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* Supervised Models
* Decision Trees

* KNN

* Naive Bayes

* Perceptron

* Logistic Regression
* Linear Regression
* Neural Networks

* Unsupervised Learning
* Ensemble Methods

* Deep Learning &

Generative Al

° Learning Theory
* Reinforcement Learning

* Important Concepts

* Feature Engineering

° Regularization and
Overfitting

* Experimental Design
* Societal Implications
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Defining a
Machine

Learning
Task
(Mitchell, 97)
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- A computer program learns if its performance, P, at

some task, T, improves with experience, E.

* Three components

* Task, T

* Performance metric, P

* Experience, E
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* Learning to approve loans/lines of credit

* Three components

* Task, T

* Performance metric, P

* Experience, E
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* Three components
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Example Learning Problems

Learning to respond to voice commands (Siri)
1. Task, T:

2. Performance measure, P:

3. Experience, E:



Example Learning Problems

Learning to respond to voice commands (Siri)

1. Task, T: Q

Given a transcribed sentence x predict the command y

Example:
X = “Glve me directions to Starbucks”
y = DIRECTIONS (here, nearest (Starbucks))
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Capturing the Knowledge of Experts

Introspection.. Rules...
X = “Gilve me directions if x matches “give me directions to Z”:
to Starbucks” cmd = DIRECTIONS (here, nearest(Z))
x = “How do I get to if x matches “how do i get to z2”:
Starbucks?” cmd = DIRECTIONS (here, nearest(Z))
x = “Where 1is the if x matches “where is the nearest Z7”:
nearest Starbucks?” cmd = DIRECTIONS (here, nearest (Z))
X = “I need directions if x matches “I need directions to Z”:
to Starbucks” cmd = DIRECTIONS (here, nearest (Z))
x = “Is there a if x matches “Is there a Z nearby”:
Starbucks nearby? cmd = DIRECTIONS (here, nearest (Z))
if x matches “Z now!”:

X = “Starbucks now!” )

cmd = DIRECTIONS (here, nearest (Z))




Capturing the Knowledge of Experts

Solution #2: Annotate Data and Learn

* Experts:

— Very good at answering questions about specific
cases

— Not very good at telling HOW they do it
* 1990s: So why not just have them tell you what
they do on SPECIFIC CASES and then let

MACHINE LEARNING tell you how to come to
the same decisions that they did



Capturing the Knowledge of Experts

Solution #2: Annotate Data and Learn
1. Collect raw sentences {x, ..., x(W}
2. Experts annotate their meaning {y(®, ..., y™}

x: How do I get to Starbucks? x3): Send a text to John that I’11 be late
y(): DIRECTIONS (here, nearest (Starbucks)) y3): TXTNSG (John, I’11 be late)

x@): show me the closest Starbucks x®: Set an alarm for seven in the morning
y(?): MAP (nearest (Starbucks) ) y®: SETALARM (7 : 00AM)




Example Learning Problems

Learning to respond to voice commands (Siri)
1. Task, T:

predicting action from speech
2. Performance measure, P:

percent of correct actions taken in user pilot
study

3. Experience, E:
examples of (speech, action) pairs



Problem Formulation

Often, the same task can be Problem Formulation:
formulated in more than one way.

boolean
. . categorical
Example: Loan applications d'g |
ordina
— creditworthiness/score
. real

(regression) .

ordering

— probability of default

(density estimation) multiple discrete

. multiple continuous
— loan decision

(classification)

both discrete & cont.

What is the structure of our output prediction?

Binary Classification
Multiclass Classification
Ordinal Classification
Regression

Ranking

Structured Prediction

(e.g. dynamical systems)
(e.g. mixed graphical models)



Well-posed Learning Problems

In-Class Exercise
1. Selectatask, T

2. ldentify performance
measure, P

3. ldentify experience, E

4. Reportideas back to
rest of class

117/24
Examples from Roni Rosenfeld



In-Class Exercise

1
2
3.
4

Select atask, T

anseee" \Well-posed Learning Problems

Report ideas back to rest of class

task, T

performance measure, P

experience, E
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Al Incidents on the Rise

Summary visualisations Summary statistics
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Principles

o Fairness / Al Ethics Guidelines Global Inventory

. Accountability s AR e gy
. Transparency
. Safety and reliability
« Security

« Privacy
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Mathematical Notions of Fairness

. Group notions

Notion of fairness Equality of
Demographic Parity P[Y|S]
Equality of Accuracy (Y — Y)?|5]
Equality of FPR/FNR | P[Y]Y, S]
Equality of PPV/NPV | P[Y]Y, S]

5

. Individual notions
o Treat similar individuals similarly.



