10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Convolutional Neural
Networks (CNNs)

Matt Gormley, Henry Chai, Hoda Heidari
Lecture 17
Mar. 20, 2024

Reminders

* Homework 6: Learning Theory & Generative Models
— Out: Mon, Mar 18
— Due: Sun, Mar 24 at 11:59pm

THE BIG PICTURE

ML Big Picture

Theoretical Foundations:
What principles guide learning?
probabilistic
information theoretic
evolutionary search
ML as optimization

Classification and Regression: The Big Picture

Recipe for Machine Learning Decision Functions
1. Given data D = {x(® y(I}N e Perceptron: hg(x) = sign(6x)
2. (@) Choose a decision function hg(x) = - - - e Linear Regression: hg(x) = 87 x
(parameterized by 0)

e Discriminative Models: hg(x) = argmax X

(b) Choose an objective function Jp(0) = - - - o(x) gy Po(y | x)
(relies on data) T

o Logistic Regression: pg(y =1 | x) = 0(0" x)

3. Learnby choosing parameters that optimize the objective Jp(8) o Neural Net (classification):

R — — @NT (IN\T (1) (2)

0 ~ argmin Jp(0) pe(y=1|x)=0c(W*¥) a((W") x+b")+b'¥)

® e Generative Models: hg(x) = argmax pg(x,y)
y

4. Predict on new test example Xpew Using hg(-) M

Q = h@ (xnew) o Naive Bayes: pO(X7 y) = pe(y) H pe(SEm | y)
m=1
Optimization Method
Objective Functi
e Gradient Descent: 8 — 6 — vV J(0) |ec/'|/;lgv netion
. ‘ N
fori ~ Uniform(1,..., N) =1
N
1 :
where J(0) = — J@ (0 N . :
(9) N ;) e MCLE: J(0) = —Zlogp(y(z) | x(®)
i=1
e mini-batch SGD
e L2 Regularized: J'(0) = J(0) + \||0]|3
e closed form (same as Gaussian prior p(8) over parameters)
1. compute partial derivatives e L1Regularized: J'(8) = J(0) + \||0||1

2. set equal to zero and solve (same as Laplace prior p(@) over parameters)

Backpropagation and Deep Learning

Convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) are simply fancy computation graphs (aka.
hypotheses or decision functions).

Our recipe also applies to these models and (again) relies on
the backpropagation algorithm to compute the necessary
gradients.

BACKGROUND: COMPUTER VISION

Example: Image Classification

IM&GENET

Bird

Home Explore
About Download

Not logged in. Login | Signup

C=
2126 92.85% B

Warm-blooded egg-laying vertebrates characterized by feathers and forelimbs modified as wings pictures Popularity ~ Wordnet

- chordate

;- marine animal, marine creature, sea animal, sea creature (1)
i scavenger (1)

- biped (0)

I;~ predator, predatory animal (1)

i larva (49)

- acrodont (0)

- feeder (0)

- stunt (0)

(3087)

| tunicate, urochordate, urochord (6)
- cephalochordate (1)
. vertebrate, craniate (3077)
#- mammal, mammalian (1169)
- bird (871)
dickeybird, dickey-bird, dickybird, dicky-bird (0)

cock (1)

- hen (0)

- nester (0)

- night bird (1)

- bird of passage (0)

- protoavis (0)

- archaeopteryx, archeopteryx, Archaeopteryx lithographi
- Sinornis (0)

- |bero-mesornis (0)

- archaeornis (0)

- ratite, ratite bird, flightless bird (10)
- carinate, carinate bird, flying bird (0)
- passerine, passeriform bird (279)

- nonpasserine bird (0)

- bird of prey, raptor, raptorial bird (80)
- gallinaceous bird, gallinacean (114)

Percentile IDs

Treemap Visualization Images of the Synset Downloads

18

IM&GENET | v
- - = e About Download

Not logged in. Login | Signup

German iris, Iris kochii 469 49.6%
Iris of northern Italy having deep blue-purple flowers; similar to but smaller than Iris germanica pictures ggfcu;ﬁ;litlg

i~ halophyte (0)
. succulent (39) Treemap Visualization Images of the Synset Downloads
- cultivar (0)

- cultivated plant (0)

- weed (54)

- evergreen, evergreen plant (0)

- deciduous plant (0)

