10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Automatic Differentiation
&
Transformers

Matt Gormley, Henry Chai, Hoda Heidari
Lecture 19
Mar. 27, 2024

Reminders

* Homework 6: Learning Theory & Generative Models
— Out: Mon, Mar 18
— Due: Sun, Mar 24 at 11:59pm

* Exam 2: Thu, Mar 28, 7:00 pm - 9:00 pm

BACKGROUND: HUMAN LANGUAGE
TECHNOLOGIES

Human Language Technologies

Speech Recognition

Machine Translation

o2 S5 goie

7| Al H

Summarization

11— T

Lorem ipsum dolor st amet,

v T ey
eiu
lab
nit
nit
vol
" iu
Qu ”'b‘ lab
ol
dia 73 nib
ol oy nm]
a1z o
e “i Po
U e o
qui & da
:JL o sol
ac egr
pel U eqi
viv :‘" eu
ac -
-
viv—4
lac
e
viv
ac.

Lorem ipsum dolor sit amet,

Vo s s e
eiu s ;
lap__ Lorem ipsum dolor sit amet,
b consectetur adipiscing elit, sed do
w eiusmod tempor incididunt ut
’“I labore et dolore magna aliqua. Id
o nibh tortor id aliquet lectus proin
qu mibh nisl- Odiout enim blandit
dia Volutpat —maecenas volutpat.
*Forta nibh venenatis cras sed:
S0l quam id leo in vitae. Aliquam id
B diam maecenas ultricies mi. Et
s solicitudin ac orci.phasellus
| egestas. Diam in arcu cursus
&l euismod quis viverra. Vitae auctor
:‘" au augue ut lectus arcu. Semper
;; quis lectus nulla at volutpat diam
viv ut. Sed arcu non odio euismod
o lacinia, Ve euismod —in
~ pellentesque massa. Augue lacus

viverra vitae congue eu consequat
ac. Tincidunt id afi.

ot

Bidirectional RNN

RNNs are a now commonplace backbone in
deep learning approaches to natural language
processing

Y1 Y2 Y3 ¥4 probabilistic output
A \ A

E E E E right-to-left hidden
h, h, n h, left-to-right hidden

y / states

word embeddings

BACKGROUND:
N-GRAM LANGUAGE MODELS

n-Gram Language Mode]

* Godal: Generate realistic looking sentences in a human
language

* Key Idea: condition on the last n-1 words to sample
the nt" word

P
-—\ Q/
Z N2
N D 2 9 D
/—\\ /\\] o Q Yo
<& s 0 <& bqj X o,qj‘
Y & < > Y S
) 6 N Q S <
O O O O O O
Q Q Q Q Q Q

n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e) o e) (e) (oo

W, W, W; W, Wi We
T

n-Gram Model (n=2) p(wy,wa, ..., wr) = | [p(ws | we—1)
t=1

p(Wv W, W37 cee W6) =
The p(W1)
[The J(bat] p(w, [w,)
[bat][made] p(W3 Wz)
[made][noise J p(W4 W3)
[noise][at] p(W5 W4)
o) (@) p(wg | we)

10

n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e) o e) (e) (oo

W, W, W; W, W Wi
T

n-Gram Model (n=3) p(wy,wa, ..., wr) = [[plwe | we—1,we—2)
t=1

p(Wv W, W37 cee W6) =

The p(W1)
[The J(bat] p(w, [w,)
[The] [bat][made] p(W3 W,, W1)
[bat][made][noise] p(W4 W3’ WZ)
[made][noise][at] P(W5 W4, W3)
[noise][at][night] p(W6 WS’ W4)

n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e) o e) (e) (oo

Wi W, W3 Wy Ws We
T
n-Gram Model (n=3) p(wi,wa, ..., wr) = | [pwe | we—1, i)
=1
p(w,, 3o We) =
The p(W1)

The (=l YAYVEE RVVA
— Note: This is called a model because we

made some assumptions about how many
previous words to condition on
(i.e. only n-1 words)

Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?

P(w¢ | Wi, = The, p(W¢ | we, = made, P(W¢ | Wy, = cows,
0 Wi, = bat) 0 Wi, = NOIse) O Wy, = eat)
Wi p(- [+) Wi p(-[+>) Wi p(- [+
ate 0.015 at 0.020 corn 0.420
flies 0.046 pollution 0.030 grass 0.510

zebra 0.000 zebra 0.000 zebra 0.000

13

Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?
Answer: From data! Just count n-gram frequencies

p(w; | Wy, = cows,

O Wi, = eat)
.the cows eat grass...

...our cows eat hay daily... Wt p(-[+-)
... factory-farm cows eat corn...

corn 411

...on an organic farm, cows eat hay and...
...do your cows eat grass or corn?...
...what do cows eat if they have...
...cows eat corn when there is no... hay 2/11
... which cows eat which foods depends...
...if cows eat grass...

...when cows eat corn their stomachs...
...should we let cows eat corn?...

grass 3/11

if 111

which 1/11

14

Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up
4

Repeat ~
P > N 2
N) ¥ o %)
QN AN © S N °
< oy N § ¥ B

g g < > Y S
) 6 N Q S <

O O o O O O

Q Q Q Q Q Q

Sampling from a Language Model

Question: How do we sample from a Language Model?

Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up

4.

Repeat

Training Data (Shakespeaere)

5-Gram Model

| tell you, friends, most charitable care
ave the patricians of you. For your
wants, Your suffering in this dearth,
you may as well Strike at the heaven
with your staves as lift them Against
the Roman state, whose course will on
The way it takes, cracking ten thousand
curbs Of more strong link asunder than
can ever Appear in your impediment.
For the dearth, The gods, not the
patricians, make it, and Your knees to
them, not arms, must help.

Approacheth, denay. dungy
Thither! Julius think: grant,—-0
Yead linens, sheep's Ancient,
Agreed: Petrarch plaguy Resolved
pear! observingly honourest
adulteries wherever scabbard
guess; affirmation--his monsieur;
died. jealousy, chequins me.
Daphne building. weakness: sun-
rise, cannot stays carry't,
unpurposed. prophet-like drink;
back-return 'gainst surmise
Bridget ships? wane; interim?
She's striving wet;

RECURRENT NEURAL NETWORK (RNN)
LANGUAGE MODELS

Recurrent Neural Networks (RNNs)

inputs: x = (x1,29,...,27),2; € R
hidden units: h = (hy, ho,...,h7),hi € R’

outputs: y = (y1,2,---,yr), ¥ € R"
nonlinearity: H

Definition of the RNN:
he = H(Wenxy + Whphi—1 + bp)
Yt — Whyht =+ by

18

The Chain Rule of Probabilitm

Question: How can we define a probability distribution over a

sequence of length T2

e) o e) (e) (oo

W, W, W3 W, W5 We
T
Chain rule of probability: p(wi,wa,...,wr) = | [p(ws | wi_y,...,w)
t=1
p(w,, vﬁo@, ey Wg) =
p(w,)
e I amr— YAV FVVA
e Note: This is called the chain rule because
(me|] itis always true for every probability
The distribution w)
The PAYVe [VW5 YWy VV3y VVo) W1)

