.

(b) au(x) = [auy, -+ ,au,]". The (i,7)-th element of d(au)/dx is d(au;)/dx;, and
again by the scalar differentiation linearity, a - du;/dz;. The (i, j)-th element of
a-du/dx is a - duj/dz;. The LHS and the RHS have the same (7, j)-th element.

5. Expanding everything (we have not derived the product rule, so we cannot take the
derivative of this as is), we first have

J(0) = (X0 —y)" (X0 —y)

(0"X" —y")(X6 —y)

(0TXTX0 — 0" XTy —y'X60 +yTy).

zlmzl==-
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Observe that d(8”X"X8)/d0 = 2X"X80, since XX is a symmetric matrix and this
follows directly from the previous problem. Also using the properties we have de-
rived, d(07X"y)/d0® = X"y and d(y"X60)/d® = X"y. y"y does not depend on 6, so
d(yTy)/dO = 0. Therefore, we have

de N

dJj@) 1 (d(eTXTxe) _d(0"X"y)  d(y"Xe) N d(yTy)>
e de e e

1

= N(szxe — X'y - X"y 4 0)
2

= N(XTXO — XTy).

Solving d.J(0)/d@ = 0 is therefore equivalent to solving X?X0 — X’y = 0. Assuming
that X”X is invertible, we have

XT'X0 -X'y =0
= X'X0 =X"y
= 0= (X"X)"'X"y.

. df /dg and dg/dx are both scalars, and scalar multiplication is commutative. There-
fore, we can safely swap the order of the multiplication and say (df/dg)(dg/dx) =

(dg/dx)(df /dz).
On the other hand, dz/dy and dy/dx are both matrices, and matrix multiplication is
not commutative. Therefore, we cannot swap the order of the multiplication. Specif-

ically, dz/dx # (dz/dy)(dy/dx); this multiplication is not even defined when the di-
mensions of x and z do not match.

(a)
of

%:(u—v—l—l)e“, %:—e“,
ou _ o _,
ax - yv ay -
ov ov

2 —9 — = —2.
Ox “ oy 4

By the chain rule,

of _ofom  of o _

e~ a9z o om u—uv+ 1)ety — 2ze

ry — 2%+ y* + 1ye™ — 2ze™,

(
(
of 9Ofou Of v
3y 8u8y+8v6y (u—v+1)e"s + 2ye
(

ry — 2° + y* + Dae™ 4 2ye™.
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af of u
90 logv + — %—logqu—,
ou 1 Ou 2

or 2 oy  y*

v Ov

T e

o = Jy xe

By the chain rule,

Of 6f8u 8f6v_ uy
9t 0udr | 0vox lg” )+<1Og“+5>e

1
2
Yy z 4 2
1<logac+y+ = >+<log(z+g>+2 y)ey,
2 5+ 2y ey
af dof ou  Of Ov

2
y
8y (?u@y+8vay_ %(logv‘f'a)-f-(logu—}-%) ey

2 (1 +y+ e + {1 ‘r+2 +§+§ Y
= — ogxr 0} - - xre”.
2 et s+2 S\27y zey

f—lo v 8f_u
ou e o v’
ou ou .
— =sIiny + ycosz, — =X Cosy +sinz,
ox dy
ov . ov .
— =cosy —ysinz, — = —xsiny + cos .
ox dy

By the chain rule,

of _9fou Of dv
Or  Oudr  Ovox
= (siny + ycosz)logv + (cosy — ysinx)%

= (siny + y cos x) log(z cosy + y cosx) + (cOsy_ySinx)$SIHy~l—ysmg;

8f 8f0u+8f81)
8y Ooudy  0Ovdy

= (xcosy +sinz)logv + (cosz — xsiny)

xcosy +ycosw’

u
(%

rsiny + ysinx

= (zcosy + sinz) log(z cosy + ycosz) + (cosx — xsiny) :
T CoSY + ycosx
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af v +1 of WP +1

ou (1 —uw)?’ v (1—w)?

