

10-301/10-601 Introduction to Machine Learning

Machine Learning Department School of Computer Science Carnegie Mellon University

Recurrent Neural Networks (RNNs)

Matt Gormley, Henry Chai, Hoda Heidari Lecture 18 Mar. 25, 2024

Reminders

- Homework 6: Learning Theory & Generative Models
 - Out: Mon, Mar 18
 - Due: Sun, Mar 24 at 11:59pm
- Exam 2: Thu, Mar 28, 7:00 pm 9:00 pm

- **Q:** Should we be extremely polite and not interrupt you if your slides are not visible?
- **A:** Please interrupt me.

CNN ARCHITECTURES

Convolutional Neural Network (CNN)

Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

Convolutional Neural Network (CNN)

Typical Architectures

Figure from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327346/

Convolutional Neural Network (CNN)

Typical Architectures

VGG, 19 layers (ILSVRC 2014) ResNet, 152 layers (ILSVRC 2015) Microsoft[®]

Research

Convolutional Layer

0

0

0

0

0

0

0

0

For a convolutional layer, how do we pick the kernel size (aka. the size of the convolution)?

A large kernel can see more of the image, but at the • expense of speed

CNN VISUALIZATIONS

Visualization of CNN

https://adamharley.com/nn_vis/cnn/2d.html

MNIST Digit Recognition with CNNs (in your browser)

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Network Visualization	
input (24x24x1) max activation: 1, min: 0 max gradient: 0.00015, min: -0.00014	Activations: Activation Gradients:
conv (24x24x8) filter size 5x5x1, stride 1 max activation: 4.78388, min: -3.44063 max gradient: 0.00005, min: -0.00006 parameters: 8x5x5x1+8 = 208	Activations: Activation Gradients: Weights: $(\neg)(\neg)(\neg)(\neg)(\neg)(\neg)(\neg)(\neg)(\neg)(\neg)(\neg)(\neg)(\neg)($
softmax (1x1x10) max activation: 0.99768, min: 0 max gradient: 0, min: 0	Activations:
Example predictions on Test set	
4	9 ⁷ ₈ 8

Figure from Andrej Karpathy

CNN Summary

CNNs

- Are used for all aspects of computer vision, and have won numerous pattern recognition competitions
- Able learn interpretable features at different levels of abstraction
- Typically, consist of convolution layers, pooling layers, nonlinearities, and fully connected layers

WORD EMBEDDINGS

Key Idea:

- represent each word in your ۲ vocabulary as a vector
- bat store as a V x D matrix where: • V = number of words in vocab. cat D = vector's dimensiondog

Modeling:

- define a model in which the • vectors are parameters
- each copy of the word uses ٠ the same parameter vector
- train model so that similar ٠ words have high cosine similarity

W

joy

Key Idea:

- represent each word in your ۲ vocabulary as a vector
- store as a V x D matrix where: • V = number of words in vocab. bat D = vector's dimensioncat

Modeling:

- define a model in which the ۲ vectors are parameters
- each copy of the word uses ٠ the same parameter vector
- train model so that similar ٠ words have high cosine similarity

W

...

joy

...

in a real use case, the typical embedding dimension is in the hundreds, e.g. D = 300

we can't visualize 300 dimensional vectors, but we can inspect their pairwise cosine similarities

In all the models we're about to consider (neural networks, RNNs, Transformers) that work with sentences...

... the first step is always to look up the t'th word's embedding vector parameters and use said vector for the value of **x**_t

In all the models we're about to consider (neural networks, RNNs, Transformers) that work with sentences...

... the first step is always to look up the t'th word's embedding vector parameters and use said vector for the value of \mathbf{x}_{t}

In all the models we're about to consider (neural networks, RNNs, Transformers) that work with sentences...

... the first step is always to look up the t'th word's embedding vector parameters and use said vector for the value of \mathbf{x}_{t}

SEQUENCE TAGGING

Dataset for Supervised Phoneme (Speech) Recognition

Data: $\mathcal{D} = \{ oldsymbol{x}^{(n)}, oldsymbol{y}^{(n)} \}_{n=1}^N$

Time Series Data

Question 1: How could we apply the neural networks we've seen so far (which expect **fixed size input/output**) to a prediction task with **variable length input/output**?