19

RNN Language Model

T
RNN Language Model: p(w1,ws, ..., wr) = | [p(w: | fo(we-1,...,w1))
t=1

p(W1, W, W3) cee W6) =
The p(W1)

(The) (Toat) p(W, | fo(wi))

[The] [bat][made] p(W3 fe(wz, W1))

[The][bat][made | [noise] p(W fG(W3) W,, W1))

[The][bat][made |(noise |[at | p(W fe(w W , W, W1))

[The][bat][made |[noise |[at][night | p(W6 fe(W W,, W3, W, W1))

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector

RNN Language Model

[The][bat][made][noise][at][night] [END]

I A T R

»]«p(w1|h1) TP(WZIhZ) TP(WBWS) Tp(w4lh4) TP(WSIhS) TP(W6|h6)Tp(W7|h7)
. > | > > > > >

) L

h, h, h, h, hs he h,
IT—lITF—IT >l > IT T I+l

A /A N A

[STARTJ [The] [bat] [made] [noise] [at] [night]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

The

T

p(wilh,)

h,
T
/

START

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

bat

T
o[p(wzlhz)

h, h,
CITF—t 1 1]

o

(START] [The |

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

made

T
/[p(wshs)

h, h, hy
I e B e

L1

(START] [The | [bat |

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

noise

T
/[p(w4lh4)

h, h, h, h,
CITH+—lIITr+—lITr—=t11]

I

(START] [The] [bat) [made |

7z

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

T
'[P(Wslhs)

h, h, h, h, hs
(ITThF—l Il >l {11

[1 1 1

(START] | The | [bat | [made | [noise]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

Question: How can we create a distribution

5
Answer: T
[P(W6|h6)
h, h, h; h, hs he

(ITF—lI T Il > 11

L 1t 1 1 1

[STARTJ [The] [bat][made] [noise][at]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

END

T
Ip(w7lh7)

h, h, h, h, hs he h,
IT—lITF—IT >l > IT T I+l

r -t t 1 1 °

[START] [The] [bat] [made] [noise] [at] [night]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

[The][bat][made][noise][at][night] [END]

T

T

T

T

»]«p(w1|h1) TP(WZIhZ) TP(WBWS) Tp(w4lh4) TP(WSIhS) TP(W6|h6)Tp(W7|h7)
' > | > > > > > >
h, h, h; h, hs he h,
(TTF—lITTFTT > I T I T > TIT 111

A

A

N

A

[START] [The] [bat] [made] [noise] [at] [night]

P(W1, Wy W3y ooy WT) = p(W1 l h1) p(Wz | hz) p(Wz | hT)

Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up
4

Repeat ~ . .@Q/\
N) ¥ S)
QN AN © S N °
< <& N § ¥ B
g g < > Y S
) 6 N Q S <
O O O O O O
Q Q Q Q Q
— — —
) @ The same approach to

[e || bt | sampling we used for an n-

Gram Language Model also
works here for an RNN
Language Model

Sampling from an RNN-LM

44
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hour
council | am great, Murdered and by thy
there My power to give thee but so much
service in the noble bondman here, Woul
her wine.

h me brok
Which is the real
Shakespeare?!

44

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without

n limb shall acquit him well. Your brother is
ender; and, for your love, | would be

as | must, for my own honour, if he

re, out of my love to you, | came hither

KING LEAR: O, if you were a feeble , the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

{thal, that either you might stay him
from his intend brook such disgrace well as he
shall runinto, in t is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

Shakespeare’s As You Like It

VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

RNN-LM Sample

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, | would be
loath to foil him, as | must, for my own honour, if he
come in: therefore, out of my love to you, | came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

RNN-LM Sample

VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

Shakespeare’s As You Like It

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, | would be
loath to foil him, as | must, for my own honour, if he
come in: therefore, out of my love to you, | came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

44
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hour
council | am great, Murdered and by thy
there My power to give thee but so much
service in the noble bondman here, Woul
her wine.

h me brok
Which is the real
Shakespeare?!

44

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without

n limb shall acquit him well. Your brother is
ender; and, for your love, | would be

as | must, for my own honour, if he

re, out of my love to you, | came hither

KING LEAR: O, if you were a feeble , the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

{thal, that either you might stay him
from his intend brook such disgrace well as he
shall runinto, in t is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

MODULE-BASED AUTOMATIC
DIFFERENTIATION

Training Backpropagation N

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a
direcI:,e’g acyclic graph, where each variable is a node (i.e. the “computation
grap

2. Visit each node in topological order.
For variable u; with inputs v,,..., vy
a. Compute u; = gi(v,,..., Vx)

b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1. u1
2. Visit each node v;in reverse topological order.
Let u,,..., uy denote all the nodes with v;as an input
Assuming thaty = h(u? = h(u,y..., Upw)
and u = g(v) or equivalently u; = gi(v,,..., vj,..., vy) for all i U1
a. Wealready know dy/du; for all i
b. Compute dy/dv, as below (Choice of algorithm ensures

computing (du;/dv;) is easy) B Ly

%j a i1 dul dvj xr

. uM

//
P

Uj
N

A

/90

Return partial derivatives dy/du;for all variables

Training

Automatic Differentiation - Reverse Mode (aka. Backpropagation)

Forward Computation

Backpropagation

1.

Backward Computation (Version B)

Write an algorithm for evaluating the function y = f(x). The algorithm defines a
direcﬁgsj acyclic graph, where each variable is a node (i.e. the “computation
grap

Visit each node in topological order.
For variable u; with inputs v,,..., vy
a. Compute u; = gi(v,,..., Vx)

b. Store theresult at the node

Ry
.

1.
2.

Upnr

SN

Initialize all partial derivatives dy/du; to o0 and dy/dy = 1.
Visit each node in reverse topological order.

For variable u; = gi(v,,..., Vx)

a. Wealready know dy/du;

b. Increment dy/dv; by (dy/du;)(du;/dv;) v ce V;

(Choice of algorithm ensures computing (du;/dv)) is easy) 1 T /

u

N

NGN

UN

X

Return partial derivatives dy/du;for all variables

Training Backpropagation

Why is the backpropagation algorithm e;
1,
2.

icient?
Reuses computation from the forward pass in the backward pass

Reuses partial derivatives throughout the backward pass (but
only if the algorithm reuses shared computation in the forward

pass)

\—

(Key idea: partial derivatives in the backward pass should be
thought of as variables stored for reuse)

Be

42

Backpropagation:
Abstract Picture

Output

Hidden Layer

Forward
CJ=—yllogy
. ¥ = softmax(b)
. b=pz

. z=o(a)

. a=oaX

10.
11.

