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Reminders

• Homework 6: Learning Theory & Generative Models
– Out: Mon, Mar 18
– Due: Sun, Mar 24 at 11:59pm

• Exam 2: Thu, Mar 28, 7:00 pm - 9:00 pm
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Q&A
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Q: Should we be extremely polite and not interrupt you if your slides are 
not visible?

A: Please interrupt me.

Q: Would it be most gracious of us to refrain 
from any interruptions, even in the event that 
your visual aids might inadvertently become 
obscured from our view?

A: I must implore you, with the greatest respect 
and courtesy, to not exercise such restraint to 
the point of excessive politeness.

Q: Oh, should we just sit in awed silence, basking 
in the glory of your invisible slides, then?

A: Oh, absolutely, because maintaining utter 
silence while learning nothing is precisely the 
peak of educational experiences. Please, 
proceed with that.



CNN ARCHITECTURES
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Convolutional Neural Network (CNN)
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Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 
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Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/ 



Convolutional Neural Network (CNN)
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Typical Architectures
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Convolutional Layer
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For a convolutional layer, how do we pick the kernel size 
(aka. the size of the convolution)?

• A small kernel can only see a very small part of the image, 
but is fast to compute

• A large kernel can see more of the image, but at the 
expense of speed



CNN VISUALIZATIONS
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Visualization of CNN
https://adamharley.com/nn_vis/cnn/2d.html 

https://adamharley.com/nn_vis/cnn/2d.html


MNIST Digit Recognition with CNNs 
(in your browser)
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html 

Figure from Andrej Karpathy

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html


CNN Summary

CNNs
– Are used for all aspects of computer vision, and have won 

numerous pattern recognition competitions
– Able learn interpretable features at different levels of abstraction
– Typically, consist of convolution layers, pooling layers, 

nonlinearities, and fully connected layers
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WORD EMBEDDINGS
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Word Embeddings
Key Idea: 
• represent each word in your 

vocabulary as a vector
• store as a V x D matrix where: 

V = number of words in vocab.
D = vector’s dimension

Modeling:
• define a model in which the 

vectors are parameters
• each copy of the word uses 

the same parameter vector
• train model so that similar 

words have high cosine 
similarity

17

W11 W12

W21 W22

W31 W32

W41 W42

W51 W52

W61 W62

W71 W72

W81 W82

anger

bat

cat

dog

joy

sadness

surprise

zebra

W

W.,1

W.,2 bat

dog

cat
zebra

surprise

sadness

joy

anger



Word Embeddings
Key Idea: 
• represent each word in your 

vocabulary as a vector
• store as a V x D matrix where: 

V = number of words in vocab.
D = vector’s dimension
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vectors are parameters
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the same parameter vector
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words have high cosine 
similarity
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in a real use case, the typical 
embedding dimension is in the 

hundreds, e.g. D = 300

we can’t visualize 300 dimensional 
vectors, but we can inspect their 

pairwise cosine similarities



Word Embeddings
In all the models we’re about to 
consider (neural networks, RNNs, 
Transformers) that work with 
sentences…

…the first step is always to look 
up the t’th word’s embedding 
vector parameters and use said 
vector for the value of xt
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Word Embeddings
In all the models we’re about to 
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SEQUENCE TAGGING
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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Dataset for Supervised 
Handwriting Recognition

24

D = {x(n),y(n)}Nn=1Data:

values. The obtained results are depicted in Table 4; we
provide means, standard deviations, and the p-metric value
of the Student’s-t test run on the pairs of performances of
the models (CRF, CRF1), (moderate order CRF, CRF1),
and (HMM, CRF1).

As we observe, the proposed approach offers a sig-
nificant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore, we
once again notice the practical significance of coming up

with computationally efficient ways of relaxing the Marko-
vian assumption in linear-chain CRF models applied to
sequential data modeling. Note also that, in this experi-
ment, the moderate order CRF models of [41] seem to yield
a rather competitive result. This was expectable since the
average modeled sequence in this experiment is less than
10 time points long. Finally, regarding the HMM method,
with the number of mixture components M selected so as to
optimize model performance, we observe that the CRF1

model yields a clear improvement, irrespective of the
employed likelihood optimization approach.