Time Series Data

Question 1: How could we apply the neural networks we've seen so far (which expect **fixed size input/output**) to a prediction task with **variable length input/output**?

Time Series Data

Question 1: How could we incorporate context (e.g. words to the left/right, or tags to the left/right) into our solution?

RECURRENT NEURAL NETWORKS

inputs:
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$$

hidden units: $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$
outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$
nonlinearity: \mathcal{H}

Definition of the BNN:

$$\begin{array}{l} \mathcal{L} \\ h_t = \mathcal{H} \left(W_{xh} x_t + W_{hh} h_{t-1} + b_h \right) \\ y_t = W_{hy} h_t + b_y \\ \mathcal{R} \\ \mathcal{K} \times \mathcal{T} \\ \mathcal{R} \\ \mathcal{K} \\ \mathcal{K}$$

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ hidden units: $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$ outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ nonlinearity: \mathcal{H}

$$h_t = \mathcal{H} \left(W_{xh} x_t + W_{hh} h_{t-1} + b_h \right)$$
$$y_t = W_{hy} h_t + b_y$$

 If T=1, then we have a standard feedforward neural net with one hidden layer, which requires fixed size inputs/outputs

Definition of the RNN:

- By contrast, an RNN can handle arbitrary length inputs/outputs because *T* can vary from example to example
- The key idea is that we reuse the same parameters at every timestep, always building off of the previous hidden state

Background

A Recipe for Machine Learning

1. Given training data: $\{m{x}_i,m{y}_i^{m{k}}\}_{i=1}^N$

3. Define goal:

$$\boldsymbol{\theta}^* = \arg\min_{\boldsymbol{\theta}} \sum_{i=1}^N \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

2. Choose each of these:

Decision function

 $\hat{\boldsymbol{y}} = f_{\boldsymbol{\theta}}(\boldsymbol{x}_i)$

Loss function

 $\ell(\hat{oldsymbol{y}},oldsymbol{y}_i)\in\mathbb{R}$

4. Train with SGD:(take small steps opposite the gradient)

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - \eta_t \nabla \ell(f_{\boldsymbol{\theta}}(\boldsymbol{x}_i), \boldsymbol{y}_i)$$

inputs:
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$$

hidden units: $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$
outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$
nonlinearity: \mathcal{H}

Definition of the RNN:

$$h_t = \mathcal{H} \left(W_{xh} x_t + W_{hh} h_{t-1} + b_h \right)$$

$$y_t = W_{hy} h_t + b_y$$

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ hidden units: $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$ outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ nonlinearity: \mathcal{H}

Definition of the RNN:

$$h_t = \mathcal{H} \left(W_{xh} x_t + W_{hh} h_{t-1} + b_h \right)$$

$$y_t = W_{hy} h_t + b_y$$

- By unrolling the RNN through time, we can share parameters and accommodate arbitrary length input/output pairs
- Applications: **time-series data** such as sentences, speech, stock-market, signal data, etc.

Background: Backprop through time

Bidirectional RNN

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ hidden units: $\overrightarrow{\mathbf{h}}$ and $\overleftarrow{\mathbf{h}}$ outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ nonlinearity: \mathcal{H} Recursive Definition: $\overrightarrow{h}_t = \mathcal{H}\left(W_{x\overrightarrow{h}}x_t + W_{\overrightarrow{h}}\overrightarrow{h}, \overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}\right)$ $\overleftarrow{h}_t = \mathcal{H}\left(W_{x\overleftarrow{h}}x_t + W_{\overleftarrow{h}}\overrightarrow{h}, \overleftarrow{h}_{t+1} + b_{\overleftarrow{h}}\right)$ $y_t = W_{\overrightarrow{h}y}\overrightarrow{h}_t + W_{\overleftarrow{h}y}\overleftarrow{h}_t + b_y$

Bidirectional RNN

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ hidden units: $\mathbf{\vec{h}}$ and $\mathbf{\vec{h}}$ outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ nonlinearity: \mathcal{H} Recursive Definition: $\mathbf{\vec{h}}_t = \mathcal{H}\left(W_{x \mathbf{\vec{h}}} x_t + W_{\mathbf{\vec{h}}} \mathbf{\vec{h}}_{t-1} + b_{\mathbf{\vec{h}}}\right)$ $\mathbf{\vec{h}}_t = \mathcal{H}\left(W_{x \mathbf{\vec{h}}} x_t + W_{\mathbf{\vec{h}}} \mathbf{\vec{h}}_{t+1} + b_{\mathbf{\vec{h}}}\right)$ $y_t = W_{\mathbf{\vec{h}}y} \mathbf{\vec{h}}_t + W_{\mathbf{\vec{h}}y} \mathbf{\vec{h}}_t + b_y$