Backward

A

gy =-y+y
gb = g; (diag(y) —yy")

g8 =ghz'
8z = Bng
ga:gz®z®(1_z)
8a = gaXT

(F) Loss
J =, i log(yk)

|

f

[(E) Output (softmax)
Y = exp(by)
; Zlel exp(bi)

\

f

[(D) Output (linear)
br = 35 Brjz; Yk

f

\

[(C) Hidden (nonlinear)

Ry = U(aj)a \V/]

?

7

\

(B) Hidden (linear)
a; = Yito iti, Vi

f

(A) Input
Given x;, Vi

43

Backpropagation:
Procedural Method

Algorithm 1 Forward Computation Drawbacks of

1: procedure NNFORWARD(Training example (x, y), Params «, 3) Procedural Method

2 a=ox 1. Hardtoreuse/

3 z=o(a) adapt for other

4 b=pz models

A S‘_OftTrqzx(})) 2. (Possibly) harder to
. :Ob“y_ectg(;’a 2 b.9.J) make individual

’ e e) steps more efficient

8 return intermediate quantities o

3. Hard to find source
of error if finite-
difference check
reports an error
(since it tells you
only that there is an

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Params «, (3,
Intermediates o)
Place intermediate quantities x,a,z, b, y, J in o in scope

8y =-Yy=Y :
S s error somewhere in

5= 8y (g'ag(y> vy’ those 17 lines of

86 = Bp? code)

g. =0 g}

ga:gz®z®(1_z)
a = gaXT
return parameter gradients g, g3

E

Module-based AutoDiff

Module-based automatic differentiation (AD [Autodiff) is a technique that has
long been used to develop libraries for deep learning

* Dynamic neural network packages allow a specification of the computation
graph dynamically at runtime
— PyTorch
— Torch
— DyNet
— TensorFlow with Eager Execution
* Static neural network packages require a static specification of a
computation graph which is subsequently compiled into code
— TensorFlow with Graph Execution
— Aesara (and Theano)

— (These libraries are also module-based, but herein by “module-based AD” we mean the
dynamic approach)

http://pytorch.org/
http://torch.ch/
https://dynet.readthedocs.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://aesara.readthedocs.io/

Module-based AutoDiff

* Key ldea:
— componentize the computation of the neural-network into layers
— each layer consolidates multiple in the

computation graph (a subset of them) into one vector-valued node
(aka. a module)

* Each module is capable of two actions:

1. Forward computation of output b = [b1,...,bp]| given input
b b a = |ay,...,aa] via some differentiable function f. That is
T l b = f(a).
2. Backward computation of the gradient of the input
[module } g = VaJ = [5L,..., 52L] given the gradient of output
T l g = Vo = [§5,..., 5Z], where J is the final real-valued
output of the entire computation graph. This is done via the
a Ja . oJ J oJ db; .
chainrule 5= = > %, ot qa. foralli {1,..., A}.

Module-based AutoDiff

Dimensions: input a € R4, output b € R7, gradient

of output g, = V,J € R4, and gradient of input g, = Linear Module The linear layer has two inputs: a vec-

ViJ € RB. tor a and parameters w € RB*4, The output b
is not used by LINEARBACKWARD, but we pass it in

Sigmoid Module The sigmoid layer has only one input for consistency of form.

vector a. Below o is the sigmoid applied element- 1: procedure LINEARFORWARD(a, w)
wise, and @ is element-wise multiplication s.t. u® 2 b =wa
vV = [u1v1, .. ., UprUN]- 3 return b
1: procedure SIGMOIDFORWARD(a) 4: procedure LINEARBACKWARD(a, w, b, gp)
» b=oc(a) 5 8w =gpa
3 return b 6 ga = wlgp
4: procedure SIGMOIDBACKWARD(a, b, gp,) 7 return g, ga
5 ga=gbObO(1-b)
6 return g, Cross-Entropy Module The cross-entropy layer hastwoin-
puts: a gold one-hot vector a and a predicted proba-
Softmax Module The softmax layer has only one input bility distribution a. It’s output b € R is a scalar. Be-
vector a. For any vector v € R”, we have that low = is element-wise division. The output b is not
diag(v) returns a D x D diagonal matrix whose used by CROSSENTROPYBACKWARD, but we pass it in
diagonal entriesare vy, v, . . ., vp and whose non- for consistency of form.

diagonal entries are zero. procedure CROSSENTROPYFORWARD(a, a)

1:
1: procedure SOFTMAXFORWARD(a) 2: b= —alloga

2 b = softmax(a) 3: return b

3 return b 4: procedure CROSSENTROPYBACKWARD(a, a, b, g5)
4: procedure SOFTMAXBACKWARD(a, b, gp,) 5: ga=—g(a+a)

5 ga = g, (diag(b) — bb™) 6: returng,

6 return g,

Module-based AutoDiff

Algorithm 1 Forward Computation

1: procedure NNFORWARD(Training example (x, y), Parameters «,

B)

2 s e W o W

a = LINEARFORWARD(X,)

Z = SIGMOIDFORWARD(a)

b = LINEARFORWARD(z, 3)

y = SOFTMAXFORWARD(Db)

J = CROSSENTROPYFORWARD(y, ¥)
o = object(x,a,z,b,y,J)
return intermediate quantities o

Algorithm 2 Backpropagation

1: procedure NNBACKWARD(Training example (x, y), Parameters
a, 3, Intermediates o)

2w 2o W

Place intermediate quantities x,a,z, b, y, J in o in scope
gr =% =1 > Base case
gy = CROSSENTROPYBACKWARD(Y, ¥, J, 9.7)
gh = SOFTMAXBACKWARD(b, ¥, g5)

g3, 8z = LINEARBACKWARD(z, b, gp)

ga = SIGMOIDBACKWARD(a, z, g5)

8, 8x = LINEARBACKWARD(X, a,)

return parameter gradients g, g3

> We discard gy

Advantages of

Module-based

AutoDiff

1. Easytoreuse/
adapt for other
models

2. Encapsulated
layers are easier
to optimize (e.g.
implement in C++
or CUDA)

3. Easierto find

bugs because we
can run a finite-
difference check
on each layer
separately

Module-based AutoDiff (oop version)

Object-Oriented Implementation:

— Let each module be an object

— Then allow the control flow dictate the creation of the computation graph
— No longer need to implement NNBackward(-), just follow the computation

graph in reverse topological order

class Sigmoid (Module)
method forward(a)
b =o(a)
return b
method backward(a, b, gp)
g.=8bOb® (1 —-Db)
return g,

class Softmax(Module)
method forward(a)
b = softmax(a)
return b
method backward(a, b, gp)
ga = 8, (diag(b) —bb")
return g,

