
Automatic Differentiation 
&

Transformers

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley, Henry Chai, Hoda Heidari
Lecture 19

Mar. 27, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University



Reminders

• Homework 6: Learning Theory & Generative Models
– Out: Mon, Mar 18
– Due: Sun, Mar 24 at 11:59pm

• Exam 2: Thu, Mar 28, 7:00 pm - 9:00 pm
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BACKGROUND: HUMAN LANGUAGE 
TECHNOLOGIES
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Human Language Technologies
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Speech Recognition

Machine Translation

Summarization

기계번역은특히영어와한국어와같은언어쌍의경우매우어렵습니다.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.

Lorem ipsum dolor sit amet, 
consectetur adipiscing elit, sed do 
eiusmod tempor incididunt ut 
labore et dolore magna aliqua. Id 
nibh tortor id aliquet lectus proin 
nibh nisl. Odio ut enim blandit 
volutpat maecenas volutpat. 
Porta nibh venenatis cras sed. 
Quam id leo in vitae. Aliquam id 
diam maecenas ultricies mi. Et 
sollicitudin ac orci phasellus 
egestas. Diam in arcu cursus 
euismod quis viverra. Vitae auctor 
eu augue ut lectus arcu. Semper 
quis lectus nulla at volutpat diam 
ut. Sed arcu non odio euismod 
lacinia. Velit euismod in 
pellentesque massa. Augue lacus 
viverra vitae congue eu consequat 
ac. Tincidunt id ali.



Bidirectional RNN

RNNs are a now commonplace backbone in 
deep learning approaches to natural language 
processing
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BACKGROUND:
N-GRAM LANGUAGE MODELS
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n-Gram Language Model
• Goal: Generate realistic looking sentences in a human 

language
• Key Idea: condition on the last n-1 words to sample 

the nth word
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n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2)
      p(w4 | w3)
      p(w5 | w4)
      p(w6 | w5)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightat

noise at

made noise

bat made

The bat

The

n-Gram Model (n=2)



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)

Note: This is called a model because we 
made some assumptions about how many 

previous words to condition on 
(i.e. only n-1 words)



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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p(wt | wt-2 = made, 
    wt-1 = noise)

wt p(· | ·, ·)

at 0.020

…

pollution 0.030

…

zebra 0.000

p(wt | wt-2 = The, 
    wt-1 = bat)

wt p(· | ·, ·)

ate 0.015

…

flies 0.046

…

zebra 0.000

p(wt | wt-2 = cows, 
    wt-1 = eat)

wt p(· | ·, ·)

corn 0.420

…

grass 0.510

…

zebra 0.000



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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p(
· | 

ST
ART)

START

p(
· | 

ST
ART,

 Th
e)

p(
· | 

Th
e,

 b
at

)

p(
· | 

ba
t, 

m
ad

e)
p(

· | 
m

ad
e,

 n
oi

se
)

p(
· | 

no
ise

, a
t)



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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Approacheth, denay. dungy 
Thither! Julius think: grant,--O 
Yead linens, sheep's Ancient, 
Agreed: Petrarch plaguy Resolved 
pear! observingly honourest 
adulteries wherever scabbard 
guess; affirmation--his monsieur; 
died. jealousy, chequins me. 
Daphne building. weakness: sun-
rise, cannot stays carry't, 
unpurposed. prophet-like drink; 
back-return 'gainst surmise 
Bridget ships? wane; interim? 
She's striving wet;

5-Gram Model
I tell you, friends, most charitable care
ave the patricians of you. For your 
wants,  Your suffering in this dearth, 
you may as well Strike at the heaven 
with your staves as lift them Against 
the Roman state, whose course will on
The way it takes, cracking ten thousand 
curbs Of more strong link asunder than 
can ever Appear in your impediment. 
For the dearth,  The gods, not the 
patricians, make it, and Your knees to 
them, not arms, must help. 