4.3 Part-of-Speech Tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74,029 sentences with a
total of 1,637,267 words. It is comprised of 49,115 unique
words, and each word in the corpus is labeled according to
its part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features:

1. First-order word-presence features.
2. Four-character prefix presence features.
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Videos: Error Rates Obtained by the Evaluated Methods

Fig. 4. Skateboard: push and turn: A few example frames from a sequence considered in our experiments.

Fig. 5. Handwriting recognition: Example words from the dataset used.
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Dataset for Supervised 
Phoneme (Speech) Recognition
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D = {x(n),y(n)}Nn=1Data:

Figures from (Jansen & Niyogi, 2013)
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Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).
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Fig. 5. Extrinsic (top) and intrinsic (bottom) spectral representations for the utterance “This was easy for us.” Note that a nonlinear mel-scale frequency warping

was used.

where are the input unlabeled data and is the

new parametrization of the function we need to estimate. To

proceed, we plug the functional form of (9) into the optimization

problem of (8). Taking the gradient with respect to the parameter

vector and setting it to zero sets up the following generalized

eigenvalue problem:

(10)

Here, is the Grammatrix defined on the input unlabeled
data by . This eigenvalue decomposition will

produce a full spectrum of eigenvectors, each defining its own
intrinsic projection map defined by the th eigenvector .

Unlike the unsupervised learning algorithm of [5], we are now

interested in several of the , not just one for binary clas-

sification or clustering. Recall that the intrinsic basis functions
produced by the Laplacian eigenmaps algorithm were defined
only on the points used to construct the graph Laplacian. Our

new set of projection maps is now defined out-of-sample, i.e.,
may be computed for arbitrary points on the manifold and

may also be used more generally for any point in .

B. Intrinsic Spectrogram Algorithm

Given the nomenclature define above, the algorithm for com-
puting the intrinsic spectrogram is comprised of three steps:

1) Given a set of unlabeled data sampled from

the manifold, construct a nearest neighbor graph and

compute the graph Laplacian (either normalized or un-

normalized).

2) Given a kernel , solve the generalized eigenvalue

problem of (10) for the weights .

3) Project amplitude spectrum at each time point of the ex-

trinsic spectrogram onto the first intrinsic basis functions

(sorted by increasing eigenvalue) according to (9).

Note that steps 1 and 2 are computed offline using the standard
training set . Thus, converting the extrinsic spectrogram of a

novel utterance into this intrinsic representation requires only

the computation of Equation (9) across the utterance.

Fig. 5 shows an example extrinsic and intrinsic

spectrograms for the TIMIT utterance “This was easy

for us” (TIMIT sentence sx3). Here, we constructed the dataset

with 200 examples of each of the 48 phonetic categories spec-

ified in [26].2 Each example was extrinsically represented by
a 40-dimensional, homomorphically smoothed, auditory (log)

spectrum (40 mel scale bands, from 0–8 kHz) computed from

a 25 ms signal window centered in each phonetic segment. The

adjacency graph was constructed using nearest Euclidean

neighbors and binary-valued edge weights. For the optimiza-

tion problem of (8), we take as the intrinsic smoothness param-

eter . Finally, to accommodate nonlinear intrinsic projec-

tions maps, we employ the radial basis function (RBF) kernel,

, where is taken to be 1/3 of the mean

Euclidean distance between the graph vertices. Note that op-

timal settings of , and depend on the intended application

and manifold sampling density; we investigate the role this pa-

rameter in the experiments described below. Given the low-di-

mensional curved manifold structure motivated in previous sec-

tions, one might expect phonetic content to be more transpar-

ently differentiated in the intrinsic basis than in a traditional

spectrogram. It is clear from Fig. 5 that the intrinsic represen-

tation redistributes much of the spectral variation to the lower

eigenvalued components. It is also clear that these initial com-

ponents do not each covary with the presence of a single speech

sound. In the next section, we examine whether this alternative

organization may have a natural linguistic interpretation.

V. INTRINSIC SPECTRAL ANALYSIS INTERPRETATION

The intrinsic representation is a projection of spectral infor-

mation onto a set of basis functions ordered by their smooth-

2Note that while we use a class balanced sample here, balancing was not

required to obtain good performance in the experiments in Section VII in which

we randomly selected examples from the entire corpus (ignoring class).
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Time Series Data
Question 1: How could we apply the neural networks we’ve 
seen so far (which expect fixed size input/output) to a 
prediction task with variable length input/output?

