10-301/601: Introduction to Machine Learning Lecture 20: Markov Decision Processes

Hoda Heidari, Henry Chai & Matt Gormley 4/1/24

Front Matter

Announcements

- HW7 released 3/28, due 4/8 at 11:59 PM
 - Please be mindful of your grace day usage (see <u>the course syllabus</u> for the policy)
- We will have lecture on 4/5 (Friday) and recitation on 4/8 (next Monday)

Learning Paradigms

• Supervised learning - $\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N}$ • Regression - $v^{(n)} \in \mathbb{R}$

Classification
$$x^{(n)} \in \{1\}$$

• Classification -
$$y^{(n)} \in \{1, \dots, C\}$$

• Reinforcement learning - $\mathcal{D} = \{(\mathbf{s}^{(n)}, \mathbf{a}^{(n)}, r^{(n)})\}_{n=1}^{N}$

Source: <u>https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/</u> Source: <u>https://www.wired.com/2012/02/high-speed-trading/</u>

Reinforcement Learning: Examples

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

AlphaGo

Outline

Problem formulation

- Time discounted cumulative reward
- Markov decision processes (MDPs)
- Algorithms:
 - Value & policy iteration (dynamic programming)
 - (Deep) Q-learning (temporal difference learning)

Reinforcement Learning: Problem Formulation

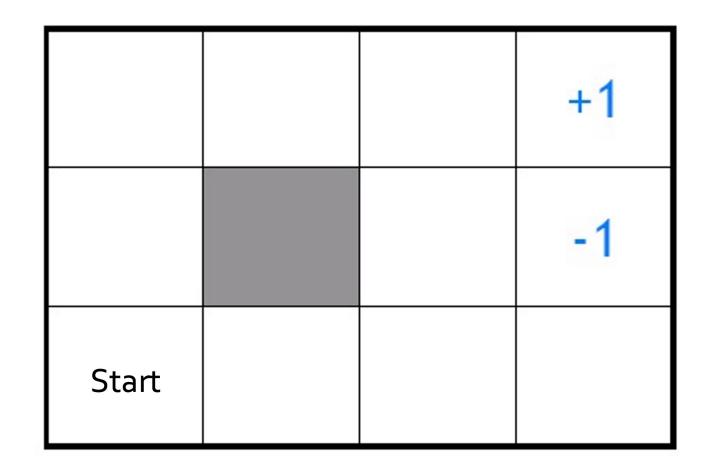
- State space, *S*
- Action space, \mathcal{A}
- Reward function
 - Stochastic, $p(r \mid s, a)$
 - Deterministic, $R: S \times A \rightarrow \mathbb{R}$
- Transition function
 - Stochastic, p(s' | s, a)
 - Deterministic, $\delta: S \times A \rightarrow S$

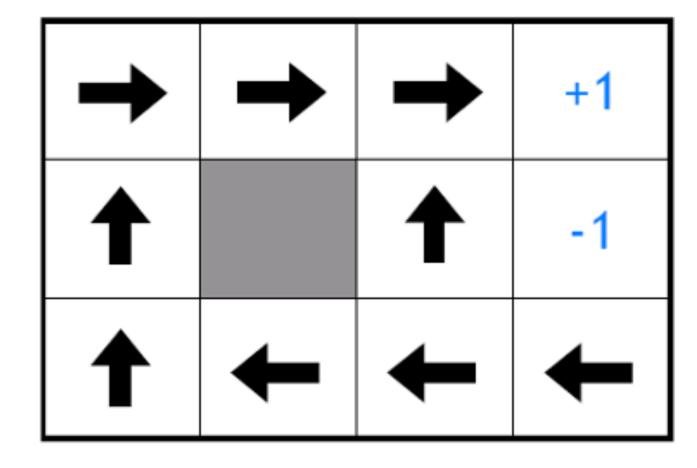
Reinforcement Learning: Problem Formulation • Policy, $\pi : S \to A$

- Specifies an action to take in *every* state
- Value function, $V^{\pi}: S \to \mathbb{R}$
 - Measures the expected total payoff of starting in some state *s* and executing policy π , i.e., in every state, taking the action that π returns