Training Data (Shakespeaere)



RECURRENT NEURAL NETWORK (RNN) 
LANGUAGE MODELS
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Recurrent Neural Networks (RNNs)

18

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h
xt +W�!

h
�!
h

�!
h t�1 + b�!

h

⌘
(8)

 �
h t = H

⇣
W

x
 �
h
xt +W �

h
 �
h

 �
h t+1 + b �

h

⌘
(9)

yt = W�!
h y

�!
h t +W �

h y

 �
h t + by (10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5



The Chain Rule of Probability
Question: How can we define a probability distribution over a 
sequence of length T?
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p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2, w1)
      p(w5 | w4, w3, w2, w1)
      p(w6 | w5, w4, w3, w2, w1)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

Chain rule of probability:

Note: This is called the chain rule because 
it is always true for every probability 

distribution

Recall…



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector

20

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | fθ(w1))
      p(w3 | fθ(w2, w1))
      p(w4 | fθ(w3, w2, w1))
      p(w5 | fθ(w4, w3, w2, w1))
      p(w6 | fθ(w5, w4, w3, w2, w1))The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

RNN Language Model:



RNN Language Model
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The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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START

p(w1|h1) 

h1

The

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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TheSTART

h1

p(w2|h2) 

h2

bat

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model

24

The batSTART

p(w3|h3) 

made

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3



RNN Language Model
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The bat madeSTART

p(w4|h4) 

noise

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4



RNN Language Model
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The bat made noiseSTART

p(w5|h5) 

at

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4 h5



RNN Language Model
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The bat made noise atSTART

p(w6|h6) 

night

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

Answer:

Question: How can we create a distribution 
p(wt|ht) from ht?

h1 h2 h3 h4 h5 h6



RNN Language Model
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The bat made nightnoise atSTART

p(w7|h7) 

END

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4 h5 h6 h7



RNN Language Model
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The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

The bat made nightnoise at END

p(w1, w2, w3, … , wT) = p(w1 | h1) p(w2 | h2) … p(w2 | hT)

h1 h2 h3 h4 h5 h6 h7



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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The same approach to 
sampling we used for an n-
Gram Language Model also 

works here for an RNN 
Language Model



Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.

31
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real 
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

Shakespeare’s As You Like It
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

RNN-LM Sample
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.

32
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

RNN-LM Sample
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

Shakespeare’s As You Like It
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.
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Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.

34
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real 
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


MODULE-BASED AUTOMATIC 
DIFFERENTIATION

38



Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order. 

Let u1,…, uM denote all the nodes with vj as an input 
Assuming that y = h(u) = h(u1,…, uM) 
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures 

computing (dui/dvj) is easy)
 

y

u1 · · · ui · · · uM

v1 · · · vj · · · vN

x

Recall…



Backpropagation
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Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order. 

For variable ui = gi(v1,…, vN)
a. We already know dy/dui 
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a 

directed acyclic graph, where each variable is a node (i.e. the “computation 
graph”)

2. Visit each node in topological order. 
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

y

u1 · · · ui · · · uM

v1 · · · vj · · · vN

x

Recall…



Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in the backward pass
2. Reuses partial derivatives throughout the backward pass (but 

only if the algorithm reuses shared computation in the forward 
pass)

(Key idea: partial derivatives in the backward pass should be 
thought of as variables stored for reuse)

41

Training
Recall…



A Recipe for 
Machine Learning

1. Given training data: 3. Define goal:

42

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps 
opposite the gradient)

Gradients

Backpropagation can compute this 
gradient! 
And it’s a special case of a more 
general algorithm called reverse-
mode automatic differentiation that 
can compute the gradient of any 
differentiable function efficiently!

Recall…



Backpropagation: 
Abstract Picture

43

(F) Loss
J =

�K
k=1 y�

k HQ;(yk)

(E) Output (softmax)
yk = 2tT(bk)�K

l=1 2tT(bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Forward Backward

5. J = −yT log ŷ 6. gŷ = −y ÷ ŷ

4. ŷ = softmax(b) 7. gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

3. b = βz 8. gβ = gT

b zT

gz = βT gT

b

2. z = σ(a) 10. ga = gz ⊙ z ⊙ (1− z)

1. a = αx 11. gα = gaxT

…

…

Output

Input

Hidden Layer

…



Backpropagation: 
Procedural Method

Drawbacks of 
Procedural Method
1. Hard to reuse / 

adapt for other 
models

2. (Possibly) harder to 
make individual 
steps more efficient

3. Hard to find source 
of error if finite-
difference check 
reports an error 
(since it tells you 
only that there is an 
error somewhere in 
those 17 lines of 
code)
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Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Paramsα, β)
2: a = αx
3: z = σ(a)
4: b = βz
5: ŷ = softmax(b)
6: J = −yT log ŷ
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Paramsα, β,

Intermediates o)
2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gŷ = −y ÷ ŷ
4: gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