- vine (272)

- creeper (0)

- woody plant, ligneous plant (1868)

- geophyte (0)

- desert plant, xerophyte, xerophytic plant, xerophile, xerophilc
- mesophyte, mesophytic plant (0)

- aquatic plant, water plant, hydrophyte, hydrophytic plant (11
- tuberous plant (0)

* bulbous plant (179)

*. iridaceous plant (27)
+. iris, flag, fleur-de-lis, sword lily (19)

. bearded iris (4)

Florentine iris, orris, Iris germanica florentina, Iris
- German iris, Iris germanica (0)

- German iris, Iris kochii (0)

... Dalmatian iris, Iris pallida (0)

i~ beardless iris (4)

- bulbous iris (0)

- dwarf iris, Iris cristata (0)

-- stinking iris, gladdon, gladdon iris, stinking gladwyn,
- Persian iris, Iris persica (0)

- yellow iris, yellow flag, yellow water flag, Iris pseuda
- dwarf iris, vernal iris, Iris verna (0)

- blue flag, Iris versicolor (0)

)

Wordnet
IDs

19

IMAGENET I o

Not logged in. Login | Signup

C=
Court, courtyard 165 92.61% B

An area wholly or partly surrounded by walls or buildings; "the house was built around an inner court" pictures ngcu;ﬁftiﬁg }ggfdnet

U Numbers in brackets: (the number of synsets in the subtree). Treemap Visualization Images of the Synset Downloads

¥ ImageNet 2011 Fall Release (32326)
i plant, flora, plant life (4486)
| geological formation, formation (175)
- natural object (1112)
- sport, athletics (176)
+. artifact, artefact (10504)
x instrumentality, instrumentation (5494)
+. structure, construction (1405)
airdock, hangar, repair shed (0)
- altar (1)
- arcade, colonnade (1)
e arch (31)
. area (344)
- aisle (0)
- auditorium (1)
- baggage claim (0)
- box (1)
- breakfast area, breakfast nook (0)
- bullpen (0)
- chancel, sanctuary, bema (0)
- choir (0)
+- corner, nook (2)

" court, courtyard (6)
- atrium (0)

- bailey (0)

- cloister (0)

- food court (0)

- forecourt (0)

L. narvie (NN

20

Feature Engineering for CV

Edge detection (Canny)

Original Image Edge Image

Corner Detection (Harris) Scale Invariant Feature Transform (SIFT)

= 3 >
Scale ﬁ? ﬁ

(next

octave) ﬁ
= =
— 2=

Scale
(first
octave)

Gaussian Gaussian (DOG)

.

: Figure 1: For each octave of scale space, the initial image is repeatedly convolved with Gaussians to

> igu f planar objects are shown in the produce the set of scale space images shown on the left. Adjacent Gaussian images are subtracted

Ce— »prow. Recognition results below show model outlinesand to produce the difference-of-Gaussian images on the right. After each octave, the Gaussian image is
T T

Anwm_camnlad hu a fantar nf) and tha nracace ranaatad

Figures from http://opencv.org Figure from Lowe (1999) and Lowe (2004)

21

Example: Image Classification

CNNs for Image Recognition

‘Research

Revolution of Depth 2.2
' 152 layers '

\I\.
\
[22 layers l I 19 Iayers
\ 6.7 I

35? I_“___I I 8 layers ‘| Ela'-,rers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

=ICCVID

Forrennne, Condrrur m o mrmgey oo

Kaiming He, Xiangyu Zhang, Shaoging Ren, & lian Sun. "Deep Residual Learning for Image Recognition”. arkiv 2015.

Slide from Kaiming He

23

Feed-forward Neural Networks for Computer Vision

O
4o |

R — T

X @?F);é “‘_’V\:Fb——f\ CJj /[ET)’}
| i | LJT\\@; |

R N A AN
c=X "‘T\ @

L]
k] ’

Lo

Feed-forward Neural Networks for Computer Vision

X
X w ¢
& \//
1/
/ \ c W
. . 7
Sl TT —
=
/ L/\
x JITTIIT T 7TV _
L I o T A B T \4’\\3—\- \Wu_\)/(
\\ V[O} V1 \ D \\\)\4—«2‘,\};,«4}&