26
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Time Series Data
Question 1: How could we apply the neural networks we’ve 
seen so far (which expect fixed size input/output) to a 
prediction task with variable length input/output?

27

n v p d n

time likeflies an arrow

y

x

x1

h1

y1

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5



Time Series Data
Question 2: How could we incorporate context (e.g. 
words to the left/right, or tags to the left/right) into our 
solution?

28

x1 x3x2 x4 x5

y

x

Multiple 
Choice:
Working left-
to-right, use 
features of…

y1 y3y2 y4 y5

xi-1 xi xi+1 yi-1 yi yi+1
A ✓
B ✓
C ✓ ✓
D ✓ ✓ ✓ ✓
E ✓ ✓ ✓ ✓ ✓
F ✓ ✓ ✓ ✓
G ✓ ✓ ✓ ✓ ✓
H ✓ ✓ ✓ ✓ ✓ ✓



RECURRENT NEURAL NETWORKS

29



Recurrent Neural Networks (RNNs)

30

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H
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• If T=1, then we have a standard feed-
forward neural net with one hidden layer, 
which requires fixed size inputs/outputs

• By contrast, an RNN can handle arbitrary 
length inputs/outputs because T can vary 
from example to example

• The key idea is that we reuse the same 
parameters at every timestep, always 
building off of the previous hidden state
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)
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1. Given training data: 3. Define goal:
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Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

• We’ll just need a method of 
computing the gradient efficiently

• Let’s use Backpropagation Through 
Time...

• Recurrent Neural Networks (RNNs) provide 
another form of decision function

• An RNN is just another differential function
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H
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• By unrolling the RNN through 
time, we can share parameters 
and accommodate arbitrary 
length input/output pairs

• Applications: time-series data 
such as sentences, speech, 
stock-market, signal data, etc.
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H
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Background: Backprop through time
Recurrent neural 
network:

BPTT: 
1. Unroll the 
computation 
over time

37

(Robinson & Fallside, 1987)

(Werbos, 1988)

(Mozer, 1995)
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2. Run 
backprop 
through the 
resulting feed-
forward 
network
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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h ,

the backward hidden sequence
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h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:
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Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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where we define h0 = x. The network outputs yt are
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences
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h n and
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h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :
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where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
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ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
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are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences
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h n and
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h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each yt defines a probability distribution over the
K possible states: that is, ykt (the kth element of yt) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �

TX

t=1

log yztt (13)

Which leads to the following error derivatives at the output
layer

�
@ log Pr(z|x)

@ŷkt
= ykt � �k,zt (14)

where ŷt is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input
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rent neural network (RNN) computes the hidden vector se-
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(y1, . . . , yT ) by iterating the following equations from t = 1
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where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :
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where we define h0 = x. The network outputs yt are
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
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h n and
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h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
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Figure from (Graves et al., 2013)
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inputs: x = (x1, x2, . . . , xT ), xi � RI

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H

Figure from (Graves et al., 2013)
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Long Short-Term Memory (LSTM)
Motivation:
• Standard RNNs have trouble learning long 

distance dependencies
• LSTMs combat this issue
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Long Short-Term Memory (LSTM)
Motivation:
• Vanishing gradient problem for Standard RNNs
• Figure shows sensitivity (darker = more sensitive) to the input at 

time t=1
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Figure from (Graves, 2012)



Long Short-Term Memory (LSTM)
Motivation:
• LSTM units have a rich internal structure
• The various “gates” determine the propagation of information 

and can choose to “remember” or “forget” information

48
Figure from (Graves, 2012)
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Figure 4.4: Preservation of gradient information by LSTM. As in Fig-
ure 4.1 the shading of the nodes indicates their sensitivity to the inputs at time
one; in this case the black nodes are maximally sensitive and the white nodes
are entirely insensitive. The state of the input, forget, and output gates are
displayed below, to the left and above the hidden layer respectively. For sim-
plicity, all gates are either entirely open (‘O’) or closed (‘—’). The memory cell
‘remembers’ the first input as long as the forget gate is open and the input gate
is closed. The sensitivity of the output layer can be switched on and o↵ by the
output gate without a↵ecting the cell.