Pipeline-aware Mitigation of Unfairness
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* Learning to diagnose heart disease

as a (supervised) binary classification task

features Iabels
Famlly Resting Blood | Cholesterol Heart
Hlstory Pressure Disease?
% Normal
= No Medium Normal No
o
Q '< No Low Abnormal Yes
(©
o Yes Medium Normal Yes
ge) :
. Yes High Abnormal Yes
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* Learning to diagnose heart disease

as a (supervised) binary classification task

features labels
A A
( Y A
Family | RestingBlood | Cholesterol Heart
History | Pressure Disease?
. ~ Yes Low Normal No
=
= No Medium Normal No
@)
Q-'< No Low Abnormal Yes
(S
o Yes Medium Normal Yes
ge :
. Yes High Abnormal Yes
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* Learning to diagnose heart disease

as a (supervised) classification task
features Iabels
Famlly Resting Blood | Cholesterol R|sk
H|story Pressure
5 Normal Low Risk
=
'% No Medium Normal Low Risk
o '< No Low Abnormal Medium Risk
(©
o Yes Medium Normal High Risk
© , : :
. Yes High Abnormal High Risk



* Learning to diagnose heart disease

as a (supervised) regression task
Our first features ta rgets
Machine
l Fam|I Resting Blood | Cholesterol Medlcal

Learning -
TaSk o Normal

s

g No Medium Normal $20

o< No Low Abnormal | $30

O

= Yes Medium Normal $100

©

. Yes High Abnormal | $5000
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Our first
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* A classifier is a function that takes feature values as

input and outputs a label

 Majority vote classifier: always predict the most

common label in the dataset
features Iabels

Famlly Resting Blood | Cholesterol Heart
Hlstory Pressure Disease?

% Normal

= No Medium Normal No

@)

Q '< No Low Abnormal Yes

(©

o Yes Medium Normal Yes

ge)

. Yes High Abnormal Yes



Training

VS.
Testing

training dataset
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* A classifier is a function that takes feature values as

input and outputs a label

 Majority vote classifier: always predict the most

common label in the training dataset (Yes)

Famlly Resting Blood | Cholesterol | Heart
Hlstory Pressure Disease?

Normal
< No Medium Normal No
No Low Abnormal Yes
Yes Medium Normal Yes

\_ Yes High Abnormal Yes
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* A classifier is a function that takes feature values as

input and outputs a label

 Majority vote classifier: always predict the most

common label in the training dataset (Yes)

- A test dataset is used to evaluate a classifier’s predictions

T Famlly Resting Blood | Cholesterol | Heart Predictions
a Hlstory Pressure Disease?

)

o < Normal

+ No High Abnormal Yes Yes

Q

= Yes Medium Abnormal Yes Yes

* The error rate is the proportion of data points where the

prediction is wrong



Training

VS.
Testing
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* A classifier is a function that takes feature values as

input and outputs a label

 Majority vote classifier: always predict the most

common label in the training dataset (Yes)

* A test dataset is used to evaluate a classifier’s predictions

T Famlly Resting Blood | Cholesterol | Heart Predictions
a Hlstory Pressure Disease?

)

o < Normal

+ No H|gh Abnormal Yes Yes

Q

= Yes Medium Abnormal Yes Yes

* The test error rate is the proportion of data points in the

test dataset where the prediction is wrong (1/3)



* Step 1 —training
* Input: a labelled training dataset

 OQutput: a classifier

A Typical

(Supervised)
: * Inputs: a classifier, a test dataset
Machine

* Step 2 —testing

| eg rning * Output: predictions for each test data point
Routine - Step 3 — evaluation

* Inputs: predictions from step 2, test dataset labels

* Output: some measure of how good the predictions are;

usually (but not always) error rate

1/17/24
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* A classifier is a function that takes feature values as

input and outputs a label

 Majority vote classifier: always predict the most

common label in the training dataset

labels

Heart
Disease?

No
No
Yes
Yes

data points
A

\_ Yes

* This classifier completely ignores the features...



* A classifier is a function that takes feature values as

input and outputs a label

 Majority vote classifier: always predict the most

common label in the training dataset

. labels
Our first \
caring
Lea mlng Disease?
11 wn - No Yes
Classifier 2 e
8‘ '< Yes Yes
% Yes Yes
- \— Yes Yes

* The training error rate is 2/5

1/17/24
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* A classifier is a function that takes feature values as

input and outputs a label

- Memorizer: if a set of features exists in the training

dataset, predict its corresponding label; otherwise,

predict the majority vote

Family | RestingBlood | Cholesterol | Heart
Hlstory Pressure Disease?

Normal
No Medium Normal No
No Low Abnormal Yes
Yes Medium Normal Yes

Yes High Abnormal Yes



* A classifier is a function that takes feature values as

input and outputs a label

- Memorizer: if a set of features exists in the training

dataset, predict its corresponding label; otherwise,

redict the majority vote
Our second P Jortty
MaCh IN€e Family | RestingBlood | Cholesterol | Heart Predictions
Lea rning Hlstory Pressure Disease?
. Normal
Classifier |
No Medium Normal No No
No Low Abnormal Yes Yes
Yes Medium Normal Yes Yes
Yes High Abnormal Yes Yes

* The training error rate is 0!

1/17/24
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* A classifier is a function that takes feature values as

input and outputs a label

- Memorizer: if a set of features exists in the training
dataset, predict its corresponding label; otherwise,

predict the majority vote

* The memorizer (typically) does not generalize well, i.e.,

it does not perform well on unseen data points

* In some sense, good generalization, i.e., the ability to
make accurate predictions given a small training

dataset, is the whole point of machine learning!



* You should be able to

1. Formulate a well-posed learning problem for a real-
world task by identifying the task, performance
measure, and training experience

L earnin 2. Describe common learning paradigms in terms of the
5 type of data available, when it’s available, the form of
prediction, and the structure of the output prediction

Goals

3. Explain the difference between memorization and
generalization [CIML]

4. ldentify examples of the ethical responsibilities of an
ML expert
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