5: gβ = gT

b zT

6: gz = βT gT
b

7: ga = gz ⊙ z ⊙ (1− z)
8: gα = gaxT

9: return parameter gradients gα,gβ



Module-based AutoDiff
Module-based automatic differentiation (AD / Autodiff) is a technique that has 
long been used to develop libraries for deep learning 
• Dynamic neural network packages allow a specification of the computation 

graph dynamically at runtime
– PyTorch http://pytorch.org 
– Torch http://torch.ch  
– DyNet https://dynet.readthedocs.io 
– TensorFlow with Eager Execution https://www.tensorflow.org 

• Static neural network packages require a static specification of a 
computation graph which is subsequently compiled into code
– TensorFlow with Graph Execution https://www.tensorflow.org 
– Aesara (and Theano) https://aesara.readthedocs.io 
– (These libraries are also module-based, but herein by “module-based AD” we mean the 

dynamic approach)
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http://pytorch.org/
http://torch.ch/
https://dynet.readthedocs.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://aesara.readthedocs.io/


Module-based AutoDiff
• Key Idea: 

– componentize the computation of the neural-network into layers
– each layer consolidates multiple real-valued nodes in the 

computation graph (a subset of them) into one vector-valued node 
(aka. a module)

• Each module is capable of two actions:

46

1. Forward computation of output b = [b1, . . . , bB ] given input
a = [a1, . . . , aA] via some di昀昀erentiable function f . That is
b = f(a).

2. Backward computation of the gradient of the input
ga = ∇aJ = [ ∂J

∂a1

, . . . , ∂J
∂aA

] given the gradient of output
gb = ∇bJ = [ ∂J

∂b1
, . . . , ∂J

∂bB
], where J is the 昀椀nal real‐valued

output of the entire computation graph. This is done via the
chain rule ∂J

∂ai
=

∑J
j=1

∂J
∂bj

dbj
dai

for all i ∈ {1, . . . , A}.

module

a

b gb

ga



Module-based AutoDiff
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Dimensions: input a ∈ RA, output b ∈ RB , gradient
of output ga ! ∇aJ ∈ RA, and gradient of input gb !

∇bJ ∈ RB .

Sigmoid Module The sigmoid layer has only one input
vectora. Belowσ is the sigmoidappliedelement-
wise, and⊙ is element-wisemultiplication s.t. u⊙
v = [u1v1, . . . , uMvM ].
1: procedure SĎČĒĔĎĉFĔėĜĆėĉ(a)
2: b = σ(a)
3: return b
4: procedure SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gb ⊙ b ⊙ (1− b)
6: return ga

Softmax Module The softmax layer has only one input
vector a. For any vector v ∈ RD, we have that
diag(v) returns aD ×D diagonal matrix whose
diagonal entries arev1, v2, . . . , vD andwhosenon-
diagonal entries are zero.
1: procedure SĔċęĒĆĝFĔėĜĆėĉ(a)
2: b = softmax(a)
3: return b
4: procedure SĔċęĒĆĝBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gT

b
(

diag(b)− bbT
)

6: return ga

Linear Module The linear layer has two inputs: a vec-
tor a and parameters ω ∈ RB×A. The output b
is not used by LĎēĊĆėBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure LĎēĊĆėFĔėĜĆėĉ(a, ω)
2: b = ωa
3: return b
4: procedure LĎēĊĆėBĆĈĐĜĆėĉ(a, ω, b, gb)
5: gω = gbaT

6: ga = ω
T gb

7: return gω,ga

Cross-Entropy Module Thecross-entropy layer has two in-
puts: a gold one-hot vector a and a predicted proba-
bility distribution â. It’s output b ∈ R is a scalar. Be-
low ÷ is element-wise division. The output b is not
used by CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(a, â)
2: b = −aT log â
3: return b
4: procedure CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(a, â, b, gb)
5: gâ = −gb(a ÷ â)
6: return ga



Module-based AutoDiff

Advantages of 
Module-based 
AutoDiff
1. Easy to reuse / 

adapt for other 
models

2. Encapsulated 
layers are easier 
to optimize (e.g. 
implement in C++ 
or CUDA)

3. Easier to find 
bugs because we 
can run a finite-
difference check 
on each layer 
separately
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Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Parametersα,
β)