4.2 Influence of Preprocessing

The above discussion raises an important point about the influence of prepro-
cessing. If we can find a way to transform a task containing long range con-
textual dependencies into one containing only short-range dependencies before
presenting it to a sequence learning algorithm, then architectures such as LSTM
become somewhat redundant. For example, a raw speech signal typically has a
sampling rate of over 40 kHz. Clearly, a great many timesteps would have to
be spanned by a sequence learning algorithm attempting to label or model an
utterance presented in this form. However when the signal is first transformed
into a 100 Hz series of mel-frequency cepstral coe�cients, it becomes feasible to
model the data using an algorithm whose contextual range is relatively short,
such as a hidden Markov model.

Nonetheless, if such a transform is di�cult or unknown, or if we simply
wish to get a good result without having to design task-specific preprocessing
methods, algorithms capable of handling long time dependencies are essential.

4.3 Gradient Calculation

Like the networks discussed in the last chapter, LSTM is a di↵erentiable function
approximator that is typically trained with gradient descent. Recently, non
gradient-based training methods of LSTM have also been considered (Wierstra
et al., 2005; Schmidhuber et al., 2007), but they are outside the scope of this
book.
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2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
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where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:
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where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
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A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
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Figure from (Graves et al., 2013)
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
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Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are
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Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences
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h n and
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h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.
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Fig. 3. Deep Recurrent Neural Network

Fig. 4. Deep Bidirectional Long Short-Term Memory Net-
work (DBLSTM)

3. NETWORK TRAINING

Network training follows the standard approach used in hy-
brid systems [4]. Frame-level state targets are provided on the
training set by a forced alignment given by a GMM-HMM
system. The network is then trained to minimise the cross-
entropy error of the targets using a softmax output layer with
as many units as the total number of possible HMM states. At
decoding time, the state probabilities yielded by the network
are combined with a dictionary and language model to deter-
mine the most probable transcription. For a length T acoustic
sequence x the network produces a length T output sequence
y, where each yt defines a probability distribution over the
K possible states: that is, ykt (the kth element of yt) is the
network’s estimate for the probability of observing state k at
time t given x. Given a length T state target sequence z the

network is trained to minimise the negative log-probability of
the target sequence given the input sequence:

� log Pr(z|x) = �

TX

t=1

log yztt (13)

Which leads to the following error derivatives at the output
layer

�
@ log Pr(z|x)

@ŷkt
= ykt � �k,zt (14)

where ŷt is the vector of output activations before they have
been normalised with the softmax function. These derivatives
are then fed back through the network using backpropagation
through time to determine the weight gradient.

When training deep networks in hybrid systems with
stochastic gradient descent it has been found advantageous to
select minibatches of frames randomly from the whole train-
ing set, rather than using whole utterances as batches. This
is impossible with RNN-HMM hybrids because the weight
gradients are a function of the entire utterance.

Another difference is that hybrid deep networks are
trained with an acoustic context window of frames to ei-
ther side of the one being classified. This is not necessary for
DBLSTM, since it is as able to store past and future context
internally, and the data was therefore presented a single frame
at a time.

For some of the experiments Gaussian noise was added
to the network weights during training [15]. The noise
was added once per training sequence, rather than at every
timestep. Weight noise tends to ‘simplify’ neural networks,
in the sense of reducing the amount of information required
to transmit the parameters [16, 17], which improves generali-
sation.

4. TIMIT EXPERIMENTS

The first set of experiments were carried out on the TIMIT [18]
speech corpus. Their purpose was to see how hybrid training
for deep bidirectional LSTM compared with the end-to-end
training methods described in [1]. To this end, we ensured
that the data preparation, network architecture and training
parameters were consistent with those in the previous work.
To allow us to test for significance, we also carried out re-
peated runs of the previous experiments (which were only
run once in the original paper). In addition, we ran hybrid ex-
periments using a deep bidirectional RNN with tanh hidden
units instead of LSTM.

The standard 462 speaker set with all SA records removed
was used for training, and a separate development set of 50
speakers was used for early stopping. Results are reported
for the 24-speaker core test set. The audio data was prepro-
cessed using a Fourier-transform-based filterbank with 40 co-
efficients (plus energy) distributed on a mel-scale, together
with their first and second temporal derivatives. Each input

Figure from (Graves et al., 2013)

• Figure: input/output 
layers not shown

• Same general 
topology as a Deep 
Bidirectional RNN, 
but with LSTM units 
in the hidden layers

• No additional 
representational 
power over DBRNN, 
but easier to learn in 
practice
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How important is this 
particular architecture?