[0 RN [0) NNV B S V) N -

class Linear (Module)

method forward(a, w)
b =wa
return b

method backward(a, w, b, gp)

8w = gbaT

8a — ngb
return g., g,

class CrossEntropy (Module)

method forward(a, a)
b= —alloga
return b
method backward(a, a, b, gp)
ga = —gr(a+a)
return g,

OW 060 N O U1 h W N A

Module-based AutoDiff (oop version)

class NeuralNetwork (Module) :

method init ()
linl_layer = Linear()
sig layer = Sigmoid ()
lin2_ layer = Linear()
soft_layer = Softmax()
ce_layer = CrossEntropy ()

method forward(Tensor x, Tensor y, Tensor a, Tensor 3)
a =linl_ layer.apply_fwd(x,)
z =sig_ layer.apply_ fwd(a)
b =lin2_ layer.apply_ fwd(z, 3)
y =soft_ layer.apply_fwd(b)
J =ce_layer.apply_ fwd(y,y)
return .J.out tensor

method backward (Tensor x, Tensor y, Tensor o, Tensor (3)
tape__bwd ()
return linl layer.in gradients[1] , lin2 layer.in gradients[1]

OW 060 N O U1 h W N A

Module-based AutoDiff (oop version)

global tape = stack()

)
class NeuralNetwork (Module) : 2
3 class Module:
method init () 4 o
linl_layer = Linear () g method init()
sig_layer = Sigmoid () 6 out_tensc?r = null
lin2 layer = Linear() / out_gradient = 1
soft_ layer = Softmax() 8 o
ce_layer = CrossEntropy () 9 met.hod apply fwd(List in_modules)
10 in tensors = [x.out tensor for x in in modules]
method forward(Tensor x, Tensor y, Tensor " out_tensor = forward (in_tensors)
a =linl_ layer.apply_ fwd(x,) 2 tape. push (self)
z =sig_layer.apply_ fwd(a) 3 return self
b =lin2_layer.apply_ fwd(z, 3) .
y =soft_layer.apply_ fwd(b) 5 met'hod aPPly—de() : _ _
J =ce_layer.apply fwd(y,) 16 m_g.rajdlents = back.ward(m_tensors , out_tensor , out_ gradient)
return J.out tensor 17 for i in 1,..., len(in_modules) :
o 18 in__modules[i] .out_gradient += in_ gradients/[i]

method backward (Tensor x, Tensor y, Tensc ™ return self

tape bwd () =

return linl layer.in gradients[1] , lin2 l¢ * functio.n tape_bwd () :
22 while len(tape) > 0

23 m = tape.pop()
24 m.apply bwd()

OW 060 N O U1 h W N A

Module-based AutoDiff (oop version)

global tape = stack()

)
class NeuralNetwork (Module) : 2
3 class Module:
method init () 4 o
linl_layer = Linear () g method init()
sig_layer = Sigmoid () 6 out_tensc?r = null
lin2 layer = Linear() / out_gradient = 1
soft_ layer = Softmax() 8 o
ce_layer = CrossEntropy () 9 met.hod apply fwd(List in_modules)
10 in tensors = [x.out tensor for x in in modules]
method forward(Tensor x, Tensor y, Tensor " out_tensor = forward (in_tensors)
a =linl_ layer.apply_ fwd(x,) 2 tape. push (self)
z =sig_layer.apply_ fwd(a) 3 return self
b =lin2_layer.apply_ fwd(z, 3) .
y =soft_layer.apply_ fwd(b) 5 met'hod aPPly—de() : _ _
J =ce_layer.apply fwd(y,) 16 m_g.rajdlents = back.ward(m_tensors , out_tensor , out_ gradient)
return J.out tensor 17 for i in 1,..., len(in_modules) :
o 18 in__modules[i] .out_gradient += in_ gradients/[i]

method backward (Tensor x, Tensor y, Tensc ™ return self

tape bwd () =

return linl layer.in gradients[1] , lin2 l¢ * functio.n tape_bwd () :
22 while len(tape) > 0

23 m = tape.pop()
24 m.apply bwd()

PyTorch

1 # Define model
2 class NeuralNetwork(nn.Module):

The same simple

3 def __ init__ (self):
l I(4 super (NeuralNetwork, self). init ()
neura networ 5 self.flatten = nn.Flatten()
. . 6 self.linearl = nn.Linear(28+*28, 512)

we deflned n 7 self.sigmoid = nn.Sigmoid()

8 self.linear2 = nn.Linear(512,512)
pseudocode can

H 10 def forward(self, x):

aISO be deflned 11 x = gself.flatten(x)
: 12 a = gself.linearl(x)
In PyTorCh' 13 z = self.sigmoid(a)

14 b = self.linear2(z)

15 return b

16

17 # Take one step of SGD
18 def one_step_of_sgd(X, y):

19 loss_fn = nn.CrossEntropyloss()
20 optimizer = torch.optim.SGD(model.parameters(), lr=le-3)
21

22 # Compute prediction error

23 pred = model(X)

24 loss = loss_fn(pred, y)

25

26 # Backpropagation

27 optimizer.zero_grad()

28 loss.backward()

29 optimizer.step()

Example adapted from https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

PyTorch

Why don’t we call linear.forward() in PyTorch?

This is just syntactic sugar. There’s a special method in Python
__call__ thatallows you to define what happens when you treat
an object as if it were a function.

In other words, running the following:
linear(x)

is equivalent to running:
linear.__call__(x)

which in PyTorch is (nearly) the same as running:
linear. forward(x)

This is because PyTorch defines every Module’s __call__ method

to be something like this:
def __call__(self):
self.forward()

(0]

A v bW N

PyTorch

A: This just makes your code cleaner.

Q: Why don’t we pass in the parameters to a PyTorch Module?

In PyTorch, you store the parameters inside the Module and “mark”
them as parameters that should contribute to the eventual gradient

used by an optimizer

method forward(Tensor x, Tensor y, Tensor a«, Tensor 3) 10
a =linl_ layer.apply_ fwd(x, a) 11
z =sig_layer.apply fwd(a)
b =linl_ layer.apply_ fwd(z, 3)
y =soft_ layer.apply_fwd(b) 15

def forward(self, x):
X self.flatten(x)
a self.linearl
Z self.sigmoid(a)
b self.linear?

return b

(x)
(x)
(a)
(z)

J =ce_layer.apply_ fwd(y, y)
return J.out tensor

Two parts: and R e C a p

Deep Learning

 AutoDiff

— is atool for computing %radients of a
differentiable function, b = f(a)

— the key building block is a module with a
forward() and backward()

— sometimes define f as code in forward() by
chaining existing modules together
* Computation Graphs

— are another way to define f (more conducive to
slides)

— we are considering various (deep) computation
raphs: (1) CNN (2) RNN (3) RNN-LM
%4) Transformer-LM
* Learning a Deep Network

— deep networks (e.g. CNN/RNN) are trained by
optimizing an objective function with SGD

— compute gradients with AutoDiff

Language Modeling

key idea: condition on previous words to
sample the next word

to define the probability of the next word...
— ...n-gram LM uses collection of massive 50k-
sided dice

— ...RNN-LM or Transformer-LM use a neural
network

Learning an LM

— n-gram LMs are easy to learn: just count co-
occurrences!

