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LEARNING THEORY



Questions for today (and next lecture)

1.

Given a classifier with zero training error,
what can we say about true error%aka.
eneralization error)?
Sample Complexity, Realizable Case)

. Given a classifier with low training error, what

can we say about true error (aka.
eneralization error)?
Sample Complexity, Agnostic Case)

. Is there a theoretical justification for

regularization to avoid overfitting?
(Structural Risk Minimization)



PAC/SLT Model for Supervised ML
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h(x)



PAC/SLT Model for Supervised ML

* Problem Setting
— Set of possible inputs, x € X
— Set of possible outputs, y € Y
— Distribution over instances, p*(-)
— Exists an unknown target function, c* : X — Y

— Set, H, of candidate hypothesis functions, h: X— Y

* Learner is given N training examples

D = {(x(1), y 1)), x(z), y(z)), ey (x(N), y(N))}
where x() ~ p*g-) and y(i) - c*(x(‘))

* Learner produces a hypothesis function, § = h(x), that best
approximates unknown target function y = ¢*(x) on the training data



IMPORTANT NOTE

In our discussion of PAC
Learning, we are only
concerned with the

problem of binary
classification

There are other theoretical frameworks (including
PAC) that handle other learning settings, but this
provides us with a representative one.



PAC/SLT Model for Supervised ML

Test Error Rate



Two Types of Error

1. True Error (aka. expected risk)

R(h) = Pxp=(x)(c"(x) # h(x)) T'?l's au

2. Train Error (aka. empirical risk) u”"noj,f
R(h) :was( "(x) # h(x))
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=¥ Z]l(y( ) # h(x™))
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where S = {x(1), ... x(M)INV s the training data set, and x ~

S denotes that x is sampled from the empirical distribution.



thi. Cal
PAC/SLT Model /4t i,

. Generate instances from unknown distribution p*

x®) ~ p*(x), Vi (1)
. Oracle labels each instance with unknown function c*

y@ = " (x"), Vi (2)

. Learning algorithm chooses hypothesis h € H with low(est)
training error, R(h)

h = argmin R(h) (3)
h

. Goal: Choose an h with low generalization error R(h)



Three Hypotheses of Interest

The true function c* is the one we are trying to learn and that labeled
the training data:

y = c*(xV), vi (1)
The expected risk minimizer has lowest true error:

h* = argmin R(h) (2)
heH

The empirical risk minimizer has lowest training error:

A

h = argmin R(h) (3)
heH



Three Hypotheses of Interest
y(z') _ (X(i)), ;i h* = arhgg?{in R(h)

Question: True or False: h* and c* are always equal.

Answer:




PAC LEARNING



PAC Learning

* Q: Can we bound R(h) in terms of R(h)?

* A:Yes!

* PACstands for Probably
Approximately
Correct

A PAC Learner yields a hypothesis h € H which is...

approximately correct R(h) = 0
with high probability Pr(R(h) = 0) = 1



Probably Approximately Correct (PAC) Learning

PAC Criterion Sample Complexity

Consistent Learner



SAMPLE COMPLEXITY RESULTS



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

We’ll start with the
Four Cases we care about... finite case...

Realizable N Agno‘i/ti?

Finite |H)|

Infinite |H|




Probably Approximately Correct (PAC) Learning

Theorem 1: Realizable Case, Finite |H|



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > < [log(|H|) + log(3)] la-
Fini beled examples are sufficient so that with

te |H‘ probability (1—6) allh € H with R(h) =0
have R(h) < e.