Jozefowicz et al. (2015) 
evaluated 10,000 
different LSTM-like 
architectures and 
found several variants 
that worked just as 
well on several tasks.



Why not just use LSTMs for everything?

Everyone did, for a time. 

But…
1. They still have difficulty with long-range dependencies
2. Their computation is inherently serial, so can’t be easily 

parallelized on a GPU
3. Even though they (mostly) solve the vanishing gradient problem, 

they can still suffer from exploding gradients
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RNN / LSTM RESULTS
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Dataset for Supervised 
Named Entity Recognition (NER)

• Goal: label the spans 
of persons, locations, 
organizations, times, 
etc. (aka. entities)

• Data Representation: 
to cast as a sequence 
tagging problem, we 
use Begin-Inside-
Outside (BIO) tagging

• BIO tags distinguish 
between adjacent 
entities of the same 
type
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D = {x(n),y(n)}Nn=1Data:

Sample 2:

Sample 1:

Sample 4:

Sample 3:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)

B-PER I-PER O B-LOC I-LOC

Tenzing Norgay climbed Mount Everest

B-PER O B-LOC I-LOC

Obama visits Paris France

B-PER I-PER B-ORG I-ORG O O

Steve Jobs’ Apple Inc. changed tech

B-LOC B-LOC O O

Spain Italy win medals



LSTM Empirical Results
• CoNLL-2003 is the most 

prominent dataset for NER
• F1 – higher is better
• blue dots are methods that use 

an LSTM
• an LSTM is the primary model 

behind the state-of-the-art 
(ACE + document-context)

58
Figure from https://paperswithcode.com/sota/named-entity-recognition-ner-on-conll-2003 



BACKGROUND: HUMAN LANGUAGE 
TECHNOLOGIES
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Human Language Technologies
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Speech Recognition

Machine Translation

Summarization

기계번역은특히영어와한국어와같은언어쌍의경우매우어렵습니다.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.



Bidirectional RNN

RNNs are a now commonplace backbone in 
deep learning approaches to natural language 
processing

62

x1

h1

y1

h1

x2

h2

y2

h2

x3

h3

y3

h3

x4

h4

y4

h4

word embeddings

left-to-right hidden 
states

right-to-left hidden 
states

probabilistic output



BACKGROUND:
N-GRAM LANGUAGE MODELS

63



n-Gram Language Model
• Goal: Generate realistic looking sentences in a human 

language
• Key Idea: condition on the last n-1 words to sample 

the nth word
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n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2)
      p(w4 | w3)
      p(w5 | w4)
      p(w6 | w5)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightat

noise at

made noise

bat made

The bat

The

n-Gram Model (n=2)



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?

68

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?

69

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)

Note: This is called a model because we 
made some assumptions about how many 

previous words to condition on 
(i.e. only n-1 words)



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?

70

p(wt | wt-2 = made, 
    wt-1 = noise)

wt p(· | ·, ·)

at 0.020

…

pollution 0.030

…

zebra 0.000

p(wt | wt-2 = The, 
    wt-1 = bat)

wt p(· | ·, ·)

ate 0.015

…

flies 0.046

…

zebra 0.000

p(wt | wt-2 = cows, 
    wt-1 = eat)

wt p(· | ·, ·)

corn 0.420

…

grass 0.510

…

zebra 0.000



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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Approacheth, denay. dungy 
Thither! Julius think: grant,--O 
Yead linens, sheep's Ancient, 
Agreed: Petrarch plaguy Resolved 
pear! observingly honourest 
adulteries wherever scabbard 
guess; affirmation--his monsieur; 
died. jealousy, chequins me. 
Daphne building. weakness: sun-
rise, cannot stays carry't, 
unpurposed. prophet-like drink; 
back-return 'gainst surmise 
Bridget ships? wane; interim? 
She's striving wet;

5-Gram Model
I tell you, friends, most charitable care
ave the patricians of you. For your 
wants,  Your suffering in this dearth, 
you may as well Strike at the heaven 
with your staves as lift them Against 
the Roman state, whose course will on
The way it takes, cracking ten thousand 
curbs Of more strong link asunder than 
can ever Appear in your impediment. 
For the dearth,  The gods, not the 
patricians, make it, and Your knees to 
them, not arms, must help. 