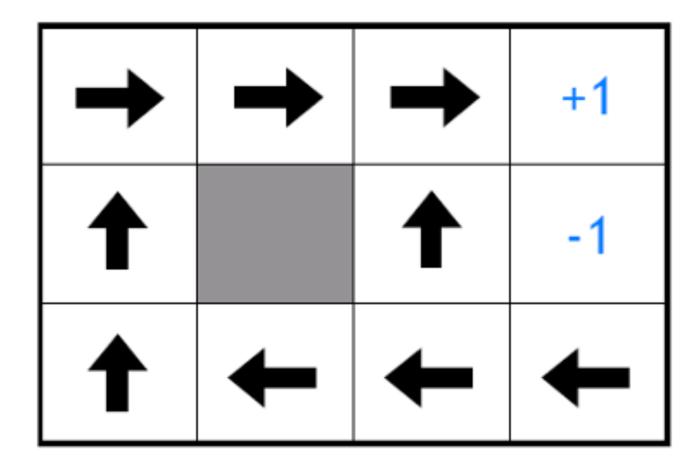
Toy Example

- $\mathcal{S} =$ all empty squares in the grid
- $\mathcal{A} = \{up, down, left, right\}$
- Deterministic transitions
- Rewards of +1 and -1 for entering the labelled squares
- Terminate after receiving either reward



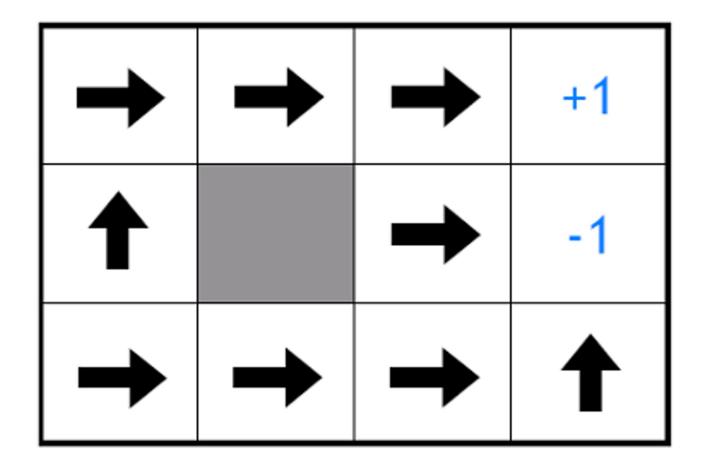


Poll Question 1: Is this policy optimal? A. Yes TOXIC B. C. No Poll Question 2: Justify your answer to the previous question



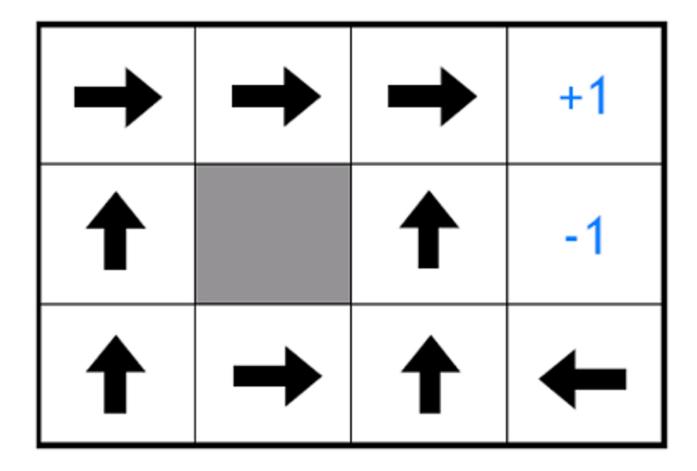
Toy Example

Optimal policy given a reward of -2 per step



Toy Example

Optimal policy given a reward of -0.1 per step



Markov Decision Process (MDP) • Assume the following model for our data:

- 1. Start in some initial state *s*₀
- 2. For time step *t*:
 - 1. Agent observes state *s*_t
 - 2. Agent takes action $a_t = \pi(s_t)$
 - 3. Agent receives reward $r_t \sim p(r \mid s_t, a_t)$
 - 4. Agent transitions to state $s_{t+1} \sim p(s' | s_t, a_t)$

3. Total reward is $\sum_{t=0}^{\infty} \gamma^t r_t$

• MDPs make the *Markov assumption*: the reward and next state only depend on the current state and action.