— a RNN-LM [Transformer-LM is trained just like
other deep neural networks

LEARNING AN RNN

Data:

Dataset for Supervised
Part-of-Speech (POS) Tagging
D= (2" y "),

Sample ® ® @ (9 ® }»
T
Sample 2: @ @ . ‘ @ &
}
Sample 3: @ ‘ @ @ @ } yB
@ @ } e
sample 4: ‘ @ @ ‘ . Ty
) } =

Ry

58

SGD and Mini-batch SGD

Algorithm 1SGD

: Initialize 0(©)

2:

3:

4: s =10

s: fort =1,2,...,7T do

6: for i € shuffle(1,..., N) do

7: Select the next training point (x;, v;)

8: Compute the gradient ¢(*) = V.J;((s= 1)
o: Update parameters (5) = §(s=1) — pq(s)
10: Increment time steps = s+ 1

1: Evaluate average training loss J(0) = + > J;(0)

n 1=

12: return 6%

SGD and Mini-batch SGD

Algorithm 1 Mini-Batch SGD

i: Initialize 0(°)

Divide examples {1, ..., N} randomly into batches {I;, ..., Ip}

where Ule I,={1,...,N}and ﬂle I, =10

s =10

fort =1,2,...,T do

forb=1,2,...,Bdo

Select the next batch Iy, where m = |[|
Compute the gradient g'*) = L 3" V.J;(6%))
Update parameters (s) = §(s=1) — pg(s)

10: Increment time steps = s+ 1

1: Evaluate average training loss J(0) = £+ >_1" . J;(0)

n

N

e 9N @V W

12: return ()

RNN

Algorithm 1 Elman RNN

1: procedure FORWARD(z 1.7, Wan, Wag, ba, Wyn, by)
2: Initialize the hidden state hy to zeros

3 fortinltol do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:

6 at:Wah'ht—1+Wax'xt+ba

Vi ht — O'((],t)

8 Compute the output at time step ¢:

9 yt:Wyh'ht+by

RNN

Algorithm 1 Elman RNN

: procedure FORWARD(Z1.7, Wan, Waz, ba, Wyn, by)
Initialize the hidden state hg to zeros
fortinlto’l do
Receive input data at time step ¢: x;
Compute the hidden state update:
Ay — Wah . ht—l + Wam - Tt + ba
ht = a(at)
Compute the output at time step ¢:
Y = softmax(Wyp, - hy + b))

QRN R NR

RNN + Loss

Algorithm 1 ElIman RNN + Loss

1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
2 Initialize the hidden state hg to zeros

3 fortinltol' do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:
6

7

8

9

£ =log p(w) [+]

///j7ﬂr\\\

e] et) Lot) [Lae) |

Ay = Wah . ht—l =+ Wam - T+ ba
ht — O'(CLt)
Compute the output at time step ¢:
Yy = softmax(Wyp, - hy + by)
10 Compute the cross-entropy loss at time step ¢:

1 b= =2k (U7 log((ye)r)
12: Compute the total loss:

13: V= Zle /4

LEARNING AN RNN-LM

Learning a Language Model

Question: How do we learn the probabilities for the n-Gram | MLE for n-gram LM

Model? * This counting method
: | _ ~ gives us the maximum
Answer: From data! Just count n-gram frequencies Plelihood estimate of
P(We| Wi, = cows, the n-gram LM
0 Wi, = eat) t
parameters

... the cows eat grass...

¢ hav dail w C1n°) * We can derive it in the
...](c)ur cowfs eat hay dal Z t 21 I usual way:
... Tactory- arm. cows eat corn... orn A _ Write the likelihood of
...on an organic farm, cows eat hay and... the sentences under the
...do your cows eat grass or corn?... grass 311 n-gram LM
...what do cows eat if they have... — Set the gradient to zero
...cows eat corn when there is no... hay 2/11 and impose the constraint
...which cows eat which foods depends... that the probabilities sum-

. lf 1/11 tO"One

...if cows eat grass...

: — Solve for the MLE
... when cows eat corn their stomachs...

which 1/11
... should we let cows eat corn?...

Learning a Language Model

MLE for Deep Neural LM

* We can also use maximum likelihood estimation
to learn the parameters of an RNN-LM or
Transformer-LM too!

e But notin closed form - instead we follow a
different recipe:

— Write the likelihood of the sentences under the
Deep Neural LM model

— Compute the gradient of the (batch) likelihood w.r.t.

the parameters by AutoDiff

— Follow the negative gradient using Mini-batch SGD
(or your favorite optimizer)

MLE for n-gram LM

* This counting method
gives us the maximum
likelihood estimate of
the n-gram LM
parameters

e We can deriveitin the
usual way:
— Write the likelihood of

the sentences under the
n-gram LM

— Set the gradient to zero
and impose the constraint

that the probabilities sum-
to-one

— Solve for the MLE

How can we use this to compute

RNN + Loss the loss for an RNN-LM?

Algorithm 1 ElIman RNN + Loss

1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
2 Initialize the hidden state hg to zeros

3 fortinltol' do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:
6

7

8

9

£ =log p(w) [+]

///j7ﬂr\\\

e] et) Lot) [Lae) |

Ay = Wah . ht—l =+ Wam - T+ ba
ht — O'(CLt)
Compute the output at time step ¢:
Yy = softmax(Wyp, - hy + by)
10 Compute the cross-entropy loss at time step ¢:

1 b= =2k (U7 log((ye)r)
12: Compute the total loss:

13: V= Zthl /4

Oow can we use this to compute

H
RN N-LM + LOSS L the loss for an RNN-LM?

log p(w) = log p(wy, Wy, W3, ... , Wr)

— log p(w, | hy) + ... +log p(w, | hr) Algorithm 1 ElIman RNN + Loss

1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
2 Initialize the hidden state hg to zeros

3 fortinltol' do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:
6

7

8

9

£ =log p(w) [+]

///j7ﬂr\\\

e] et) Lot) [Lae) |

Ay = Wah . ht—l =+ Wam - T+ ba
ht — O'(CLt)
Compute the output at time step ¢:
Yy = softmax(Wyp, - hy + by)
10 Compute the cross-entropy loss at time step ¢:

1 b= =2k (U7 log((ye)r)
12: Compute the total loss:

13: /= Zthl /4

y; = p(wih;) Tz = p(whlh.) ys = pP(WAslhs) T4 = p(fvalhy)

L b, b L,

ow can we use this to compute

H
RN N-LN\ + LOSS L the loss for an RNN-LM?

og Pw) ;',‘;2 E((\\/,Vvl’m’)\i% ' i(;/;[))(wz Ihy) Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
L=logpw)[+ | 2 Initialize the hidden state h to zeros
A 3 fortinltol do
4: Receive input data at time step ¢: x;
L6) Lot)[40] (a6 | 5: Compute the hidden state update:
6 at:Wah'ht—1+Wax'It+ba
Y= p(Wilk) Y2 = p(walf) y; = p(wilhs) 7 hy = o(ay)
I T I 8 Compute the output at time step ¢:
9 Yt — SOftmaX(Wyh . ht + by)
10 Compute the cross-entropy loss at time step ¢:
" n 1 b= =2k (U7 log((ye)r)
12: Compute the total loss:

13: V= Zthl /4

Learning an RNN-LM

* Each training example is
a sequence %e.g. log p(w) = 10g p(w., Wa, W3, ..., Wr)
sentence), so we have =log p(w;, | h,) + log p(w, | h,) + ... +log p(w, | h)
training data D = {w("), J = log p(w)
w®), . wiNy

* The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is
typically the log- T 0 - . s
likelihood of the training L) (2] L6) La6)) LaG)) LAG)) L)
examples: .

J(8) = £ log pe(w0))

* We train by mini-batch
SGD (or your favorite
flavor of mini-batch SGD)

one

training
example

[START] [The] [bat][made] [noise][at]

—

night | [END |

71

LARGE LANGUAGE MODELS

How large are LLMs?

Comparison of some recent large language models (LLMs)

Creators Year of | Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10 billion (40Gb) 1.5 billion
GPT-3 OpenAl 2020 300 billion 175 billion
(cf. ChatGPT)

PaLM Google 2022 780 billion 540 billion
Chinchilla DeepMind 2022 1.4 trillion 70 billion
LaMDA Google 2022 1.56 trillion 137 billion
(cf. Bard)

LLaMA Meta 2023 1.4 trillion 65 billion

GPT-4 OpenAl 2023 ? ?

What is ChatGPT?

* ChatGPT is a large (in the sense of having many parameters)
language model, fine-tuned to be a dialogue agent

* The base language model is GPT-3.5 which was trained on a
large quantity of text

Transformer Language Models

MODEL: GPT

80

Attention

[
S41
[[[

1 2 4
(rri1 [CrrJ1 Cerf Gt

Attention

1

/ — . .

X = ai,5Vy
j=1

aJ

|
E,oftmax
s

[

[TT]

Attention

2

/ — . .

Xo = a2,5Vj
j=1

[/ softinax]
S

0 ul

\A \'p

Attention

1
(0 O e O

Attention

[
S41
[[[

1 2 4
(rri1 [CrrJ1 Cerf Gt

Attention

)) / _
X; X4 Xy = E Qg V4

))
1 2
1 O I I I A B I

attention weights

Scores

T [T [T OO values

Scaled Dot-Product Attention

\"
T v = WTXj values

(

1 2 V3
L[] L[] L[]
X X, X; X,

Scaled Dot-Product Attention

a 4,2 d

[softmax/ / /]

S$ 2 513 5$4

]]
ki > k, T
1/ OO [T11 [T ki = Wi x; keys
Vi Vv, / V, T
1 O O s o A e i v, = Wy X; values
X X X3 X4

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

/
X4 = A4,5V;j
j=1
a1 a
W, s$
]
A 9 W7 queries
Wi [(T1T1 O | q; = W Xj
k
1 _ xxrT
o1/ | | ki = Wi x; keys
Wv Vv Vv T
X

X3 X,

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

/ —
Xy = A4,5V

j=1

Q\Z O s4,; = kI qu/+/dyScores

- q; = ngj queries
k, 2 k; k, T
T/ Oy [[kj = Wi x; keys
"2 vz/ A v, T
1 O O s o A e i v, = Wy X; values
X

X3 X,

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

/ —
Xy = A4,5V

j=1

a, = softmax(sy)attention weights

Q\Z O s4,; = kI qu/+/dyScores

- q; = ngj queries
k, 2 k; k, T
T/ Oy [[kj = Wi x; keys
"2 vz/ A v, T
1 O O s o A e i v, = Wy X; values
X

X3 X,

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

X, X

2
[1]

ay = softmax(s4)attention weights

S4. = ijqél/w /d,. scores
q; = ngj queries
k;, = Wix, keys

_ T

92

Scaled Dot-Product Attention

X)

X)

X)

1
LI 1]

2
LLT]

)
X4

/ — . .
X = E :atJVJ

3
LLT]

g=1

a; = softmax(s;) attention weights

si,; = k; qi/+/dj, scores

} qQj = ngj queries

X3

\[attention

_//X1 Xz

X4

k;, = Wix, keys

_ wlo
v, = Wlx; values

Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
0 0 0 0 0 0 O -1 1 T ([1 5 -3 -3
0 2 W/---‘l/ 11 [3 .10 7
0 0 |21 ff2]0 O 1 0 -1 11 |-1 1 -3 -2
0 1 (2 {0 |0 o[:,:,1]
0 2 [0 L] 2 -1 1
0 2 1 0 O = n
00000 o i
x[:,:,1]

0 0 0 0 O

0 1 1 2

0 2 |2 (2 |2

0 0 2o j2 0 Bjasb0 (1x1x Bias b1 (1x1x1)

0 210 ﬂfl O[:,:, [:,:,0]
001000 O L 0

0 0 0 0 0 O

X[:,:,2] toggle movement

0 0 0 O 0 0

0 0 00 2 070

0 2 |1 |1 ff1 0

0o 2 [of2l0]0 O

0o o 241 |2 0

01 2 0 0 2 O

0 0 0 0 0 0 O

94

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

Multi-headed Attention

<1 head
q ead 37
ead \
Wi
multi-headed attention
I
~I
W,

X1

X,

X3

X4

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

95

To ensure the dimension of the

nput embedding x s the same - My |ti-headed Attention

as the output embedding x,
Transformers usually choose
the embedding sizes and
number of heads appropriately:

* dmodel = dim. of inputs

* dy=dim. of each output

* h=#of heads

e Choose dy = diodel / D X, X, X’ X,
Then concatenate the outputs (1] [1]
W, L] ﬁ'
W, multi-headed attention
W,
—//x1 X, X3 Xq

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

To ensure the dimension of the
input embedding x; is the same
as the output embedding x,
Transformers usually choose
the embedding sizes and
number of heads appropriately:

* dmodel = dim. of inputs

* dy=dim. of each output

* h=#of heads

e Choose dy = diodel / D
Then concatenate the outputs

Multi-headed Attention

)

)

)

X, X, X5 X,
T T
B B
B8 B multi-headed attention
B B
X, X3 Xq

X1

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

RNN Language Model

[The][bat][made][noise][at][night] [END]

T

T

T

T

TP(W1|h1) TP(WZIhZ) TP(W3|h3) Tp(w4lh4) 'r(Wslhs) T(W6Ih6) ']‘P(W7|h7)
' > * > > > > > >

h,

h,

hs

h,

A

hy

he

h,

[—L1

[—>

[—1]

[—> 1]

[> |

[1—>1

A

A

N

A

[STARTJ [The] [bat] [made] [noise] [at] [night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(wy.,, -..

the vector h, = fg(wy,, ..., W,)

, W,)) that conditions on

Transformer Language Model

Important!