Bidirectional RNN

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ hidden units: $\overrightarrow{\mathbf{h}}$ and $\overleftarrow{\mathbf{h}}$ outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ nonlinearity: \mathcal{H} Recursive Definition: $\overrightarrow{h}_t = \mathcal{H}\left(W_{x\overrightarrow{h}}x_t + W_{\overrightarrow{h}}\overrightarrow{h}, \overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}\right)$ $\overleftarrow{h}_t = \mathcal{H}\left(W_{x\overleftarrow{h}}x_t + W_{\overleftarrow{h}}\overrightarrow{h}, \overrightarrow{h}_{t+1} + b_{\overleftarrow{h}}\right)$ $y_t = W_{\overrightarrow{h}y}\overrightarrow{h}_t + W_{\overleftarrow{h}y}\overleftarrow{h}_t + b_y$

Deep RNNs

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ nonlinearity: \mathcal{H} Recursive Definition:

$$h_t^n = \mathcal{H}\left(W_{h^{n-1}h^n}h_t^{n-1} + W_{h^nh^n}h_{t-1}^n + b_h^n\right)$$
$$y_t = W_{h^Ny}h_t^N + b_y$$

Deep Bidirectional RNNs

inputs: $\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$ outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$ nonlinearity: \mathcal{H}

- Notice that the upper level hidden units have input from two previous layers (i.e. wider input)
- Likewise for the output layer
- What analogy can we draw to DNNs, DBNs, DBMs?

LSTMS

RNNs and Forgetting

Motivation:

- Standard RNNs have trouble learning long distance dependencies
- LSTMs combat this issue

Motivation:

- Vanishing gradient problem for Standard RNNs
- Figure shows sensitivity (darker = more sensitive) to the input at time t=1

 $h_t = H(W_{XL} \times t + W_{LL} h_{t-1} + b_h)$

Motivation:

- LSTM units have a rich internal structure
- The various "gates" determine the propagation of information and can choose to "remember" or "forget" information

- Input gate: masks out the standard RNN inputs
- Forget gate: masks out the previous cell
- **Cell:** stores the • input/forget mixture
- Output gate: masks out • the values of the next hidden

$$\underline{h_t} = o_t \tanh(c_t)$$
Figure from (Graves et al., 2013)

- Input gate: masks out the standard RNN inputs
- Forget gate: masks out the previous cell
- **Cell:** stores the input/forget mixture

Figure from (Graves et al., 2013)

• Output gate: masks out the values of the next hidden

hidden state

long term memory, and helps control information flow over time steps The hidden

The cell is

the LSTM's

The hidden state is the output of the LSTM cell $i_{t} = \sigma \left(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_{i} \right) \in (0, \mathbb{N})$ $f_{t} = \sigma \left(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_{f} \right) \in (0, \mathbb{N})$ $c_{t} = f_{t}c_{t-1} + i_{t} \tanh \left(W_{xc}\underline{x_{t}} + W_{hc}\underline{h_{t-1}} + \underline{b_{c}} \right)$ $o_{t} = \sigma \left(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_{t} + b_{o} \right)$ $h_{t} = o_{t} \tanh(c_{t})$

51

Deep Bidirectional LSTM (DBLSTM)

- Figure: input/output layers not shown
- Same general topology as a Deep Bidirectional RNN, but with LSTM units in the hidden layers
- No additional representational power over DBRNN, but easier to learn in practice

Deep Bidirectional LSTM (DBLSTM)

How important is this particular architecture?

Jozefowicz et al. (2015) evaluated 10,000 different LSTM-like architectures and found several variants that worked just as well on several tasks.

Why not just use LSTMs for everything?

Everyone did, for a time.

But...