Reinforcement Learning: Key Challenges

- The algorithm has to gather its own training data
- The outcome of taking some action is often stochastic or unknown until after the fact
- Decisions can have a delayed effect on future outcomes (exploration-exploitation tradeoff)

MDP Example: Multi-armed bandit

- Single state: $|\mathcal{S}| = 1$
- Three actions: $\mathcal{A} = \{1, 2, 3\}$
- Deterministic transitions
- Rewards are stochastic

Reinforcement Learning: Objective Function • Find a policy $\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s) \ \forall s \in S$

Assume deterministic transitions and deterministic rewards

• $V^{\pi}(s) = discounted$ total reward of starting in state s and executing policy π forever

$$= R(s_0, \pi(s_0)) + \gamma R(s_1 = \delta(s_0, \pi(s_0)), \pi(s_1)) + \gamma^2 R(s_2 = \delta(s_1, \pi(s_1)), \pi(s_2)) + \cdots$$

$$= R(s_0, \pi(s_0)) + \sum_{t=1}^{\infty} \gamma^t R\left(\delta(s_{t-1}, \pi(s_{t-1})), \pi(s_t)\right)$$

where $0 < \gamma < 1$ is some discount factor for future rewards

Reinforcement Learning: Objective Function • Find a policy $\pi^* = \underset{\pi}{\operatorname{argmax}} V^{\pi}(s) \ \forall s \in S$

• Assume stochastic transitions and deterministic rewards

• $V^{\pi}(s) = \mathbb{E}[discounted \text{ total reward of starting in state}]$

s and executing policy π forever]

$$= \mathbb{E}_{p(s' \mid s, a)} [R(s_0 = s, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \cdots]$$

$$= \sum_{t=0}^{\infty} \gamma^{t} \mathbb{E}_{p(s' \mid s, a)} [R(s_t, \pi(s_t))]$$

where $0 < \gamma < 1$ is some discount factor for future rewards

Value Function: Example

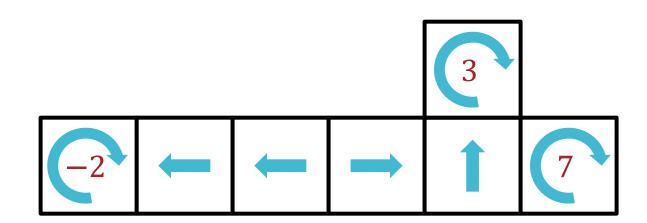
$$\begin{bmatrix} 5 \\ 3 \end{bmatrix}^{0} - 2 \begin{bmatrix} 1 \\ 0 \end{bmatrix}^{2} \begin{bmatrix} 2 \\ 3 \end{bmatrix}^{3} \begin{bmatrix} 4 \\ 6 \end{bmatrix}^{6} \frac{6}{7}$$

$$R(s,a) = \bigg\{$$

-2 if entering state 0 (safety)
3 if entering state 5 (field goal)
7 if entering state 6 (touch down)
0 otherwise

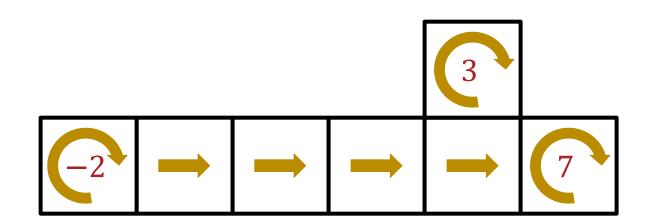
 $\gamma = 0.9$

Value Function: Example



 $R(s,a) = \begin{cases} -2 \text{ if entering state 0 (safety)} \\ 3 \text{ if entering state 5 (field goal)} \\ 7 \text{ if entering state 6 (touch down)} \\ 0 \text{ otherwise} \end{cases}$ $\gamma = 0.9$