2: a = LĎēĊĆėFĔėĜĆėĉ(x,α)
3: z = SĎČĒĔĎĉFĔėĜĆėĉ(a)
4: b = LĎēĊĆėFĔėĜĆėĉ(z,β)
5: ŷ = SĔċęĒĆĝFĔėĜĆėĉ(b)
6: J = CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(y, ŷ)
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Parameters
α, β, Intermediates o)

2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gJ = dJ

dJ
= 1 ◃ Base case

4: gŷ = CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(y, ŷ, J, gJ)
5: gb = SĔċęĒĆĝBĆĈĐĜĆėĉ(b, ŷ,gŷ)
6: gβ,gz = LĎēĊĆėBĆĈĐĜĆėĉ(z,b,gb)
7: ga = SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, z,gz)
8: gα,gx = LĎēĊĆėBĆĈĐĜĆėĉ(x,a,ga) ◃We discard gx
9: return parameter gradients gα,gβ



Module-based AutoDiff (OOP Version) 

Object-Oriented Implementation:
– Let each module be an object
– Then allow the control flow dictate the creation of the computation graph
– No longer need to implement NNBackward(·), just follow the computation 

graph in reverse topological order
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1 class Sigmoid(Module)
2 method forward(a)
3 b = σ(a)
4 return b
5 method backward(a , b , gb)
6 ga = gb ⊙ b ⊙ (1− b)
7 return ga

1 class Softmax(Module)
2 method forward(a)
3 b = softmax(a)
4 return b
5 method backward(a , b , gb)
6 ga = gT

b
(

diag(b)− bbT
)

7 return ga

1 class Linear(Module)
2 method forward(a , ω)
3 b = ωa
4 return b
5 method backward(a , ω , b , gb)
6 gω = gbaT

7 ga = ω
T gb

8 return gω,ga

1 class CrossEntropy(Module)
2 method forward(a , â)
3 b = −aT log â
4 return b
5 method backward(a , â , b , gb)
6 gâ = −gb(a ÷ â)
7 return ga



Module-based AutoDiff (OOP Version) 
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1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]



1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

Module-based AutoDiff (OOP Version) 
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1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()



Module-based AutoDiff (OOP Version) 
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1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()



PyTorch
The same simple 
neural network 
we defined in 
pseudocode can 
also be defined 
in PyTorch.

53
Example adapted from https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html 

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html


PyTorch
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Q: Why don’t we call linear.forward() in PyTorch?

A: This is just syntactic sugar. There’s a special method in Python 
__call__ that allows you to define what happens when you treat 
an object as if it were a function. 

In other words, running the following:
    linear(x)
is equivalent to running:
    linear.__call__(x)
which in PyTorch is (nearly) the same as running:
    linear.forward(x)

This is because PyTorch defines every Module’s __call__ method 
to be something like this:
    def __call__(self):
        self.forward()



PyTorch
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Q: Why don’t we pass in the parameters to a PyTorch Module?

A: This just makes your code cleaner. 

In PyTorch, you store the parameters inside the Module and “mark” 
them as parameters that should contribute to the eventual gradient 
used by an optimizer



Recap
Deep Learning
• AutoDiff

– is a tool for computing gradients of a 
differentiable function, b = f(a)

– the key building block is a module with a 
forward() and backward()

– sometimes define f as code in forward() by 
chaining existing modules together

• Computation Graphs
– are another way to define f (more conducive to 

slides)
– we are considering various (deep) computation 

graphs: (1) CNN (2) RNN (3) RNN-LM 
(4) Transformer-LM

• Learning a Deep Network
– deep networks (e.g. CNN/RNN) are trained by 

optimizing an objective function with SGD
– compute gradients with AutoDiff

Language Modeling
• key idea: condition on previous words to 

sample the next word
• to define the probability of the next word…

– …n-gram LM uses collection of massive 50k-
sided dice 

– …RNN-LM or Transformer-LM use a neural 
network

• Learning an LM
– n-gram LMs are easy to learn: just count co-

occurrences!
– a RNN-LM / Transformer-LM is trained just like 

other deep neural networks

56

Two parts: Deep Learning and Language Modeling



LEARNING AN RNN
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging
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n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)

Recall…



SGD and Mini-batch SGD
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Algorithm 1 SGD

1: Initialize θ(0)

2:
3:
4: s = 0
5: for t = 1, 2, . . . , T do
6: for i ∈ shufÒe(1, . . . , N) do
7: Select the next training point (xi, yi)
8: Compute the gradient g(s) = ∇Ji(θ