- 1. They still have **difficulty** with **long-range dependencies**
- 2. Their computation is **inherently serial**, so can't be easily parallelized on a GPU
- 3. Even though they (mostly) solve the vanishing gradient problem, they can still suffer from **exploding gradients**

RNN / LSTM RESULTS

Dataset for Supervised Named Entity Recognition (NER)

- **Goal:** label the spans of persons, locations, organizations, times, etc. (aka. entities)
- Data Representation: to cast as a sequence tagging problem, we use Begin-Inside-Outside (BIO) tagging
- BIO tags distinguish between adjacent entities of the same type

Data:
$$\mathcal{D} = \{oldsymbol{x}^{(n)},oldsymbol{y}^{(n)}\}_{n=1}^N$$

LSTM Empirical Results

- CoNLL-2003 is the most prominent dataset for NER
- F1 higher is better
- blue dots are methods that use an LSTM
- an LSTM is the primary model behind the state-of-the-art (ACE + document-context)

Named Entity Recognition (NER) on CoNLL 2003 (English)

BACKGROUND: HUMAN LANGUAGE TECHNOLOGIES

Human Language Technologies

Speech Recognition

Machine Translation

기계 번역은 특히 영어와 한국어와 같은 언어 쌍의 경우 매우 어렵습니다.

Summarization

COL				and die
eiu				
lab	Lorei	n ipsi	im doid	or sit amet,
nit	COLL			
nit	eiu	Lore	m insur	n dolor sit amet
wol	lab	col		a color sic unice,
Ro	nit	con		
0	nit	lab	Lorem	ipsum dolor sit amet,
Qu	vol	IdL	COI	· · · · · · · · · · · · · · · · · · ·
ala	Po	nic	eiu	
sol	Ou	nit	lab	Lorem ipsum dolor sit am
eg	dia	vol	nih	consectetur adipiscing elit, sed
eui	and	Po		eiusmod tempor incididunt
eu	SUI	Qu	THE	labore et dolore magna aliqua.
qu	eg	dia	Vol	nibh tortor id aliquet lectus pro
ut.	eu	sol	PO	nibh nisl. Odio ut enim blan
lac	eu	eg:	Qu	volutnat maecenas volutn
ne	qu	PUI	SID	Porta nibh venenatis cras se
viv	ut.	011	sol	Quam id leo in vitae Aliquam
-	lac		eg	diam manconar ultricion mi
-	pe	44	eui	collicitudia as assi abasell
	viv	ut.	eu	solicitudin ac orci phasei
	ac.	lac	qu	egestas. Diam in arcu curs
		he	ut.	euismou quis viverra. vitae auct
		VIV	lac	eu augue ut lectus arcu. Semp
		ac.	pe	quis lectus nulla at volutpat dia
			viv	ut. Sed arcu non odio euisme
			76	lacinia. Velit euismod
				pellentesque massa. Augue lac
				viverra vitae congue eu consequ
				ac Tincidunt id ali

Bidirectional RNN

RNNs are a now commonplace backbone in deep learning approaches to natural language processing

BACKGROUND: N-GRAM LANGUAGE MODELS

- <u>Goal</u>: Generate realistic looking sentences in a human language
- <u>Key Idea</u>: condition on the last n-1 words to sample the nth word

<u>Question</u>: How can we **define** a probability distribution over a sequence of length T?

<u>Question</u>: How can we **define** a probability distribution over a sequence of length T?

<u>Question</u>: How can we **define** a probability distribution over a sequence of length T?

Learning an n-Gram Model

<u>Question</u>: How do we **learn** the probabilities for the n-Gram Model?

Learning an n-Gram Model

<u>Question</u>: How do we **learn** the probabilities for the n-Gram Model?

<u>Answer</u>: From data! Just **count** n-gram frequencies

... the cows eat grass...
... our cows eat hay daily...
... factory-farm cows eat corn...
... on an organic farm, cows eat hay and...
... do your cows eat grass or corn?...
... what do cows eat if they have...
... cows eat corn when there is no...
... which cows eat which foods depends...
... if cows eat grass...
... when cows eat corn their stomachs...

... should we let **cows eat corn**?...

$w_{t-1} = eat$				
w _t	p(· ·, ·)			
corn	4/11			
grass	3/11			
hay	2/11			
if	1/11			
which	1/11			

 $p(w \mid w - cows$

Sampling from a Language Model

<u>Question</u>: How do we sample from a Language Model?