Value Function: Example



 $R(s,a) = \begin{cases} -2 \text{ if entering state 0 (safety)} \\ 3 \text{ if entering state 5 (field goal)} \\ 7 \text{ if entering state 6 (touch down)} \\ 0 \text{ otherwise} \end{cases}$ $\gamma = 0.9$

• $V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state } s \text{ and}$ executing policy π forever]

$$= \mathbb{E}[R(s_{0}, \pi(s_{0})) + \gamma R(s_{1}, \pi(s_{1})) + \gamma^{2} R(s_{2}, \pi(s_{2})) + \dots | s_{0} = s]$$

$$= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_{1}, \pi(s_{1})) + \gamma R(s_{2}, \pi(s_{2})) + \dots | s_{0} = s]$$

$$= R(s, \pi(s)) + \gamma \sum_{s_{1} \in S} p(s_{1} | s, \pi(s)) (R(s_{1}, \pi(s_{1})) + \gamma \mathbb{E}[R(s_{2}, \pi(s_{2})) + \dots | s_{1}])$$

• $V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state } s \text{ and}$ executing policy π forever]

 $= \mathbb{E}[R(s_{0}, \pi(s_{0})) + \gamma R(s_{1}, \pi(s_{1})) + \gamma^{2} R(s_{2}, \pi(s_{2})) + \cdots | s_{0} = s]$ $= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_{1}, \pi(s_{1})) + \gamma R(s_{2}, \pi(s_{2})) + \cdots | s_{0} = s]$ $= R(s, \pi(s)) + \gamma \sum_{s_{1} \in S} p(s_{1} | s, \pi(s)) (R(s_{1}, \pi(s_{1})) + \gamma \mathbb{E}[R(s_{2}, \pi(s_{2})) + \cdots | s_{1}])$

• $V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state } s \text{ and}$ executing policy π forever]

$$= \mathbb{E}[R(s_{0}, \pi(s_{0})) + \gamma R(s_{1}, \pi(s_{1})) + \gamma^{2}R(s_{2}, \pi(s_{2})) + \dots | s_{0} = s]$$

$$= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_{1}, \pi(s_{1})) + \gamma R(s_{2}, \pi(s_{2})) + \dots | s_{0} = s]$$

$$= R(s, \pi(s)) + \gamma \sum_{s_{1} \in S} p(s_{1} | s, \pi(s)) (R(s_{1}, \pi(s_{1})) + \gamma \mathbb{E}[R(s_{2}, \pi(s_{2})) + \dots | s_{1}]$$

• $V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state } s \text{ and}$ executing policy π forever]

 $= \mathbb{E}[R(s_0, \pi(s_0)) + \gamma R(s_1, \pi(s_1)) + \gamma^2 R(s_2, \pi(s_2)) + \dots | s_0 = s]$

 $= R(s,\pi(s)) + \gamma \mathbb{E}[R(s_{1},\pi(s_{1})) + \gamma R(s_{2},\pi(s_{2})) + ... | s_{0} = s]$ $= R(s,\pi(s)) + \gamma \sum_{s_{1} \in S} p(s_{1} | s,\pi(s)) (R(s_{1},\pi(s_{1})) + \gamma \mathbb{E}[R(s_{2},\pi(s_{2})) + ... | s_{1}])$

•
$$V^{\pi}(s) = \mathbb{E}[\text{discounted total reward of starting in state } s \text{ and}$$

executing policy π forever]

$$= \mathbb{E}[R(s_{0}, \pi(s_{0})) + \gamma R(s_{1}, \pi(s_{1})) + \gamma^{2} R(s_{2}, \pi(s_{2})) + \cdots | s_{0} = s]$$

$$= R(s, \pi(s)) + \gamma \mathbb{E}[R(s_{1}, \pi(s_{1})) + \gamma R(s_{2}, \pi(s_{2})) + \cdots | s_{0} = s]$$

$$= R(s, \pi(s)) + \gamma \sum_{s_{1} \in S} p(s_{1} | s, \pi(s)) (R(s_{1}, \pi(s_{1})) + \gamma \mathbb{E}[R(s_{2}, \pi(s_{2})) + \cdots | s_{1}])$$

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s_1 \in S} p(s_1 \mid s, \pi(s)) V^{\pi}(s_1)$$

Bellman equations