(s−1))
9: Update parameters θ(s) = θ(s−1)

− ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…



SGD and Mini-batch SGD
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Algorithm 1Mini‐Batch SGD

1: Initialize θ(0)

2: Divide examples {1, . . . , N} randomly into batches {I1, . . . , IB}
3: where

⋃
B

b=1 Ib = {1, . . . , N} and
⋂

B

b=1 Ib = ∅
4: s = 0
5: for t = 1, 2, . . . , T do
6: for b = 1, 2, . . . , B do
7: Select the next batch Ib, wherem = |Ib|
8: Compute the gradient g(s) = 1

m

∑
i∈Ib

∇Ji(θ
(s))

9: Update parameters θ(s) = θ(s−1) − ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…



RNN
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y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4

Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = Wyh · ht + by



RNN
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Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)

y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4



RNN + Loss
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Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt

y1 y2 y3 y4

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4



LEARNING AN RNN-LM
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Learning a Language Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)

MLE for n-gram LM
• This counting method 

gives us the maximum 
likelihood estimate of 
the n-gram LM 
parameters

• We can derive it in the 
usual way:
– Write the likelihood of 

the sentences under the 
n-gram LM

– Set the gradient to zero 
and impose the constraint 
that the probabilities sum-
to-one

– Solve for the MLE
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Question: How do we learn the probabilities for the n-Gram 
Model?
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wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)

MLE for n-gram LM
• This counting method 

gives us the maximum 
likelihood estimate of 
the n-gram LM 
parameters

• We can derive it in the 
usual way:
– Write the likelihood of 

the sentences under the 
n-gram LM

– Set the gradient to zero 
and impose the constraint 
that the probabilities sum-
to-one

– Solve for the MLE

MLE for Deep Neural LM
• We can also use maximum likelihood estimation 

to learn the parameters of an RNN-LM or 
Transformer-LM too!

• But not in closed form – instead we follow a 
different recipe:
– Write the likelihood of the sentences under the 

Deep Neural LM model
– Compute the gradient of the (batch) likelihood w.r.t. 

the parameters by AutoDiff
– Follow the negative gradient using Mini-batch SGD 

(or your favorite optimizer)



RNN + Loss
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Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt

y1 y2 y3 y4

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute 
the loss for an RNN-LM?



RNN-LM + Loss   _
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y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute 
the loss for an RNN-LM?

w1 w2 w3w0=START

w1 w2 w3 w4

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + … + log p(w2 | hT) Algorithm 1 Elman RNN + Loss

1: procedure FORWARD(x1:T , y
∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt



RNN-LM + Loss   _
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w1 w2 w3w0=START

y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + … + log p(w2 | hT)

ℓ = log p(w)

h1 h2 h3 h4

w4

x1 x2 x3 x4 x5

How can we use this to compute 
the loss for an RNN-LM?

Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt



Learning an RNN-LM
• Each training example is 

a sequence (e.g. 
sentence), so we have 
training data D = {w(1), 
w(2), …, w(N)}

• The objective function 
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is 
typically the log-
likelihood of the training 
examples: 
  J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch 
SGD (or your favorite 
flavor of mini-batch SGD)

71

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one 
training 
example

+
J = log p(w)

END



LARGE LANGUAGE MODELS
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How large are LLMs?

76

Model Creators Year of 
release

Training Data (# 
tokens)

Model Size (# 
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3 
(cf. ChatGPT)

OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

GPT-4 OpenAI 2023 ? ?

Comparison of some recent large language models (LLMs)



What is ChatGPT?

• ChatGPT is a large (in the sense of having many parameters) 
language model, fine-tuned to be a dialogue agent

• The base language model is GPT-3.5 which was trained on a 
large quantity of text 

77



MODEL: GPT
Transformer Language Models
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Attention
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v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



Attention
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v1

a1,1

s1,1

softmax

x′

1 =

1∑

j=1

a1,jvj



Attention
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v1 v2

a2,1

s2,1 s2,2

softmax

x′

2 =

2∑

j=1

a2,jvj

a2,2



Attention
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v1 v2 v3

a3,1 a3,1 a3,1

s3,1 s3,2 s3,3

softmax

x′

3 =

3∑

j=1

a3,jvj



Attention
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v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