ou 1 Lz+y ou 1 L,xz+y

— = —sec” ——, — = —sec’ ——,

or 2 2 dy 2 2

ov 1 ,z—y ov 1 S,o—y
—— = —sec — = —-sect ——
or 2 2 7 dy 2 2

where secz = 1/ cosz. By the chain rule and using that 1 + tan? z = sec? z,

o _ofou oo
Jdr Oudx Ovox
v+ 1 5 T+ Y u? +1 5 T — Y

= sec + sec
2(1 — uw)? 2 2(1 —uv)? 2
1 + tan® 54 s T+Y 1+ tan? 2¥ s T —Y
= 5 sec? 5 sec
2 (1 — tan “y tan & y) 2 2 (1 — tan “y tan £ y) 2
2 2 z+y 2 T+ 2 T—
_ sec Ty sec T N sec Ty sec Ty
2 (1 — tan x—;”’ tan x—;’f 2 (1 — tan x—;”’ tan x—;’)2
2 T— 2 -+
_ sec Tysec Ty
(1 — tan gﬂ tan %)2
B 1
(COS ””—;y cos 3¢ — sin ‘”+y sin 2y)2
B 1
- T+ x—
cos? (3 + %5¥)
2
= = sec
cos? x o
8f 8f ou L of of Ov
8y " Ou (‘9y ov 8y
v? +1 s Tty u?+1 s T —Y
= sec = sec
2(1 — uv)? 2 2(1 — uv)? 2
1+ tan® &5 o T+ Y 1 + tan? =¥ W T — Y
= 5 sec — 5 sec
2 (1 —tanmtan ﬂ) 2 2 (1 tan ”y tan &Y ) 2

2 x+y

sec? £ sec sec? xTer sec? =4

2(1—tanL;wtanTy)2 2(1—tanx7+ytan%)2

= 0.

Did you notice that (u+ v)/(1 — uv) with u = tan ¥ and v = tan %5¥ is simply

P
tan ¥ + tan ¥ . r+y x—vy ;
= tan = tanx
1 — tan Z3¥ tan %3¢ 2 2 ’

so Of /O0x = sec®x and Of /Oy = 07
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8. (a) By the chain rule,
dil.— dy dl
by dbydy’
You may be more familiar with the form that has the multiplication in the reversed
order: dl/dby = (dl/dy)(dy/dby). Switching the order does not matter as these are
scalars, but this order is more consistent with the vector version.

Now ¢ = h(b) = h(by, by). Therefore, dgy/db; is simply Oh/0b;, and the answer is
dl  dh dl
dby — dby dj’
Here we are writing that dy/db; = dh(b)/db; = dh/db;. We are also slightly
abusing the notation here (as we always have) and writing 0 as d.
(b) Similarly, dl/dby = (dh/dby)(dl/dy).

di [dl ]’
&= @

"dh dl  dh di]"
ﬁm&%d

_[dn dn]T dl
o &) &
_dhdl
~ dbdj’

(c) Isolating only ay from the diagram, we know that the chain rule should be

Al dvy di by i
dCLQ N da2 dbl d(lg dbg

(d) By the chain rule, we have

dl  dbdl
da  dadb’
Now notice that b = g(a), so db/da is simply dg/da. Therefore, the answer is
dl dgdl
da  dadb’
9. (a) Again, we draw the diagram:
Y1



10.

(a)

The result directly follows from the diagram. Each z; — y; — 2 path gives
(dy;/dx;)(dz/dy;), and we add it for all possible values of j.

This is defined in the numerator layout. V,z € R™ and V,y € R", so (9y/ox)T
has to be R™*" which means 0y /0x itself is R"*™. This is the shape when we
use the numerator-layout notation.

We have already derived the version using the denominator-layout notation, which
was Vxz = (0y/0x)Vyz. Note that with our definition, Vyz = 0z/0x and Vyz =
0z/0dy. Therefore, this is exactly the same as the chain rule we have derived:
0z/0x = (0y/0x)(0z/0y).