CONVOLUTION

2D Convolution

* Basicidea:
— Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

— Slide this over an image and compute the “inner product” (similarity) of F and the
corresponding field of the image, and replace the pixel in the center of the field with the
output of the inner product operation

* Key point:
— Different convolutions extract different types of low-level “features” from an image
— All that we need to vary to generate these different features is the weights of F

Example: 1 input channel, 1 output channel

Input Kernel Output

——

Y11 = 11T11 + ¥12X12 + 91 T21 + Qa2 + Qg

Y12 = 1112 + 12213 + Qa1 T29 + (k2223 + QO

Y21 = (X11T21 + X12X22 + p1T31 + (2232 + Qg

Y22 = (V11X22 + (\12X23 + Qa1 T32 + (o233 + O

Slide adapted from William Cohen

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

3
o|lo|o >
O | 1 1 p)
0] 1 0] 3

28

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

3

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

3| 2

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

2 | 2

3

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

2D Convolution

* Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

* Slide this over an image and compute the “inner product” (similarity) of F and the corresponding field of the
image, and replace the pixel in the center of the field with the output of the inner product operation

Input Image

Convolved Image

Convolution

Padding

Suppose you want to preserve the size of the original input image in
your convolved image.

You can accomplish this by padding your input image with zeros.

Input Image

Convolved Image

|dentity

Convolution 1 1 1 1 1
0] 0] 0] 1

0] 1 0] 1

o|lo|o 1

40

Padding

Suppose you want to preserve the size of the original input image in
your convolved image.

You can accomplish this by padding your input image with zeros.

Input Image

Convolved Image

|dentity
Convolution

O| 0| O

O | 1 o)

Kernels for Image Processing

A convolution matrix (aka. kernel) is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Convolved Image

|dentity
Convolution

O| 0| O

O | 1 o)

O| 0| O

Kernels for Image Processing

A convolution matrix (aka. kernel) is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Blurring
Convolution

S I I B

A 1.2 1A

S I I B

Convolved Image

43

Kernels for Image Processing

A convolution matrix (aka. kernel) is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image
- v\O T Tolola Vggtéceal Convolved Image
5 0 Detector
0 10111171 0 119
. 1 1 0 110 1
. 1 1 0 110 1
: 1 0 AT
0 1 0 57\? JFM
0 o |
0 olo|lo|oJ]lo|o|oO 1

44

Kernels for Image Processing

A convolution matrix (aka. kernel) is used in image processing for
tasks such as edge detection, blurring, sharpening, etc.

Input Image

Horizontal Convolved Image
Edge

Detector

-1 -1 -1

O| 0| O

Original
Image

Convolution Examples

55

Smoothing
Convolution

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

1/9

Convolution Examples

—

56

Gaussian
Blur

Convolution Examples

.01

(04106

-04

.01

.O}l/

191.25

o

04

55 .37

.25

06

.04

1 9\25

19

.04

.01

.04 .5@

.04

.01

/

57

Sharpening
Kernel

Convolution Examples

58

Convolution Examples

Edge
Detector

11 -1 -1

1| 8 | 1

11 -1 -1

2D Convolution

* Basicidea:
— Pick a 2x2 matrix F of weights (called a kernel or convolution matrix)

— Slide this over an image and compute the “inner product” (similarity) of F and the
corresponding field of the image, and replace the pixel in the center of the field with the
output of the inner product operation

* Key point:
— Different convolutions extract different types of low-level “features” from an image
— All that we need to vary to generate these different features is the weights of F

Example: 1 input channel, 1 output channel

Input Kernel Output

Y11 = 11T11 + ¥12X12 + 91 T21 + Qa2 + Qg
11 | 12 | 13 11 | 12 Y11 | Y12

Y12 = 1112 + 12213 + Qa1 T29 + (k2223 + QO
21 | 22 | 23 Q21 | (22 Y21 | Y22 Y21 = (X11T21 + X12X22 + p1T31 + (2232 + Qg

Y22 = (V11X22 + (\12X23 + Qa1 T32 + (o233 + O
X31 | 32 | £33

Slide adapted from William Cohen

DOWNSAMPLING

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

62

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

63

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

64

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

65

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

66

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolved Image

1
Convolution

67

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

68

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

69

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

70

Downsampling

* Suppose we use a convolution with stride 2
* Only 9 patches visited in input, so only 9 pixels in output

