10-301/10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University # **PAC Learning** Slides from Matt Gormley Lecture 14 Mar. 11, 2024 # **LEARNING THEORY** # Questions for today (and next lecture) - Given a classifier with zero training error, what can we say about true error (aka. generalization error)? (Sample Complexity, Realizable Case) - Given a classifier with low training error, what can we say about true error (aka. generalization error)? (Sample Complexity, Agnostic Case) - Is there a theoretical justification for regularization to avoid overfitting? (Structural Risk Minimization) # PAC/SLT Model for Supervised ML # PAC/SLT Model for Supervised ML ### Problem Setting - Set of possible inputs, $\mathbf{x} \in \mathcal{X}$ (all possible patients) - Set of possible outputs, $y \in \mathcal{Y}$ (all possible diagnoses) - Distribution over instances, $p^*(\cdot)$ - Exists an unknown target function, $c^*: \mathcal{X} \rightarrow \mathcal{Y}$ (the doctor's brain) - Set, \mathcal{H} , of candidate hypothesis functions, $h: \mathcal{X} \rightarrow \mathcal{Y}$ (all possible decision trees) - Learner is given N training examples $D = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), ..., (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})\}$ where $\mathbf{x}^{(i)} \sim \mathbf{p}^*(\cdot)$ and $\mathbf{y}^{(i)} = \mathbf{c}^*(\mathbf{x}^{(i)})$ (history of patients and their diagnoses) - Learner produces a hypothesis function, $\hat{y} = h(x)$, that best approximates unknown target function $y = c^*(x)$ on the training data # IMPORTANT NOTE In our discussion of PAC Learning, we are only concerned with the problem of **binary** classification There are other theoretical frameworks (including PAC) that handle other learning settings, but this provides us with a representative one. # PAC/SLT Model for Supervised ML # Two Types of Error ### 1. True Error (aka. expected risk) $$R(h) = P_{\mathbf{x} \sim p^*(\mathbf{x})}(c^*(\mathbf{x}) \neq h(\mathbf{x}))$$ ### 2. Train Error (aka. empirical risk) $$\hat{R}(h) = P_{\mathbf{x} \sim \mathcal{S}}(c^*(\mathbf{x}) \neq h(\mathbf{x}))$$ $$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(c^*(\mathbf{x}^{(i)}) \neq h(\mathbf{x}^{(i)}))$$ $$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(y^{(i)} \neq h(\mathbf{x}^{(i)}))$$ This quantity is always unknown We can measure this on the training data where $S = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}_{i=1}^N$ is the training data set, and $\mathbf{x} \sim S$ denotes that \mathbf{x} is sampled from the empirical distribution. # PAC / SLT Model 1. Generate instances from unknown distribution p^* $$\mathbf{x}^{(i)} \sim p^*(\mathbf{x}), \, \forall i$$ (1) 2. Oracle labels each instance with unknown function c^* $$y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i$$ (2) 3. Learning algorithm chooses hypothesis $h \in \mathcal{H}$ with low(est) training error, $\hat{R}(h)$ $$\hat{h} = \underset{h \in \mathcal{I}}{\operatorname{argmin}} \hat{R}(h) \tag{3}$$ 4. Goal: Choose an h with low generalization error R(h) # Three Hypotheses of Interest The **true function** c^* is the one we are trying to learn and that labeled the training data: $$y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i$$ (1) The **expected risk minimizer** has lowest true error: best in class $$h^* = \underset{h \in \mathcal{H}}{\operatorname{argmin}} R(h)$$ (2) The empirical risk minimizer has lowest training error: $$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \hat{R}(h) \tag{3}$$ B = tixic Three Hy C = False $$y^{(i)} = c^*(\mathbf{x}^{(i)}), \forall i$$ # Three Hypotheses of Interest $$y^{(i)} = c^*(\mathbf{x}^{(i)}), \,\forall i$$ $$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} R(h)$$ **Question:** True or False: h* and c* are always equal. **Answer:** # Three Hypotheses of Interest $$y^{(i)} = c^*(\mathbf{x}^{(i)}), \, \forall i$$ $$h^* = \operatorname*{argmin}_{h \in \mathcal{H}} R(h)$$ Question: True or False: h* and c* are always equal. # **Answer:** # **PAC LEARNING** # PAC Learning - Q: Can we bound R(h) in terms of R(h)? - A: Yes! PAC stands for A **PAC Learner** yields a hypothesis $h \in \mathcal{H}$ which is... approximately correct $R(h) \approx \mathcal{H} R(h^*)$ with high probability $\Pr(R(h) \approx \emptyset) \approx 1$ # **Probably Approximately Correct (PAC) Learning** E, 8 small numbers 20 ### **PAC Criterion** The H $$Pr(|R(h) - \hat{R}(h)| < \varepsilon) > 1-8$$ Pr(|R(h) - $\hat{R}(h)$ | $R(h)$ R(h) R(h) is defined u.r.t. D and D is random sample from pot ### **Sample Complexity** is the min number of training examples , N(E, S) S.t. the PAC criterion is satisfied for Es ### Consistent Learner c^{*} ∈ ≤ A importheris heth is consistent with training data Dif RCh)=0 ### **SAMPLE COMPLEXITY RESULTS** **Definition 0.1.** The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1). # Probably Approximately Correct (PAC) Learning Theorem 1: Realizable Case, Finite |H| **Definition 0.1.** The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1). Four Cases we care about... | | Realizable | Agnostic | |--------------------------|--|----------| | Finite $ \mathcal{H} $ | Thm. 1 $N \geq \frac{1}{\epsilon} \left[\log(\mathcal{H}) + \log(\frac{1}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$. | | | Infinite $ \mathcal{H} $ | | | # Example: Conjunctions Question: ~1, . ~ , ~ M € { o, 1} Suppose \mathcal{H} = class of conjunctions over x in $\{0,1\}^M$ $x_1 \wedge x_2 \wedge x_5$ = $h(x) = x_1 (1-x_3) x_5$ = 1 | $x_3 = 0$ | $x_5 = h(x) = x_1 (1-x_2) x_4 (1-x_5)$ | $x_6 = 1$ Example hypotheses: If M = 10, ε = 0.1, δ = 0.01, how many examples suffice according to Theorem 1? Thm. 1 $N \geq \frac{1}{\epsilon} \left[\log(\mathcal{H}) + \log(\frac{1}{\delta})\right]$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$. $$21/22/--/210$$ $21/21$ $21/2$ **Definition 0.1.** The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1). A Four Cases we care about... → Realizable Agnostic f(2,5,141) PAC- criteria $N \geq \left| rac{1}{\epsilon} \left[\log(|\mathcal{H}|) + \log(rac{1}{\delta}) ight] ight|$ la-Finite $|\mathcal{H}|$ beled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$. Infinite $|\mathcal{H}|$ # Background: Contrapositive - Definition: The contrapositive of the statement - is the statement - and the two are logically equivalent (i.e. they share all the same truth values in a truth table!) - Proof by contrapositive: If you want to prove A ⇒ B, instead prove ¬B ⇒ ¬A and then conclude that A ⇒ B - Caution: sometimes negating a statement is easier said than done, just be careful! # Proof of Theorem 1 - Assume we have know bad hypotheses in H where a bad model hi is consistent (R(hi)=0) but R(hi)>E. - Pick bad hypothesis hi. The prob that hi is consistent with $(x^{(1)}, y^{(1)})$ is $(x^{(2)}, y^{(1)})$, $(x^{(2)}, y^{(2)})$ = -1. = -1 $\mathcal{D} \qquad \leqslant (1-\varepsilon)^{N}$. Prob that at least one bad h is consistent with $D \leq k(1-\epsilon)^N \leq |\mathcal{A}|(1-\epsilon)^N$ Union bound: $$P(AUB) \leq P(A) + P(B)$$ $L_{3} = P(A) + P(B) - P(AAB)$ ## Proof of Theorem 1 * Prob of a bod hypothesis looking good empirically $$\leq |\mathcal{S}| (1-\epsilon)^N$$ $\leq |\mathcal{S}| (1-\epsilon)^N$ Known fact: $\forall x : (1-x) \leq \exp(-x)$ $$\Leftrightarrow 141 \leq \exp(95N)$$ $$\Rightarrow$$ log (|\$l|) + log $\left(\frac{1}{8}\right) \leq e N$ $$\Leftrightarrow$$ $\left(\frac{1}{9}\right)\left(\log(1+1) + \log(\frac{1}{8})\right)$ # Proof of Theorem 1 **Definition 0.1.