Now we consider the numerator-layout notation. In this convention, all definitions
are transposed from the ones we used so far, so the derivation for the general case
(x € RP, y € R", z € R" where z is a function of y, and y is a function of x)
becomes:

-dzl/dxl dz/dxe -+ dz/dz,
% _ dZQ/‘dxl dZQ/dIL’Q SR dZQ/‘dl‘p c R
dx . e .
_dzn/dxl dzp/dxy -+ dz,/dz,
> Ziﬁ’ﬁ Y oh Zi’; DDA - fffii
dz dz dz
_ Zk 1 dyi dzli Zk 1 dyi diz Zk 1 dyi di}li
dzp d dzp d dzp d
_Zk=1 @ﬁi Zk:l @d%; Y Zk:l @ﬁ
dzy/dyy  dz/dyy -+ dz/dy.| |dyi/dxy dyy/dxs -+ dyi/dz,
B dzo/dyy  dzof/dys -+ dzo/dy,| |dye/dxy dys/dxs --- dys/dx,
dzp/dyy dzn/dys -+ dz,/dy,| |dy./dvy dy,/dzy - dy./dz,
_dzdy
C dydx’

For this problem, z is a scalar, which can be considered as a z € R' vector.
Therefore, we have dz/dx = (dz/dy)(dy/dx). Compare this to Eq. (G6.46). No-
tice that Vyz = (dz/dx)T and Vyz = (dz/dy)” with the transposed defini-
tions. Taking the transpose of both sides of dz/dx = (dz/dy)(dy/dx), we obtain
(dz/dx)" = (dy/dx)T(dz/dy)", or equivalently Vyz = (dy/dx)"Vyz, which is
identical to Eq. (G6.46).

By the exactly same derivation from the previous problem,

dn _dndy
dx dydx’

(b) Keeping in mind that dz/dx is equivalent to the gradient (column vector), we
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have for x € RP and y € R",

=\ _[de | de
dx dry dz,
B Z dz dyy, Z dz dyy
a dyy, dzy dykdx
dry dxo dz,
p B O
:[_Z Z} dry dzo dz,
dyl dy'r . .. :
dy, dy, dy,
| dxy  dxo dz, |
(4" dy
- \dy ) dx’

Another way of thinking about this is that if dz/dx were transposed as well, we
can use the chain rule from the numerator layout. Therefore, we simply transpose
dz/dx and dz/dy, then apply the same rule.

Taking the transpose of the result from part (b), we have

dz  (dy\" d»

dx (dx) dy’
which is equivalent to Eq. (G6.46) (in this definition, V,z = dz/dv). Although
the derived chain rule is the same, the reasoning is different. For Question 9, we
can simply derive the general chain rule for dz/dx, then argue that a scalar is
a one-dimensional vector and therefore is just a special case of the general case.
This works because dy/dx = dy/dx when we interpret y € R as y = [y]7 € R
However, this does not hold under the new definition, which means we have to
derive the chain rule specifically for dz/dx (or appropriately transpose the result
from a different set of definitions). The caveat is that we have to be careful when
scalar derivatives and vector derivatives cross paths.
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4.3 Section 3

1. (a) u’v is a scalar, so the expected shape is the same as that of x. d(u’v)/dx € R™.

(b) du/dx,dv/dx € R™" and u,v € R™. Options traversed from left to right, then
from up to down.

(du/dx)(dv /dx) is not defined.

(dv/dx)(du/dx) is not defined.

e u(du/dx) is not defined.

e v(du/dx) is not defined.

e u(dv/dx) is not defined (faintly surprising that this is not the answer?).

e u(dv/dx) is not defined.

e (du/dx)v is defined and in R™. (dv/dx)u is also defined and in R™. Adding
the two gives R™, which is the expected shape. This can potentially be the
answer.

e (du/dx)u is defined and in R™. (dv/dx)v is also defined and in R™. Adding
the two gives R™, which is the expected shape. This can potentially be the
answer.

Therefore, the last two options can potentially be the answer. This shows the lim-
itation of shape matching; sometimes you are left with multiple possible options.