Input Image

Convolution

Convolved Image

71

Downsampling by Averaging

* Downsampling by averaging is a special case of convolution
where the weights are fixed to a uniform distribution

* The example below uses a stride of 2

Input Image

Convolution

Convolved Image

72

Max-Pooling

Max-pooling with a stride > 1is another form of downsampling

Instead of averaging, we take the max value within the same range as
the equivalently-sized convolution

The example below uses a stride of 2

Input Image

Max-Pooled
Image

7
1

Max-
pooling

Yij = max(zij,

Li 41,
Lit1,55

33z‘+1,j+1)

73

CONVOLUTIONAL NEURAL NETS

A Recipe for

Background : :
5 Machine Learning

1. Given training data: 3. Define goal:

(s, y N X

iy Yifi=1 0" = arg mein;é(fe(wi)ayi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (337,) (take small steps

opposite the gradient)
— Loss function

((9.y;) €ER 00D = 00 — VU fo(w:), ;)

B

- neVE(fo(xi), y;)

77

Convolutional Layer

Input Image

Treat

parameters and learn them!

CNN key idea:
convolution matrix as

@ Convolved Image

Learned
Convolution

e11

e12 e13

e21

ezz e23

0,

632 633

78

Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 4 eerwt s 7

/

C3: f. maps 16@10x10
¢feature maps S4: f. maps 16@5x5 ‘/

6@28x28 S2: f. maps c5
120

ayer J é
6@14x14 > Y I=84Iayer quPUT

INPUT
32x32

I
| Full conflection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

79

TRAINING CNNS

A Recipe for

Background : :
5 Machine Learning

1. Given training data: 3. Define goal:

(s, y N X

iy Yifi=1 0" = arg mein;é(fe(wi)ayi)
2. Choose each of these:
— Decision function 4. Train with SGD:
U = fo (337,) (take small steps

opposite the gradient)
— Loss function

((9.y;) €ER 00D = 00 — VU fo(w:), ;)

Be

82

SGD for CNNs

Example: Simple CNN Architecture

Given x, y* and parameters 0 = |, 3, W]

-
J= E(Z’ i) Algorithm 1 Stochastic Gradient Descent (SGD)

oy = softmax(z(®) 1. Initialize @ <——

5 (5) — linear(z(4) W) 2: while not converged do

" - ’ 3: Samplei € {1,..., N}«

1z =relu(z"”) 4: Forward: y = heg (x(1)), |

) z3) = conv(z'?, B) 5 f(H) = {(y, Y(Z)_
(2) 1) 6: Backward: Compute V()

1 21 = max-pool(z")) 72 Update: 0 < 0 — nVeJ(0)

ﬁz(l) = conv(x, o)

LAYERS OF A CNN

RelLU Layer
fReLU L‘*F/ I«‘,A:‘)'Zeﬁik' Otput - 76(‘(

: e,we*"l"“‘)“ c]Lb"“SL
=ao@) A B”/.4:5’/ i3 Ao

85

Softmax Layer

Input: x € RE, Output: y € R%

Forward: for each i, Backward: for each j,
- exp(xy) 8J <~ 3J Oy
yz_ZK exp(z) %:Z({?-é’aj-
k=1 k J i=1 yZL\Jl
where

Output

i _ yi(l—y;) ifi=j
—YilYj otherwise

Hidden Layer

87

Fully-Connected Layer

- C_,‘.W,* \mgo‘*‘ T3 R?DTE“”":X = N

T
q

CT

- S-(fd-cl'l ou'\' w‘o 9 ﬁ S}ﬁWI& .-
e bt i S |

\/, il X""O(where Né[f\)AXB
~ = kl=A -

XA

/" (CxHxW)]

2D Convolution

Example: 1 input channel, 2 output channels

Input Kernel Output
=
(1) _ (1) (1) (1)
T11 | T12 | 13 04511) Oé§12) yﬁ) yg) Y11’ = 0 T11 T Qg T12 + Qg
ol ol |0, vy = a1y ez + gy eis + agy
T €T €T
2122 | 23 Qigq | Qg Y21 | Y22 y$Y = oV zar + allzon + alV)
I31 | 32 | £33 yé? = 0491)51322 + 04512)3323 + Ozglf
2 2 2
(2)]| .(2) (2)],.(2) yﬁ) = &§1)$11 + 0452)1’12 + 0458
11 |2 Y11 | Y12 @)) 2) 2)
2| @ @ | @ Y190 = Q11 T12 + Q15 T13 + Qo
Qg1 [Kag Ya1 | Y22 yg) _ aﬁ)xm 4 &§22)$22 4 a;21>
. () yé? = (1§21)$22 + 04522)51023 + (1;21)
DL('DI \,/