Training Data (Shakespeaere)



RECURRENT NEURAL NETWORK (RNN) 
LANGUAGE MODELS
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Recurrent Neural Networks (RNNs)

75

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h
xt +W�!

h
�!
h

�!
h t�1 + b�!

h

⌘
(8)

 �
h t = H

⇣
W

x
 �
h
xt +W �

h
 �
h

 �
h t+1 + b �

h

⌘
(9)

yt = W�!
h y

�!
h t +W �

h y

 �
h t + by (10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5



The Chain Rule of Probability
Question: How can we define a probability distribution over a 
sequence of length T?

76

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2, w1)
      p(w5 | w4, w3, w2, w1)
      p(w6 | w5, w4, w3, w2, w1)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

Chain rule of probability:

Note: This is called the chain rule because 
it is always true for every probability 

distribution

Recall…



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector
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p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | fθ(w1))
      p(w3 | fθ(w2, w1))
      p(w4 | fθ(w3, w2, w1))
      p(w5 | fθ(w4, w3, w2, w1))
      p(w6 | fθ(w5, w4, w3, w2, w1))The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

RNN Language Model:



RNN Language Model
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The bat made nightnoise atSTART

p(w1|h1) 

h0

p(w2|h2) 

h1

p(w3|h3) 

h2

p(w4|h4) 

h3

p(w5|h5) 

h4

p(w6|h6) 

h5

p(w7|h7) 

h6

The bat made nightnoise at END

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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START

p(w1|h1) 

h0

The

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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TheSTART

h0

p(w2|h2) 

h1

bat

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The batSTART

h0 h1

p(w3|h3) 

h2

made

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The bat madeSTART

h0 h1 h2

p(w4|h4) 

h3

noise

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The bat made noiseSTART

h0 h1 h2 h3

p(w5|h5) 

h4

at

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The bat made noise atSTART

h0 h1 h2 h3 h4

p(w6|h6) 

h5

night

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

Answer:

Question: How can we create a distribution 
p(wt|ht) from ht?



RNN Language Model
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The bat made nightnoise atSTART

h0 h1 h2 h3 h4 h5

p(w7|h7) 

h6

END

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The bat made nightnoise atSTART

p(w1|h1) 

h0

p(w2|h2) 

h1

p(w3|h3) 

h2

p(w4|h4) 

h3

p(w5|h5) 

h4

p(w6|h6) 

h5

p(w7|h7) 

h6

The bat made nightnoise at END

p(w1, w2, w3, … , wT) = p(w1 | h1) p(w2 | h2) … p(w2 | hT)



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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The same approach to 
sampling we used for an n-
Gram Language Model also 

works here for an RNN 
Language Model



Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.

88
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real 
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

Shakespeare’s As You Like It
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

RNN-LM Sample
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.
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Sampling from an RNN-LM

RNN-LM Sample
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

Shakespeare’s As You Like It
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.
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Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.
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Which is the real 
Shakespeare?!
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SEQUENCE TO SEQUENCE MODELS

92



Sequence to Sequence Model
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Speech Recognition

Machine Translation

Summarization

기계번역은특히영어와한국어와같은언어쌍의경우매우어렵습니다.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.



Sequence to Sequence Model
Now suppose you want generate 
a sequence conditioned on 
another input
Key Idea: 

1. Use an encoder model to 
generate a vector 
representation of the input

2. Feed the output of the 
encoder to a decoder which 
will generate the output
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Let’s goSTART

d1 d2

p(w3|h3) 

d3

to

al cafe ahoraVamos

e1 e2 e3 e4

Encoder

Decoder

Applications: 
• translation: 

Spanish à English
• summarization: 

article à summary
• speech recognition: 

speech signal à transcription



Deep Learning Objectives
You should be able to…
• Implement the common layers found in Convolutional Neural 

Networks (CNNs) such as linear layers, convolution layers, max-
pooling layers, and rectified linear units (ReLU)

• Explain how the shared parameters of a convolutional layer 
could learn to detect spatial patterns in an image

• Describe the backpropagation algorithm for a CNN
• Identify the parameter sharing used in a basic recurrent neural 

network, e.g. an Elman network
• Apply a recurrent neural network to model sequence data
• Differentiate between an RNN and an RNN-LM
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