** The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1). Four Cases we care about... | | Realizable | Agnostic | |--------------------------|---|--| | Finite $ \mathcal{H} $ | Thm. 1 $N \geq \frac{1}{\epsilon} \log(\mathcal{H}) + \log(\frac{1}{\delta})$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$. | Thm. 2 $N \geq \frac{1}{2\epsilon^2} \left[\log(\mathcal{H}) + \log(\frac{2}{\delta})\right]$ labeled examples are sufficient so that with probability $(1-\delta)$ for all $h \in \mathcal{H}$ we have that $ R(h) - \hat{R}(h) \leq \epsilon$. | | Infinite $ \mathcal{H} $ | | | - 1. Bound is **inversely linear in epsilon** (e.g. halving the error requires double the examples) - 2. Bound is **only logarithmic in**|H| (e.g. quadrupling the hypothesis space only requires double the examples) - 1. Bound is **inversely quadratic in epsilon** (e.g. halving the error requires 4x the examples) - Bound is only logarithmic in |H| (i.e. same as Realizable case) Realizable 1 Agnostic Finite $|\mathcal{H}|$ **Thm.** 1 $N \geq \frac{1}{\epsilon} \left[\log(|\mathcal{H}|) + \log(\frac{1}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$. **Thm. 2** $N \geq \frac{1}{2\epsilon^2} \left[\log(|\mathcal{H}|) + \log(\frac{2}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1-\delta)$ for all $h \in \mathcal{H}$ we have that $|R(h) - \hat{R}(h)| \leq \epsilon$. Infinite $|\mathcal{H}|$ # Finite vs. Infinite |H| ### Finite |H| Example: H = the set of all decision trees of depth D over binary feature vectors of length M • Example: H = the set of all conjunctions over binary feature vectors of length M ### Infinite |H| • Example: H = the set of all linear decision boundaries in M dimensions Example: H = the set of all neural networks with 1-hidden layer with length M inputs **Definition 0.1.** The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1). Four Cases we care about... **Definition 0.1.** The **sample complexity** of a learning algorithm is the number of examples required to achieve arbitrarily small error (with respect to the optimal hypothesis) with high probability (i.e. close to 1). Four Cases we care about... Realizable Agnostic Finite $|\mathcal{H}|$ **Thm.** 1 $N \geq \frac{1}{\epsilon} \left[\log(|\mathcal{H}|) + \log(\frac{1}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1-\delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$. **Thm.** 2 $N \geq \frac{1}{2\epsilon^2} \left[\log(|\mathcal{H}|) + \log(\frac{2}{\delta}) \right]$ labeled examples are sufficient so that with probability $(1-\delta)$ for all $h \in \mathcal{H}$ we have that $|R(h) - \hat{R}(h)| \leq \epsilon$. Infinite $|\mathcal{H}|$ **Thm. 3** $N = O(\frac{1}{\epsilon} \left[\text{VC}(\mathcal{H}) \log(\frac{1}{\epsilon}) + \log(\frac{1}{\delta}) \right])$ labeled examples are sufficient so that with probability $(1 - \delta)$ all $h \in \mathcal{H}$ with $\hat{R}(h) = 0$ have $R(h) \leq \epsilon$. Thm. 4 $N = O(\frac{1}{\epsilon^2} \left[\text{VC}(\mathcal{H}) + \log(\frac{1}{\delta}) \right])$ labeled examples are sufficient so that with probability $(1 - \delta)$ for all $h \in \mathcal{H}$ we have that $|R(h) - \hat{R}(h)| \leq \epsilon$.