Infinite |H|




Example: Conjunctions

Question: Answer:

Suppose H = class of 10*(2*In(10)+In(100 )) = 92
conjunctions over x in {0,1}" 10*(3*In(10)+In(100)) = 116
10*(10*In(2)+In(100 )) = 116
10*(10*In(3)+In(100)) = 156
100*(2*In(10)+In(10 )) = 691
100*(3*In(10)+In(10)) = 922
100*(10*In(2)+In(10 )) = 924
100*(10*In(3)+In(10)) = 1329

Example hypotheses:
h(x) = X, (1-X3) X
h(x) = x, (1) X, (1%;)

ITOmMmoNwP

If M =10, € = 0.1, 8 = 0.01, how
many examples suffice
according to Theorem 12

Thm. 1 N > 2 [log(|H]) + log(3)] la-
beled examples are sufficient so that with
probability (1—6) all b € # with R(h) = 0
have R(h) < e.



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > < [log(|H|) + log(3)] la-
Fini beled examples are sufficient so that with

te |H‘ probability (1—6) allh € H with R(h) =0
have R(h) < e.

Infinite |H|




Background: Contrapositive

* Definition: The contrapositive of the statement
A=B
is the statement
B = -A
and the two are logically equivalent (i.e. they share all the same truth
values in a truth table!)

* Proof by contrapositive:
If you want to prove A = B, instead prove =B = -A and then conclude
that A= B

* Caution: sometimes negating a statement is easier said than done, just
be careful!

24



Proof of Theorem 1



Proof of Theorem 1



Proof of Theorem 1



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic

Thm. 1 N > I[log(|H|) +1log(3)] la- | Thm. 2 N > 5 [log(|H|) + log(3)]
Finite |H‘ beled examples are sufficient so that with | labeled examples are sufficient so that

probability (1 —46) all h € H with R(h) = 0 | with probability (1 — §) forall h € H we
have R(h) < e. have that |[R(h) — R(R)| < e.

Infinite |H|




Finite |H)|

Infinite |H|

1.  Boundis inversely linear in 1.
epsilon (e.g. halving the error P
requires double the examples)

2. Boundis only logarithmicin  [€]2.
[H| (e.g. quadrupling the
hypothesis space only requires
double the examples)

Bound is inversely quadratic in
epsilon (e.g. halving the error
requires 4x the examples)

Bound is only logarithmic in
[H| (i.e. same as Realizable
case)

Realizable

% Agnostic

Thm. 1 N > < [log(|H|) +log(3)] la-
beled examples are sufficient so that with
probability (1—6) all h € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 55 [log(|H|) + log(%)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |R(h) — R(R)| < e.




Finite vs. Infinite |H|

Finite |H] Infinite |H|
* Example: H = the set of all decision trees * Example: H = the set of all linear decision
of depth D over binary feature vectors of boundaries in M dimensions
length M
A
A
Py o0 +
B B .
+ C C + +
7\ 7\
-+ + >
* Example: H = the set of all conjunctions * Example: H = the set of all neural
over binary feature vectors of length M networks with 1-hidden layer with length

M inputs



Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close
to1).

Four Cases we care about...

Realizable Agnostic
Thm}  For these two cases, we will use a new definition for the
Finite |’H‘ Efc')e “complexity” of a Hypothesis space called VC Dimension
have R(h) < e. have that |[R(WN R(R)| < e.
| .. 9

Infinite |H|




Sample Complexity Results

Definition 0.1. The sample complexity of a learning algorithm is the
number of examples required to achieve arbitrarily small error (with
respect to the optimal hypothesis) with high probability (i.e. close

to1).

Four Cases we care about...

Finite |H)|

Infinite |H|

Realizable

Agnostic

Thm. 1 N > < [log(|H|) +log(3)] la-
beled examples are sufficient so that with
probability (1—6) all h € H with R(h) = 0
have R(h) < e.

Thm. 2 N > 55 [log(|H|) + log(%)]
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |[R(h) — R(R)| < e.

Thm. 3 N=O(1 [VC(H)log(2) + log(5)])
labeled examples are sufficient so that
with probability (1 — d) all h € H with
R(h) = 0 have R(h) < e.

Thm. 4 N = O(5 [VC(H) +log(3)])
labeled examples are sufficient so that
with probability (1 — ¢) forall h € H we
have that |[R(h) — R(R)| < e.