* RNN computation
graph grows
linearly with the
number of input
tokens

* Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

)\

[The [bat] [made] [noise]

P

T P(W1|h1) p(W2|h2)
>

>

T

p(ws|hs) 4 P(Walh,)

1
IIIIIIIIII

IPZ=

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Transformer Language Model

Important!

RNN computation
graph grows
linearly with the
number of input
tokens

Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

)\

[The

[bat] [made] [noise]

T

T

P(W2|h2)

T

p(wslh;)

T

p(w,lh,)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Layer Normalization

* The Problem: internal Given input a € R”*, LayerNorm computes output b € R¥:
covariate shift occurs
during training of a deep
network when a small
change in the low layers

a_
b=v0—&70
0)

amplities into a large where we have meanu = = S0 a
. . — — k

change in the high layers H f Zf{—l ’

* One Solution: Layer standard deviation o = \/f D=1 (ar — 1)?,
normalization normalizes and parameters v € RX, 8 € RX,
:?ecnllé?q)ﬁvriggcgl;?s/rbnisas ® and & denote elementwise multiplication and addition.

* Such normalization allows 1.0 Attentive reader

LSTM
BN-LSTM

BN-everywhere
LN-LSTM

for higher learning rates
(for faster convergence)
without issues of
diverging gradients

o
©

o
@

o©
Sl

validation error rate
o
~l

s
i
3
§
{

o
ey

_ _ 0 100 200 300 400 500 600 700 800
Figure from https://arxiv.org/pdf/1607.06450.pdf training steps (thousands)

Residual Connections

Residual Connection

* The Problem: as network Plain Connection
depth grows very large, a b
performance degradation b T
occurs that is not explained
by overfitting (i.e. train / test N [b =b' + a}e
error both worsen) _

* One Solution: Residual [b= f(a) }
connections pass a copy of b —
the input alongside another I = f(a)
function so that information a2
can flow more directly T

a

* These residual connections
allow for effective training
of very deep networks that
perform better than their
shallower (though still deep)
counterparts <

50

30

ResNet-18 % W ANAAMAANNAAA,

—ResNet-34 34-layer

. . 0 10 20 30 20 50 0 10 20 30 40 50
Figure from https://arxiv.org/pdf/1512.03385.pdf iter. (1e4) iter. (1e4)

Residual Connections

The Problem: as network
depth grows very large, a
performance degradation
occurs that is not explained
by overfitting (i.e. train / test
error both worsen)

One Solution: Residual
connections pass a copy of
the input alongside another
function so that information
can flow more directly

These residual connections
allow for effective training
of very deep networks that
perform better than their
shallower (though still deep)
counterparts

Figure from https://arxiv.org/pdf/1512.03385.pdf

Residual Connection
Plain Connection

b

|

b= /(@]

Why are residual connections helpful?

Instead of f(a) having to learn a full
transformation of a, f(a) only needs to learn an
additive modification of a (i.e. the residual).

nsformer Layer

[

x,’
IIIIIIIIIIIIIIIIIII_I
[layer normalization]
[(IT1T1] 11 oty et
[residual connections]4—
[(IT1T1] 1 ol et
[feed forward neural network]
ITT1I |—|—|—I/$I—I—|:I:I'$|:I—I:|:|:I\—'|:|—
layer normalization]
[(IT1T1] 1) il ekt
[residual connections]4—
[(ITI1] 1 bty cefrtrl
A A A A

B =B

B8 @ multi-headed attention

B B
X 2 X3 Xy

Each layer of a Transformer LM
consists of several sublayers:

1.

2.
3.
4.

attention

feed-forward neural network
layer normalization

residual connections

Transformer Layer

||||| |||4\|| |||¢|| III4\ﬂ
: —1 ! Each layer of a Transformer LM
[layer normalization]]
consists of several sublayers:

[T OIL1 O] O 1. attention

2. feed-forward neural network
[residual connections]4— . .
3. layer normalization

O [OTT0 O [T 4. residual connections

feed forward neural network

J 1 l | - — 1 1 1]

Igyer alg

l—l—rﬁllllrlllll/]\lllll/rll

residual connections]4—

11 OO0 O1T1 I

A

2
B8 @ multi-headed attention

B 5
/ / /

X,) X5 X,

105

Transformer Layer

I1IIIII2IIIII3IIIII4III_I
A A A

A
Each layer of a Transformer LM
/ \ consists of several sublayers:
1. attention

2. feed-forward neural network
3. layer normalization
4. residual connections

Transformer
Layer

U

Transformer Layer

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

x, X, X, x,’

1 2 3 4
[(ITT111 L) et trerr
[Transformer layer

I O

Transformer Language Model

[The

[bat] [made] [noise]

T

T

T

p(w;|h,) p(ws|h;) p(w,lh,)

>

>

L

IIII%

Transformer layer

%II/I I%I |

Transformd

r layer

0 |

%ﬂ I

Transformer layer

%)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

In-Class Poll

Question:)
Suppose we have the following input [Soﬁmax / /
embeddings and attention weights: w, NN E

» x,=[1,0,0,0]a,,= 0.1 E awi= i

* X = :0)110)0] dg,= 0.2 o/t -! Sun

* x;=[0,0,2,0]a,;=0.6 g ob oo b &

* x,=[0,0,0,1]a,,=0.1

And W, = I. Then we can compute x,”. | Answer:
Now suppose we swap the

embed

dings x, and x; such that
0,0,2,0]

0,1,0,0]

What is the new value of x4’?