Answer:

- Treat each probability distribution like a (50k-sided) weighted die 1.
- Pick the die corresponding to $p(w_t | w_{t-2}, w_{t-1})$ 2.
- Roll that die and generate whichever word w_t lands face up 3.
- Repeat 4.

Sampling from a Language Model

<u>Question</u>: How do we sample from a Language Model?

Answer:

- 1. Treat each probability distribution like a (50k-sided) weighted die
- 2. Pick the die corresponding to $p(w_t | w_{t-2}, w_{t-1})$
- 3. Roll that die and generate whichever word w_t lands face up
- 4. Repeat

Training Data (Shakespeaere)	5-Gram Model
I tell you, friends, most charitable care ave the patricians of you. For your wants, Your suffering in this dearth, you may as well Strike at the heaven with your staves as lift them Against the Roman state, whose course will on The way it takes, cracking ten thousand curbs Of more strong link asunder than can ever Appear in your impediment. For the dearth, The gods, not the patricians, make it, and Your knees to them, not arms, must help.	Approacheth, denay. dungy Thither! Julius think: grant,O Yead linens, sheep's Ancient, Agreed: Petrarch plaguy Resolved pear! observingly honourest adulteries wherever scabbard guess; affirmationhis monsieur; died. jealousy, chequins me. Daphne building. weakness: sun- rise, cannot stays carry't, unpurposed. prophet-like drink; back-return 'gainst surmise Bridget ships? wane; interim? She's striving wet;

RECURRENT NEURAL NETWORK (RNN) LANGUAGE MODELS

Recurrent Neural Networks (RNNs)

inputs:
$$\mathbf{x} = (x_1, x_2, \dots, x_T), x_i \in \mathcal{R}^I$$

hidden units: $\mathbf{h} = (h_1, h_2, \dots, h_T), h_i \in \mathcal{R}^J$
outputs: $\mathbf{y} = (y_1, y_2, \dots, y_T), y_i \in \mathcal{R}^K$
nonlinearity: \mathcal{H}

Definition of the RNN:

$$h_t = \mathcal{H} \left(W_{xh} x_t + W_{hh} h_{t-1} + b_h \right)$$

$$y_t = W_{hy} h_t + b_y$$

The Chain Rule of Probability

<u>Question</u>: How can we **define** a probability distribution over a sequence of length T?

Recall...

RNN Language Model

RNN Language Model: $p(w_1, w_2, \dots, w_T) = \prod_{t=1}^T p(w_t \mid f_{\theta}(w_{t-1}, \dots, w_1))$

Key Idea:

(1) convert all previous words to a **fixed length vector** (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector

RNN Language Model

Key Idea:

(1) convert all previous words to a **fixed length vector** (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector $\mathbf{h}_t = f_{\theta}(w_{t-1}, ..., w_1)$

RNN Language Model

Key Idea:

(1) convert all previous words to a **fixed length vector** (2) define distribution $p(w_t | f_{\theta}(w_{t-1}, ..., w_1))$ that conditions on the vector $\mathbf{h}_t = f_{\theta}(w_{t-1}, ..., w_1)$

Key Idea:

Key Idea:

Key Idea:

Key Idea:

Key Idea:

Key Idea:

 $p(w_1, w_2, w_3, ..., w_T) = p(w_1 | h_1) p(w_2 | h_2) ... p(w_2 | h_T)$

Sampling from a Language Model

12 Control of the cost of the

<u>Question</u>: How do we sample from a Language Model?

Answer:

- Treat each probability distribution like a (50k-sided) weighted die 1.
- Pick the die corresponding to $p(w_t | w_{t-2}, w_{t-1})$ 2.

Dr. Start The

bat

Roll that die and generate whichever word w_t lands face up 3.

m

Repeat 4.

START

PC:/SZAPY)

The

The same approach to sampling we used for an **n**-Gram Language Model also works here for an RNN Language Model

(estopolity).

(1015 dr)

??

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of

presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy more to give thee but so much service in the noble bondman here, Would Shake her wine.

KING LEAR: O, if you were a feeble show, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

??

CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without <u>some broken limb</u> shall acquit him well. Your brother is

Which is the real Shakespeare?!

ender; and, for your love, I would be , as I must, for my own honour, if he pre, out of my love to you, I came hither withal, that either you might stay him

from his intender of the brook such disgrace well as he shall run into, in the is a thing of his own search and altogether against my will.