Attention
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v1 v2 v3 v4

a4,1 a4,2 a4,3

s4,1 s4,2 s4,3 s4,4

softmax

x′

t =

t∑

j=1

at,jvj

values

scores

attention weights

x1’ x2’ x3’ x4’

a4,4



v1 v2 v3 v4

softmax

Scaled Dot-Product Attention
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x1 x2 x3 x4

vj = WT
v xj

Wv values

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

vj = WT
v xj

kj = WT
k xj

Wv values

keys

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

scoress4,j = kT
j q4/

√

dk

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

attention



qj = WT
q xj

Scaled Dot-Product Attention
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x′

t =

t∑

j=1

at,jvj

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

st,j = kT
j qt/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsat = softmax(st)

attention

x1’ x2’ x3’ x4’



Animation of 3D Convolution

94
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

http://cs231n.github.io/convolutional-networks/ 

Recall…

http://cs231n.github.io/convolutional-networks/


Multi-headed Attention

95

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step

1st 
head 2nd 

head 3rd 
head



Multi-headed Attention
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step

• To ensure the dimension of the 
input embedding xt is the same 
as the output embedding xt’, 
Transformers usually choose 
the embedding sizes and 
number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

• Then concatenate the outputs



Multi-headed Attention
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step

• To ensure the dimension of the 
input embedding xt is the same 
as the output embedding xt’, 
Transformers usually choose 
the embedding sizes and 
number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

• Then concatenate the outputs



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1) 98

The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END

Recall…



Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM!

Important!
• RNN computation 

graph grows 
linearly with the 
number of input 
tokens

• Transformer-LM 
computation graph 
grows quadratically 
with the number of 
input tokens



Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM!

Important!
• RNN computation 

graph grows 
linearly with the 
number of input 
tokens

• Transformer-LM 
computation graph 
grows quadratically 
with the number of 
input tokens



Layer Normalization
• The Problem: internal 

covariate shift occurs 
during training of a deep 
network when a small 
change in the low layers 
amplifies into a large 
change in the high layers

• One Solution: Layer 
normalization normalizes 
each layer and learns 
elementwise gain/bias

• Such normalization allows 
for higher learning rates 
(for faster convergence) 
without issues of 
diverging gradients

101
Figure from https://arxiv.org/pdf/1607.06450.pdf 

Given input a ∈ R
K , LayerNorm computes output b ∈ R

K :

b = γ ⊙
a − µ

σ
⊕ β

where we have mean µ = 1

K

∑

K

k=1
ak,

standard deviation σ =
√

1

K

∑

K

k=1
(ak − µ)2,

and parameters γ ∈ R
K , β ∈ R

K .
⊙ and⊕ denote elementwise multiplication and addition.



Residual Connections
• The Problem: as network 

depth grows very large, a 
performance degradation 
occurs that is not explained 
by overfitting (i.e. train / test 
error both worsen)

• One Solution: Residual 
connections pass a copy of 
the input alongside another 
function so that information 
can flow more directly

• These residual connections 
allow for effective training 
of very deep networks that 
perform better than their 
shallower (though still deep) 
counterparts

102
Figure from https://arxiv.org/pdf/1512.03385.pdf

a

b

b = f(a)

Plain Connection

a

b

b = b′
+ a

Residual Connection

b′ = f(a)



Residual Connections
• The Problem: as network 

depth grows very large, a 
performance degradation 
occurs that is not explained 
by overfitting (i.e. train / test 
error both worsen)

• One Solution: Residual 
connections pass a copy of 
the input alongside another 
function so that information 
can flow more directly

• These residual connections 
allow for effective training 
of very deep networks that 
perform better than their 
shallower (though still deep) 
counterparts

103
Figure from https://arxiv.org/pdf/1512.03385.pdf

a

b

b = f(a)

Plain Connection

a

b

Residual Connection

b = f(a) + a

Why are residual connections helpful?
Instead of f(a) having to learn a full 

transformation of a, f(a) only needs to learn an 
additive modification of a (i.e. the residual). 



Transformer Layer

104

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

x1’ x2’ x3’ x4’

Transformer layer



Transformer Language Model

108

x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer



Question:
Suppose we have the following input 
embeddings and attention weights:
• x1 = [1,0,0,0] a4,1 = 0.1
• x2 = [0,1,0,0] a4,2 = 0.2
• x3 = [0,0,2,0] a4,3 = 0.6
• x4 = [0,0,0,1] a4,4 = 0.1
And Wv = I. Then we can compute x4’.
Now suppose we swap the 
embeddings x2 and x3 such that 
• x2 = [0,0,2,0]
• x3 = [0,1,0,0]
What is the new value of x4’?