1
T21 + Qg5 T2 + Oy

1
T22 + Oy T23 + Q|

1
T31 + Oyy T32 + QY

1
T32 + Q55 T33 + O

2
T21 + Q59 Too +

2
T2 + Q59 Ta3 +

2
T31 + Qg9 T32 + O

2
T32 1 Qg9 T33 + O

(1)
(1)
(1)
(1)

(2)
(2)
(2)
(2)

89

Convolution of a Color Image

* Colorimages consist of 3 floats per pixel for
RGB (red, green blue) color values

* Convolution must also be 3-dimensional

activation map

__— 32x32x3 image

5x5x3 filter /
2
@>@ *

convolve (slide) over all

spatial locations
32 28

3 1
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

90

Animation of 3D Convolution

% \‘”Y WO
\< C (
Q\\ Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
7/ X[:,:,0] wO[:,:,0] w :,0] o[:,:,0]
0 0 [0]0 0 411 1 5 43C
0 240 0 1l |1 1 [[-1 Q—\ 3 -10 -7
0o o 211 1 0 -1 1L |1 _1, 1 -3 2
0 1]2 |0 ||O0 |0 w0 t,:,1] o[:,:,1]
o 2 [0t 1 ;&‘ \D =]
oo 1 - 1[0 -1 5‘3-6
T T T T 1 T 0 1 [-1]o 3 4
_ L x[:,:,1] wl[:77%,2] wllz: 21 ‘l‘
X(\ e Z o~ 11 [0 -1
6 o 0 1 1&3'—/2 2 | A O
o 2([2 12 1211 ~ 0 jo 1 4
7 0112 10 |2 Bjasb0 (1x1x Bias b1 (1x1x1) Cl
0 20 211 O[:,:, [:,:,0]
0 0 1 00 0 1 0
0 0 0 0 /Y
1%;:_::2] = |\ toggle movement |
0 0/0X0 [2 0
0o 2]} 1[It
0 20 |2 0 &
0 0 1 0 \(\ N
N 5 23 O3 O3 23 B \S\ “ &(Q\/\"‘J\
X O
00 0 0 0 ﬁ7\%

91
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

Convolutional Layer
lice

Cow#! Otk -
= N s %
éL { e — ;—K — Hﬁrt" = LQ—I + zF-K>/s + L{
VN s e e W Wy k) e
= [o ‘OLU' = =H xe’s ‘CF J(! o 1 u"'
Covt C P i TE J Lt

< b cf Kk k

=3 Gy_) @ O e m= sV
7&) D(O i ZZZ—' er M n = 3(3-\ *C

¥7
\D"“S

o ii“" ZZ %lm n
S EEaenutar o
dy . . v A& ® i
g T E gu e okl

93

Example: 1 input channel, 1 output channel, stride of 1

Input

—

Max-Pooling Layer

Pool Size

L11

L12

L13

e

L21

L292

L23

X31

X32

L33

Output
Y11 | Y12
Y21 | Y22

Y11 =
Y12
Y21

Y22 =

=

max\ri1, 12, 21,22

=

(

aX($12,$137$22,$23

aX($21,$22,$31,$32
(

max\x22, 23,32, L33

)
)
)
)

Max-Pooling Layer

L Max '?00 (‘"7 qu_r

Taoot : . Og-\-go“‘ : @
0 | Yh)
Ay e o c®=cT
Ho = ..
T o °o _ .. Sl G9S ConV. Layer
S T . o g
?—:rw«.ri . S‘M YTU
— &Ckuﬁfl <
() (k) ;
. = Max =S L“)'\' AS- =
79 7 qetp fwn whee ?,=s(<3-\>§'~ bl

CAVER

o &+ Max) ©s ot JI%‘)TZW, bml'
@‘ Sob &fere~huble .
+ Tlure a4 set oF desivives and

we e job Cloow om br SGD.