(c) The i-th element of d(u’v)/dx is d(u”v)/dz;. u'v = ujv; + - - - +u,v,. Applying
the scalar chain rule,

dulv) d ( . )
= ULV F -+ Uy,
dl’i dl‘z L
= dmiulvl +eeet d_a:iunvn
duy n dvy P du,, n dvy,
= v U o U, Up——
dIZ’ ! ! d.%z dlEZ d.Iz

~ (duy P du,, n duvy R duy,
N d.l’z 1 dl’z Un “ dlL’Z tn dlL’Z '

(d) d(u?v)/dz; is the sum of two vector inner products. Observe that

duy du,, du
dd}ivl + 4 d_l'ivn = d—xiv,
dvy dv, dv

Recall that du/dz; and dv/dz; are row vectors, so the multiplication results are
scalars. Generalizing this to the entire vector, we have

d(u’v) du N dv
dx dxv dxu'
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2.

(a) dy/dx is the derivative of a vector with respect to a vector. Therefore, the deriva-

tive is a matrix. The (7, j)-th element of dy/dx is dy;/dz;. Notice that this is
nonzero only where i = j; dy;/dx; = df (x;)/dx;, and zero everywhere else. There-
fore,

dy
dx

= d-iag(f/(xl), o ()
= diag(f'(x)).

where f’ is the derivative of f and is applied element-wise to x.
diag is a function you will see often, which creates a matrix with the argument as
the main diagonal.

Again, the derivative is a matrix. The (i, j)-th element of dz/dx is dz;/dx;. This
can be nonzero only where i = j; dz;/dx; = y;, and zero everywhere else. There-

fore,

Z—i = diag(y).

©®, the element-wise product, is also called the Hadamard product.

This generalizes the previous part of this question, and now dz;/dz; = df (z;,y;)/dx;.
Again, this is only nonzero along the main diagonal of the matrix. Therefore,

2 _ g (2L 91
N & 8171’ 781‘” )

Yi = Zzzl Xipvp. This means that y; depends only on Xji,---, Xj,. Therefore,
dy;/dX i, is necessarily zero where i # j.

We consider dy;/dX;;, only when ¢ = j. Then dy;/d X, = dy;/d X = vg.

We are essentially computing only the values of dy; /dX ;.. There are only two free
variables here, namely 7 and k. This means the information can be represented as
a 2D matrix; say M € R™*"™ where M,;; = dy;/dX;; = v;.

The matrix constructed in (c) is

Ul DY Un

/l]]_ DY Un

All rows of the matrix are the same, so they are redundant. No matter how you
construct the matrix in (c), M;; having two free variables and v; having only one
means that one of the free variables of M;; is unnecessary.
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(e) We delete all rows except one, and say the answer is [v1, -+, v,]T = vT.
(f) Say X =xT =[xy, ,2,]". This is now the derivative of a scalar with respect to
a (row) vector, and by the definition we have, this is v = [v1, -+, v,]?. Defining

the answer to be v! is a smooth generalization.

4. (a) dy/dX = d(v'X)/dX = v € R™ dz/dX € R™" and dz/dy € R™". We
expect the answer to be

& _dy i
dX dXdy’
(b) We start by considering the (i, j)-th element of dz/dX, dz/dX;;. Recall that y

is a row vector; we denote its k-th element as y,. Now we apply the scalar chain
rule. Drawing the usual diagram for the chain rule, we first have:

X y z

Asy = vIX,y; = >°1", vx Xk, This means that y; only depends on Xy, -+, X,
so the diagram can be specified as:

Yyjy — 2

\ E
—

Xmj

Finally, considering only one element of X, namely X;;, the diagram is simplified
as:

XZ" yj z

Applying the scalar chain rule here, we have

dz  dz dy;
dXij N dy] dXU

Since we already know that y; = > ", v Xj;, we have that dy;/dX;; = v;, and

therefore
dz dz dz
= —V; = UV;——.
dXi;  dy; dy;
Recall that for vectors a and b, D = ab” is defined as D;; = a;b;. Here with
a=v and b? = dz/dy, we can conclude that

de _ dz
dX dy’
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Note that b? (not just b) should be matched with dz/dy, because dz/dy is a row
vector.

Comparing the answers of (a) and (b), dy/dX = v as we have defined. It is valid
to justify the definition this way as we have never relied on dy/dX = v to derive
(b). However, note that this does not constitute as a formal proof of dy/dX = v.

This is a typical neural network update situation.

