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Questions for today (and next lecture)
1. Given a classifier with zero training error, 

what can we say about true error (aka. 
generalization error)?
(Sample Complexity, Realizable Case)

2. Given a classifier with low training error, what 
can we say about true error (aka. 
generalization error)?
(Sample Complexity, Agnostic Case)

3. Is there a theoretical justification for 
regularization to avoid overfitting?
(Structural Risk Minimization)
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PAC/SLT Model for Supervised ML
• Problem Setting
– Set of possible inputs, x ∈ 𝒳 (all possible patients)
– Set of possible outputs, y ∈ 𝒴 (all possible diagnoses)
– Distribution over instances, p*(·)
– Exists an unknown target function, c* : 𝒳→ 𝒴

(the doctor’s brain)
– Set, ℋ, of candidate hypothesis functions, h : 𝒳→ 𝒴

(all possible decision trees)
• Learner is given N training examples 

D = {(x(1), y(1)), (x(2), y(2)), …, (x(N), y(N))}
where x(i) ~ p*(·) and y(i) = c*(x(i))
(history of patients and their diagnoses)

• Learner produces a hypothesis function, ŷ̂ = h(x), that best 
approximates unknown target function y = c*(x) on the training data
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IMPORTANT NOTE

In our discussion of PAC 
Learning, we are only 
concerned with the 

problem of binary 
classification
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There are other theoretical frameworks (including 
PAC) that handle other learning settings, but this 

provides us with a representative one.
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Two Types of Error
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2. Train Error (aka. empirical risk)

1. True Error (aka. expected risk)
This quantity is always unknown

We can measure this 
on the training data



PAC / SLT Model
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We’ve also referred to 

this as the “Function 

Approximation View”



Three Hypotheses of Interest
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Answer:

Three Hypotheses of Interest
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Question: True or False: h* and c* are always equal. 
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Three Hypotheses of Interest
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PAC LEARNING
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PAC Learning
• Q: Can we bound R(h) in terms of Ȓ(h)?
• A: Yes!

• PAC stands for
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Probably

Approximately

Correct

A PAC Learner yields a hypothesis ℎ ∈ ℋ which is…
approximately correct      𝑅 ℎ ≈ 0
with high probability         Pr 𝑅 ℎ ≈ 0 ≈ 1



Probably Approximately Correct (PAC) Learning

PAC Criterion Sample Complexity
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Consistent Learner



SAMPLE COMPLEXITY RESULTS
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…
We’ll start with the 

finite case…



Probably Approximately Correct (PAC) Learning
Theorem 1: Realizable Case, Finite |H|
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



Example: Conjunctions
Question:
Suppose H = class of 
conjunctions over x in {0,1}M 

Example hypotheses:
 h(x) = x1 (1-x3) x5 
 h(x) = x1 (1-x2) x4 (1-x5)

If M = 10, 𝜀 = 0.1, δ = 0.01, how 
many examples suffice 
according to Theorem 1?
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Answer:
A. 10*(2*ln(10)+ln(100 )) ≈ 92
B. 10*(3*ln(10)+ln(100)) ≈ 116
C. 10*(10*ln(2)+ln(100 )) ≈ 116
D. 10*(10*ln(3)+ln(100)) ≈ 156
E. 100*(2*ln(10)+ln(10 )) ≈ 691
F. 100*(3*ln(10)+ln(10)) ≈ 922
G. 100*(10*ln(2)+ln(10 )) ≈ 924
H. 100*(10*ln(3)+ln(10)) ≈ 1329



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



Background: Contrapositive
• Definition: The contrapositive of the statement 

       A ⇒ B 
is the statement
          ¬B ⇒ ¬A
and the two are logically equivalent (i.e. they share all the same truth 
values in a truth table!)

• Proof by contrapositive:
If you want to prove A ⇒ B, instead prove ¬B ⇒ ¬A and then conclude 
that A ⇒ B

• Caution: sometimes negating a statement is easier said than done, just 
be careful! 

24



Proof of Theorem 1
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Proof of Theorem 1
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Proof of Theorem 1
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

1. Bound is inversely linear in 
epsilon (e.g. halving the error 
requires double the examples)

2. Bound is only logarithmic in 
|H| (e.g. quadrupling the 
hypothesis space only requires 
double the examples)

1. Bound is inversely quadratic in 
epsilon (e.g. halving the error 
requires 4x the examples)

2. Bound is only logarithmic in 
|H| (i.e. same as Realizable 
case) 



Finite vs. Infinite |H|

Finite |H|
• Example: H = the set of all decision trees 

of depth D over binary feature vectors of 
length M

• Example: H = the set of all conjunctions 
over binary feature vectors of length M

Infinite |H|
• Example: H = the set of all linear decision 

boundaries in M dimensions

• Example: H = the set of all neural 
networks with 1-hidden layer with length 
M inputs
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Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…

For these two cases, we will use a new definition for the 
“complexity” of a Hypothesis space called VC Dimension



Sample Complexity Results
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Realizable Agnostic

Four Cases we care about…