7’—'" V“\“X(a)lo)

=4y Jd3 d dy €1 Kash
é«'d)'_c_é- whure EZ—ZO othenvize

96

Convolutional Neural Network (CNN)

Typical layers include:
— Convolutional layer
— Max-pooling layer
— Fully-connected (Linear) layer
— ReLU layer (or some other nonlinear activation function)
— Softmax

These can be arranged into arbitrarily deep topologies

Architecture #1: LeNet-5

PROC. OF THE IEEE, NOVEMBER 1998 7

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5
6@28x28
32x32 S2: f. maps
6@14x14

I
| Full conflection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units
whose weights are constrained to be identical.

97

Architecture #2: AlexNet

E e

CNNs for Image Recognition

‘Research

Revolution of Depth 2.2
' 152 layers '

\I\.
\
[22 layers l I 19 Iayers
\ 6.7 I

35? I_“___I I 8 layers ‘| Ela'-,rers

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

=ICCVID

Forrennne, Condrrur m o mrmgey oo

Kaiming He, Xiangyu Zhang, Shaoging Ren, & lian Sun. "Deep Residual Learning for Image Recognition”. arkiv 2015.

Slide from Kaiming He

99

Convolutional Neural Network (CNN)

Typical Architectures

B

Softmax

t
Fully connected layer

t
Fully connected layer

t
Fully connected layer

Fully connected layer

'
Fully connected layer

a. AlexNet

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

Fully connected laver

}

Fully connected laver

Fully connected laver

s i

c. Faster R-CNN

100

Convolutional Neural Network (CNN)

Typical Architectures

B

Clmlu:

e. FCN

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

—

Conv 1x1 + softmax

. T

f. U-Net

101

Convolutional Neural Network (CNN)

Typical Architectures

Microsoft

Research

AlexNet, 8 layers % VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)
ZICCV

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.

International Conference on Computer Vision

102

a In-Class Poll

Question: Answer:

Why do many layers
used in computer
vision not have
location specific
parameters?

Convolutional Layer

Input Image

For a convolutional layer, how do we pick the kernel size
(aka. the size of the convolution)?

2X2 3x3 4X4
Convolution Convolution Convolution
0. |6, 0,0, |0; 0, (0,00,
0,,|6,, 0,,|06,, 6,5 0,,|6,,(6,5(6,,
0|05, |6;; 05:]95,|0556;,
041/942|045|044

* Asmall kernel can only see a very small part of the image,
but is fast to compute

* Alarge kernel can see more of the image, but at the
expense of speed

104

CNN VISUALIZATIONS

Visualization of CNN

our number here it Layer visibility

https://adamharley.com/nn_vis/cnn/2d.html

MNIST Digit Recognition with CNNs
(in your browser

Network Visualization

input (24x24x1) Activations:

max activation: 1, min: 0
max gradient: 0.00015, min: -0.00014

Activation Gradients:

o

L]

conv (24x24x8) Activations:
filter size 5x5x1, stride 1 - -
s e IHEREEE
max gradient: 0.00005, min: -0.00006
parameters: 8x5x5x1+8 = 208 Activation Gradients:
Weights:
(B (E) (2) (=) (ke) (=) () (=)
Weight Gradients:
(o) (i) (M) (=) () () (=)()
softmax (1x1x10) Activations:
max activation: 0.99768, min: 0 H EEEEEEEE

max gradient: 0, min: 0

Example predictions on Test set

Bl B B RB=E
M~ B 0 B
B fi F 4 107

Figure from Andrej Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

CNN Summary

CNNs

— Are used for all aspects of computer vision, and have won
numerous pattern recognition competitions

— Able learn interpretable features at different levels of abstraction

— Typically, consist of convolution layers, pooling layers,
nonlinearities, and fully connected layers

Deep Learning Objectives

You should be able to...

Implement the common layers found in Convolutional Neural
Networks (CNNs) such as linear layers, convolution layers, max-
pooling layers, and rectified linear units (ReLU)

Explain how the shared parameters of a convolutional layer
could learn to detect spatial patterns in an image

Describe the backpropagation algorithm for a CNN

|dentify the parameter sharing used in a basic recurrent neural
network, e.g. an Elman network

Apply a recurrent neural network to model sequence data
Differentiate between an RNN and an RNN-LM