\ X
VA
4
M/ N
By the chain rule, we have
dt. dt dy
dN  dy dN’

Note that this looks slightly different from what we had so far. This can be
“derived” using shape matching, and we can also prove this formally. First observe
that

e dy; dl
dN;; — dNy dy;

An easy thought process to obtain this is to first consider N;;. We know N will
affect y, and we see that y = g(INa). The k-th element of the vector y is defined
as g(zp Nypap), and here we know that INV;; contributes to g;. Then g, affects ¢.
Now we convert it back to vectors/matrices. Again, this matches D = vw? where
v; = dl/dy;, w; = df;/dN;;, and therefore v = df/dy and w! = dy/dN with
D = d¢/dN.

From the scalar chain rule,

ae - dy; dl
dN;; — dNy; d;
_ A9y Nivay) df
ANy dj;
L de

= ajg’(yi)d—ﬁ~

We match this again with D = vw’. D;; = vw;, so v; = ¢'(4;)(d¢/dy;) and
w; = a; naturally works. Therefore, w = a. v is a little trickier; v; = ¢/(9;)(d¢/dy;)
can be interpreted as an element-wise product, which gives v = ¢'(y) ® (d¢/dy)
where ¢’ is the derivative of ¢ and is applied element-wise. Hence,

[, de\
d—N—(g(Y)@dy)a-
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(c) Observe the diagram we obtain when we isolate only M, a and ¢, and only N, y
and /.

A

a———/ y—/
; 4

M N

The diagrams and the definitions of a and y imply that we can directly reuse the

result from (a). Therefore,
dt dl da

dM — dadM’
Also isolating only a, y, and ¢, we also have

a N Y

which is the case we can apply the vector chain rule we have derived. This gives

d _dy dt
da dady’
We can thus conclude that
dl B dy dl¢ da

dM ~ dady dM’
Alternatively, we can derive this starting from one element again. Consider d¢/dM,;:

de da; <~ dij dl

dMl N dMU 1 dai dﬂk
_ Z dji dt \ _da;
1 dai d’gk szJ '

Inside the parentheses is the i-th element of (dy/da)(d¢/dy), and da;/dM;; is the
j-th element of da/dM. Therefore, we have the same chain rule.

(d) We also reuse the result from (b) to acquire

de A

Applying the vector chain rule to d¢/da again yields
ac. (., dy dt\
dM (f @o dady)x ‘

dy /da can be directly evaluated, whose (4, j)-th element is dy; /da; = dg(}_, Njrax)/da; =
g (9;)Ny;. Therefore, dy/da = ¢'(y") ® NT. The element-wise multiplication here
should be broadcasted (the j-th column is ¢'(g;)NT;). With this, we finally have

d o dl]
N e en) £
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(e) We revise the definitions as follows for i = 1,--- | B:

a; = f(MXZ)>

Yi= g(Nal)v
b= h(yi,yi)-

As stated in the question, the new loss value ¢ is { = & Zil ¢;. We can evaluate
dl;/dM and dl;/dN exactly the same way as how we did for the previous part of
this question. The new gradients are simply

A _ 1§ dh
dM B & dM’
dr_ 1§~
dN B4~ dN

by linearity.

6. au(j) = Ajs, Zgzl a¢—1(k)By; is one element of a vector (the j-th element of o).
Visualizing 3°7_, a1 (k) Byj, we have

which can be expressed as ol ;B. ;. We multiply A;,, to each element, which yields

T
Alxtat—lBhl

o = :
Athaz_lB:,J
a?_1B171
=A, 0O :
a?_lB:,J
B.i,---,B.; as columns is unnatural (we are aligning different columns vertically),

which motivates us to transpose this to obtain

=A., ©® [atT_lBZJ al B J]T
— A, (e, B, B.,])"
— A, 0 (al B)

=A, oB o,
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7.

Alternatively, we can try a different way of visualizing Zgjl a1 (k) By;:

: Oét—l(l)
BjT1 BJ.TJ :
. Oét_1<<]>

or equivalently Bg::at_l. Bg:: should be interpreted as a row vector which corresponds to
the j-th row of B This is slightly different from the notation in Section 3. Multiplying
Ajz, to each element again gives

T
AlxtBL;at—l
Oy = :
T
AJ:EtB(L;at*l

-B{:at,1

= A:,xt © :
Bg:at,l
B,

== A:,xt ®© Oy q
| B).