Answer:

In-Class Poll

109

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



Position Embeddings
• The Problem: Because attention is position 

invariant, we need a way to learn about positions
• The Solution: Use (or learn) a collection of position 

specific embeddings: pt represents what it means 
to be in position t. And add this to the word 
embedding wt.
The key idea is that every word that appears in 
position t uses the same position embedding pt 

• There are a number of varieties of position 
embeddings:
– Some are fixed (based on sine and cosine), whereas 

others are learned (like word embeddings)
– Some are absolute (as described above) but we can 

also use relative position embeddings (i.e. relative 
to the position of the query vector)

110

w1 w2 w3 w4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Transformer layer

Transformer layer

Transformer layer

p1 p2 p3 p4

+ + + +



GPT-3

• GPT stands for Generative Pre-trained Transformer
• GPT is just a Transformer LM, but with a huge number of 

parameters

111

Model # layers dimension 
of states

dimension 
of inner 
states

# attention 
heads

# params

GPT (2018) 12 768 3072 12 117M

GPT-2 
(2019)

48 1600 -- -- 1542M

GPT-3 
(2020)

96 12288 4*12288 96 175000M



Matrix Version of Scaled Dot-Product Attention
• For speed, we compute 

all the queries at once 
using matrix operations

• First we pack the queries, 
keys, values into 
matrices:
– Q = [q1,…,qN]T

– K = [k1,…,kN]T

– V = [v1,…,vN]T

• Then we compute all the 
queries at once:

112

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√
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k xj

Wv values
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scores

attention 
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QKT

√
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)



Matrix Version of Scaled Dot-Product Attention
• For speed, we compute 

all the queries at once 
using matrix operations

• First we pack the queries, 
keys, values into 
matrices:
– Q = [q1,…,qN]T

– K = [k1,…,kN]T

– V = [v1,…,vN]T

• Then we compute all the 
queries at once:
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q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention 
weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Attn(x1:N ) = softmax
(

QKT

√

dk
V

)

In practice, the attention weights are computed for all time 
steps T, then we mask out (by setting to –inf) all the inputs to 
the softmax that are for the timesteps to the right of the query.



LEARNING A TRANSFORMER LM
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Learning a Transformer LM
• Each training example is 

a sequence (e.g. 
sentence), so we have 
training data D = {w(1), 
w(2), …, w(N)}

• The objective function 
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is 
typically the log-
likelihood of the training 
examples: 
  J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch 
SGD (or your favorite 
flavor of mini-batch SGD)

115

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one 
training 
example

Transformer LM

+
J = log p(w)

END

Training a Transformer-LM 
is the same, except we 

swap in a different deep 
language model.



Language Modeling
An aside:
• State-of-the-art language models currently tend to rely on transformer networks 

(e.g. GPT-3)
• RNN-LMs comprised most of the early neural LMs that led to current SOTA 

architectures
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Figure from https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word


Why does efficiency matter?
Case Study: GPT-3
• # of training 

tokens = 500 
billion

• # of 
parameters = 
175 billion

• # of cycles = 50 
petaflop/s-days 
(each of which 
are 8.64e+19 
flops)
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Figure from https://arxiv.org/pdf/2005.14165.pdf 

https://arxiv.org/pdf/2005.14165.pdf


Recap
Deep Learning
• AutoDiff

– is a tool for computing gradients of a 
differentiable function, b = f(a)

– the key building block is a module with a 
forward() and backward()

– sometimes define f as code in forward() by 
chaining existing modules together

• Computation Graphs
– are another way to define f (more conducive to 

slides)
– we are considering various (deep) computation 

graphs: (1) CNN (2) RNN (3) RNN-LM 
(4) Transformer-LM

• Learning a Deep Network
– deep networks (e.g. CNN/RNN) are trained by 

optimizing an objective function with SGD
– compute gradients with AutoDiff

Language Modeling
• key idea: condition on previous words to 

sample the next word
• to define the probability of the next word…

– …n-gram LM uses collection of massive 50k-
sided dice 

– …RNN-LM or Transformer-LM use a neural 
network

• Learning an LM
– n-gram LMs are easy to learn: just count co-

occurrences!
– a RNN-LM / Transformer-LM is trained just like 

other deep neural networks
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Two parts: Deep Learning and Language Modeling