4
=) aiv;
=1

ay = softmax(s,) attention weights

S4,5 = k?Q4/\/ dk: scores
q; = WqTXj queries

_ wil.
v; = W x; values

(\ -

[The [bat] [made] [noise]

Position Embeddings | | |

. . L p(w,|h,) p(w,|h,) p(ws|hs) Ap(wslhy)
* The Problem: Because attention is position T
invariant, we need a way to learn about positions > > > >
* The Solution: Use (or learn) a collection of position h, T h, T s T h, T
|

specific embeddings: p; represents what it means [T | L1 [T |

[|
to be in position t. And add this to the word
embedding W;. [Transformer layer l]

The key idea is that every word that appears in l_l_% L~
position t uses the same position embedding p; 7 | '/IH I l%l I %rul
* There are a number of varieties of position [Transformer layer]
embeddings: % IENZey .
— Some are fixed (based on sine and cosine), whereas '_'_% = |4\r| /pﬂ A
others are learned (like word embeddings) [Transformér layer)
— Some are absolute (as described above) but we can
also use relative position embeddings (i.e. relative
to the position of the query vector) , [.] [.] (.]
majiesReslls:
P T P: T Ps T P4 T
(0 o

IIIIII\I/\IIII_@TI_II_

GPT-3

e GPT stands for Generative Pre-trained Transformer

* GPTisjust a Transformer LM, but with a huge number of
parameters

layers dimension | dimension |# attention |# params
of states of inner heads
states

GPT (2018) 12 3072 117M
GPT-2 48 1600 - - 1542M
(2019)

GPT-3 96 12288 4%12288 96 175000M

(2020)

Matrix Version of Scaled Dot-Product Attention

s i‘:@ . * For speed, we compute
R all the queries at once

using matrix operations

T o F /R a= softmax(s4)jjzf£;,'c‘;” » First we pack the queries,
T Y/ /] keys, values into

[s /)] matrices:

54 542 543 S4.4 LT

= (] 54, = Kj qa/+/dj, scores - Q=[qy... ,CIN]TT

- q; = Wix; queries — K=[ky... ’kN]T
k k k — V=[Vvy...,V\]
: > : k. = Wix. keys

mEn III/ II/II (L1 J k% * Then we compute all the
o ‘IIZI] |V3|] ;’4|] Vi = W’UTX.j values queries =6 Qe

1 3 4
1] O iy tetrrd

QK')
Attn(xq.n) = softma V
1) &

Matrix Version of Scaled Dot-Product Attention

g=1
™ : > 4 attention
. : : : as = softmax(s4)Weights
[softmax/ / /]
W, 54 54,2 543 544 T
K m S4,j = kj q4/\/dk scores
N A
— Wik, ueries
Wy [] q] — WC] X_] q
k 2 ks k, B 7
I/ OI¥ [0 [0 ki = Wi x; keys
e ’ v / s / Vs T
O OO OO OO v; = W, x; values
Xy X, X3 X,

In practice, the attention weights are computed for all time
steps T, then we mask out (by setting to —inf) all the inputs to
the softmax that are for the timesteps to the right of the query.

* For speed, we compute

all the queries at once
using matrix operations

* First we pack the queries,
keys, values into
matrices:

_ Q = [qv'“)qN]T
— K= [Kyyeee KN T
— V= [V1) °)VN]T
* Then we compute all the
queries at once:

QK"
vV

Attn(xi.xy) = softmax (

LEARNING A TRANSFORMER LM

Learning a Transformer LM

* Each training example is
a sequence %e.g. log p(w) = 10g p(w., Wa, W3, ..., Wr)
sentence), so we have =log p(w;, | h,) + log p(w, | h,) + ... +log p(w, | h)
training data D = {w("), J = log p(w)
w®), . wiNy

* The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is

typically the log- (20) (860) (500 (260) (860 (20) (60)

likelihood of the training
5) TP(W‘F 3) T](W5|) T(WGI 6) 4 p(w;|
| \

examples: 0 T T

J(e) = Zi |Og pG(W) A p(w|h) A p(w,|h,) A p(w;|

* We train by mini-batch
SGD (or your favorite

one

training
example

flavor of mini-batch SGD) / |
Training a Transformer-LM [\ : | T : \ \]
is the same, except we \ \ \ \ \ \
swap in a different deep (sTART) [The | [bat) [made) (noise] [at | [night) [END |
language model.

Language Modeling

An aside:

* State-of-the-art language models currently tend to rely on transformer networks
(e.g. GPT-3)

* RNN-LMs comprised most of the early neural LMs that led to current SOTA
architectures

Language Modelling on Penn Treebank (Word Level)

Leaderboard Dataset

View Test perplexity v | by Date v | for All models v

Zaremba et al. (2014) - LSTM (large)

Recurrént.highway networks

>
=
>
| AWD-LSTM -continuous cache pointer
o
e GL-LWGC,+ AWD-MoS-LSTM + dynamic eval
a.
5 GPT-2
L: BERT-Large-CAS
CPT-3_(Zero-Shot)
0
2015 2016 2017 2018 2019 2020 2021 2022
Other models Models with lowest Test perplexity

Figure from

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

Why does efficiency matter?

Case Study: GPT-3
* # of training

tokens =500
billion
of

parameters =
175 billion

of cycles =50
petaflop/s-days
(each of which

are 8.64e+19
flops)

Figure from

Quantity Weight in Epochs elapsed when

Dataset (tokens) training mix training for 300B tokens
Common Crawl] (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 29
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Table 2.2: Datasets used to train GPT-3. “Weight in training mix" refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

Model Name Mparams Mlayers @model Mheads @head Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 104
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 %1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0x 1074
GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-36.7B 6.7B 32 4096 32 128 M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10—4
GPT-3 175B or “GPT-3" 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models

which we trained. All models were trained for a total of 300 billion tokens.

10000

1000
0
>
)
?
@
4
a
o
e 100
]
T
a
o
]
&
[10
'_ I I
1 .
& & & &9 &
&9’ «)V’v‘ «Qﬁ @,\/0 ‘t& ,5\:°‘ cg é\, \
& A5 & el <7
& & &£ & d é@ & c? c? (g

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH™20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

117

https://arxiv.org/pdf/2005.14165.pdf

Two parts: and R e C a p

Deep Learning

 AutoDiff

— is atool for computing %radients of a
differentiable function, b = f(a)

— the key building block is a module with a
forward() and backward()

— sometimes define f as code in forward() by
chaining existing modules together
* Computation Graphs

— are another way to define f (more conducive to
slides)

— we are considering various (deep) computation
raphs: (1) CNN (2) RNN (3) RNN-LM
%4) Transformer-LM
* Learning a Deep Network

— deep networks (e.g. CNN/RNN) are trained by
optimizing an objective function with SGD

— compute gradients with AutoDiff

Language Modeling

key idea: condition on previous words to
sample the next word

to define the probability of the next word...
— ...n-gram LM uses collection of massive 50k-
sided dice

— ...RNN-LM or Transformer-LM use a neural
network

Learning an LM

— n-gram LMs are easy to learn: just count co-
occurrences!

— a RNN-LM [Transformer-LM is trained just like
other deep neural networks