= A:,xt ® BTozt_l.

Now we derive the vector form of £,(j) = 21}]=1 Apzyir Biv1(k)Bj. Recall that for
C = AB, C;; = >, Ai.B,;. Focus on the colors, not the letters! The color of the
variable being summed over is olive, the variable before the olive variable is in red,
and the one after it is in blue. To follow this, we reorder Z;f:l Az B (k) By, as
Zizl B Ay Bry1(F). Apga,,, is the k-th element of the x;y1-th column of A, and
Biy1(k) is the k-th element of the column vector B,,,. Ags,,,Bit1(k) is therefore the
k-th element of A. ©® B4, This means

sTt+1

J
ﬁt(]) = Z Ak$t+1ﬂt+l(k)8jk

k=1

M~

BJk [AZ@tJrl © /Bt—f—l} k>

i

1

and therefore
/815 = B (AZ,CL“t+1 @ /Bt—l-l) .

(a) There is only one free variable j, so this indicates this is the j-th element of a
vector. Visualizing Zfil Ajjziy;, we have

Au[ 1Y
Anj xnynh
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which is not valid matrix multiplication. To fix this, we transpose A and obtain

: T1Y1
T T

Ajl Ajn
—_—

TnYn

Therefore, v = AT(x ®O y).
(b) oV, Az, is the same as (a) but with y; removed. We have v = ATx.

(c) Ejvzl A;jz;y; is almost the same as (a). Swapping i and j, we have Zfil Ay
The only difference is that A;; in (a) is now Aj;, which means v =A(x®y).

(d) Z;VZI SN | ApiByjz; has only one free variable, i. Therefore, this is the i-th ele-
ment of vector v. First observe that

N N N N
Z Z AkinjZL’j = Z Z Akinjxj

j=1 k=1 k=1 j=1

N N
= Z Akz Z Bijj.
k=1 j=1
Z;Vﬂ Byjx; is the k-th element of Bx, which means

N
k=1

N

= A} (Bx);
k=1

= A'Bx.

(e) Zfil XTAL:AZ: has no free variables, so this represents the multiplication result it-

self. x” does not depend on 4, which allows us to rearrange this to x” Zfil Ai,:AZr
Now consider A; . Al:

Ail A’ilAil s AllAZn
AAT = | 0 [ [An - An]=| ¢ :

which means the (7, k)-th element of AL:AZZ is AjjAi = AJTiAik. It naturally
follows that the (j, k)-th element of 3 A; A7 is then simply S, AL Ay,
which is the (j, k)-th element of ATA. Therefore, "1 | A; AT, = ATA, and we
finally conclude that 317 | xTA; AT, = x"ATA.

Note that AT, can be interpreted either as the i-th row of A in column vector,
or as the i-th row of A in column vector transposed to a row vector. A; AT, is
only defined for the latter case.
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(f)

(2)

Z;Vﬂ A;jz;y; has 7 as the only free variable, so this is a vector. z; does not depend
on j, which gives Zjvzl Ay = x; Z;V:1 Ay Z;V:1 A;jy; is the i-th element of
Ay, and z; is multiplied to this. Therefore, v =x ® Ay.

Zi]il A.;BY:x does not have any free variables, so this is the result itself. x does

not depend on 4, so Zfil A.;Blx= (Zf\;l A:J-BTZ-) x. A.;Bf; can be seen as

Ali AliBli e Alanz
A Bl =" [Bu e Bni] = : :
Ani AmBlz e Aman

The (j, k)-th element of A.;BY; is therefore Aj; By; = Aj;B};. Following the logic
in (e), the answer is ABTx.

z;y;Ai; has two free variables ¢ and j. z;y; is the (i,j)-th element of xy”, and
A;j is the (i, j)-th element of A. Therefore, the matrix whose (¢, j)-th element is
zy;Aij is xyt © A

Note that there is another solution which has z;y;A;; as the (j,7)-th element,
yx' ® AT,
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