Shakespeare's As You Like It

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

RNN-LM Sample

CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without some broken limb shall acquit him well. Your brother is but young and tender; and, for your love, I would be loath to foil him, as I must, for my own honour, if he come in: therefore, out of my love to you, I came hither to acquaint you withal, that either you might stay him from his intendment or brook such disgrace well as he shall run into, in that it is a thing of his own search and altogether against my will.

RNN-LM Sample

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

Shakespeare's As You Like It

CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without some broken limb shall acquit him well. Your brother is but young and tender; and, for your love, I would be loath to foil him, as I must, for my own honour, if he come in: therefore, out of my love to you, I came hither to acquaint you withal, that either you might stay him from his intendment or brook such disgrace well as he shall run into, in that it is a thing of his own search and altogether against my will.

??

VIOLA: Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of

presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy more to give thee but so much service in the noble bondman here, Would Shake her wine.

KING LEAR: O, if you were a feeble show, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

??

CHARLES: Marry, do I, sir; and I came to acquaint you with a matter. I am given, sir, secretly to understand that your younger brother Orlando hath a disposition to come in disguised against me to try a fall. To-morrow, sir, I wrestle for my credit; and he that escapes me without <u>some broken limb</u> shall acquit him well. Your brother is

Which is the real Shakespeare?!

ender; and, for your love, I would be , as I must, for my own honour, if he pre, out of my love to you, I came hither withal, that either you might stay him

from his intender of the brook such disgrace well as he shall run into, in the is a thing of his own search and altogether against my will.

SEQUENCE TO SEQUENCE MODELS

Sequence to Sequence Model

Speech Recognition

Machine Translation

기계 번역은 특히 영어와 한국어와 같은 언어 쌍의 경우 매우 어렵습니다.

Summarization

cor-				and die
eiu				
lab	Lorei	m ipsi	um dolo	or sit amet,
nih	COL.			and all and all
nik	eiu	Loro	m incur	n dolor rit amot
THE .	lab	LUIE	in ipsui	in doior sic aniec,
VOI Da	nit	COI		
10	nit	eiu	Lorem	ipsum dolor sit amet.
Qu	vol	lac	coi	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
dia	Po	nit	eiu	
sol	Ou	nit	lah	Lorem ipsum dolor sit am
eg	dia	vol	nik	consectetur adipiscing elit, sed
eui	uic	Po	-1	eiusmod tempor incididunt
eu	SOI	Qu	nic	labore et dolore magna aliqua.
au	eg	dia	VO	nibh tortor id aliquet lectus pro
ut	eu	sol	Po	nibh nisl. Odio ut enim blan
Inc	eu	00	Qu	volutoat macconas voluto
ne	qu	e8	dia	Porta nibh venenatis cras se
Pe	ut.	011	sol	Quam id loo in vitao Aliguam
VIV	lac	eu	eg	diam management uttaining mi
ac.	pe	qu	eui	diani maecenas unicies mi.
	viv	ut.	eu	sollicitudin ac orci phasei
	ac.	lac	au	egestas. Diam in arcu curs
		pe	ut	euismod quis viverra. Vitae auci
		viv	Inc	eu augue ut lectus arcu. Semp
		ac.	ne	quis lectus nulla at volutpat dia
			P.C.	ut. Sed arcu non odio euism
			414	lacinia. Velit euismod
			ac.	pellentesque massa. Augue lac
				viverra vitae congue eu consegu
				as Tingidumtid ali

Sequence to Sequence Model

Now suppose you want generate a sequence conditioned on another input

Key Idea:

e₁

- Use an **encoder** model to 1. generate a vector
- Feed the output of the 2. will generate the **output**

Applications:

- translation: Spanish \rightarrow English
- summarization: article \rightarrow summary
- speech recognition: speech signal \rightarrow transcription

Deep Learning Objectives

You should be able to...

- Implement the common layers found in Convolutional Neural Networks (CNNs) such as linear layers, convolution layers, maxpooling layers, and rectified linear units (ReLU)
- Explain how the shared parameters of a convolutional layer could learn to detect spatial patterns in an image
- Describe the backpropagation algorithm for a CNN
- Identify the parameter sharing used in a basic recurrent neural network, e.g. an Elman network
- Apply a recurrent neural network to model sequence data
- Differentiate between an RNN and an RNN-LM