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Reminders

• Homework 7: Deep Learning
– Out: Thu, Mar. 28
– Due: Mon, Apr. 8 at 11:59pm

• Schedule Notes
– Lecture 22: Fri, Apr. 5
– HW8 Recitation: Mon, Apr. 8

• Homework 8: Deep RL
– Out: Mon, Apr. 8
– Due: Fri, Apr. 19 at 11:59pm
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Q & A: 
I’ve had such a 
great experience 
with this class, 
especially with 
your excellent 
TAs; how can I be 
more like them 
and contribute 
to future 
iterations of this 
class?

� You can apply to be a TA for 

this course next semester 

(F24)!

� Applications are due by 

Monday, April 15th 

� For more information and the 

application, see 

https://www.ml.cmu.edu/aca

demics/ta.html

11/14/22 5

Matt  wants
601 TA

https://www.ml.cmu.edu/academics/ta.html

https://www.ml.cmu.edu/academics/ta.html
https://www.ml.cmu.edu/academics/ta.html
https://www.ml.cmu.edu/academics/ta.html


MARKOV DECISION PROCESSES
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RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎 , 𝑅 ∶ 	𝒮	×	𝒜 → ℝ
• Transition probabilities, 𝑝 𝑠!	 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠!	 𝑠, 𝑎) = /1	if	𝛿 𝑠, 𝑎 = 𝑠′
0	otherwise	

where 𝛿 𝑠, 𝑎  is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉": 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and 
executing policy 𝜋
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Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)



Markov Decision Process (MDP)

• For supervised learning the PAC learning framework 
provided assumptions about where our data came from:

• For reinforcement learning we assume our data comes from 
a Markov decision process (MDP)
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Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state 𝑠# ∈ 𝒮
2. For time step 𝑡:

1. Agent observes state 𝑠$ ∈ 𝒮
2. Agent takes action 𝑎$ ∈ 𝒜 where 𝑎$ = 𝜋 𝑠$
3. Agent receives reward 𝑟$ ∈ ℝ where  𝑟$ = 𝑅 𝑠$, 𝑎$, 𝑠$%&
4. Agent transitions to state 𝑠$%& ∈ 𝒮 where 𝑠$%& ∼ 𝑝 𝑠!	 𝑠$, 𝑎$)	

3. Total reward is ∑$'#( 𝛾$𝑟$	
– The value 𝛾 is the “discount factor”, a hyperparameter 0 < 𝛾 < 1

• Makes the same Markov assumption we used for HMMs! The next state only depends on the 
current state and action.

• Def.: we execute a policy 𝜋 by taking action 𝑎 = 𝜋 𝑠 when in state 𝑠
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RL: Objective Function
• Goal: Find a policy 𝜋 ∶ 𝒮 → 𝒜	 for choosing “good” actions that maximize: 

𝔼 total	reward = 𝔼 J
$'#

(

𝛾$𝑟$

• The above is called the 
   “finite horizon expected future discounted reward”
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RL: Optimal Value Function & Policy
• Bellman Equations:

𝑉! 𝑠 = 	𝑅 𝑠, 𝜋(𝑠) + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝜋(𝑠) 𝑉! 𝑠&

• Optimal policy: 
– Given 𝑉∗, 	𝑅 𝑠, 𝑎 , 𝑝 𝑠&	|	𝑠, 𝑎 , 𝛾 we can compute this!

𝜋∗ 𝑠 = argmax
(	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉∗ 𝑠&

• Optimal value function:

𝑉∗ 𝑠 = max
(	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉∗ 𝑠&

– System of 𝒮  equations and 𝒮  variables (each variable is some 𝑉∗ 𝑠  for some state 𝑠)
– Can be written without 𝜋∗
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Immediate 
reward

(Discounted) 
Future 
reward



FIXED POINT ITERATION
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Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of 

equations
• Under the right conditions, it will converge
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1. Assume we have n equations and 
n variables, written f(x) = 0 
where x is a vector

2. Rearrange the equations s.t. 
each variable xi has one equation 
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each 

parameter and increment t:
5. Repeat #5 until convergence

f1(x1, . . . , xn) = 0

...
fn(x1, . . . , xn) = 0

x1 = g1(x1, . . . , xn)

...
xn = gn(x1, . . . , xn)

x
(t+1)
1 = g1(x

(t)
1 , . . . , x

(t)
n
)

...

x
(t+1)
n

= gn(x
(t)
1 , . . . , x

(t)
n
)



Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of 

equations
• Under the right conditions, it will converge
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1. Assume we have n equations and 
n variables, written f(x) = 0 
where x is a vector

2. Rearrange the equations s.t. 
each variable xi has one equation 
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each 

parameter and increment t:
5. Repeat #5 until convergence

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))



Fixed Point Iteration
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cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

We can implement our example in a few lines of code



Fixed Point Iteration
We can implement our example in a few lines of code

21

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

$ python fixed-point-iteration.py 
i= 0 x=-1.0000 y=-1.000 f(x,y)=(1.5403, 0.1585)
i= 1 x=0.5403 y=0.5144 f(x,y)=(0.3303, 0.0000)
i= 2 x=0.8706 y=0.7647 f(x,y)=(-0.1490, 0.0000)
i= 3 x=0.7216 y=0.6606 f(x,y)=(0.0681, 0.0000)
i= 4 x=0.7896 y=0.7101 f(x,y)=(-0.0313, 0.0000)
i= 5 x=0.7583 y=0.6877 f(x,y)=(0.0144, 0.0000)
i= 6 x=0.7727 y=0.6981 f(x,y)=(-0.0066, 0.0000)
i= 7 x=0.7661 y=0.6933 f(x,y)=(0.0031, 0.0000)
i= 8 x=0.7691 y=0.6955 f(x,y)=(-0.0014, 0.0000)
i= 9 x=0.7677 y=0.6945 f(x,y)=(0.0006, 0.0000)
i=10 x=0.7684 y=0.6950 f(x,y)=(-0.0003, 0.0000)
i=11 x=0.7681 y=0.6948 f(x,y)=(0.0001, 0.0000)
i=12 x=0.7682 y=0.6949 f(x,y)=(-0.0001, 0.0000)
i=13 x=0.7681 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=14 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=15 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=16 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=17 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=18 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=19 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=20 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)



VALUE ITERATION
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RL Terminology

Terms:
A. a reward function
B. a transition probability
C. a policy
D. state/action/reward triples
E. a value function
F. transition function
G. an optimal policy
H. Matt’s favorite statement
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Statements:
1. gives the expected future 

discounted reward of a state
2. maps from states to actions
3. quantifies immediate success of 

agent
4. is a deterministic map from 

state/action pairs to states
5. quantifies the likelihood of landing 

a new state, given a state/action 
pair

6. is the desired output of an RL 
algorithm

7. can be influenced by trading off 
between exploitation/exploration

Question: Match each term (on the left) to the 
corresponding statement or definition (on the right)



RL: Optimal Value Function & Policy
• Bellman Equations:

𝑉! 𝑠 = 	𝑅 𝑠, 𝜋(𝑠) + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝜋(𝑠) 𝑉! 𝑠&

• Optimal policy: 
– Given 𝑉∗, 	𝑅 𝑠, 𝑎 , 𝑝 𝑠&	|	𝑠, 𝑎 , 𝛾 we can compute this!

𝜋∗ 𝑠 = argmax
(	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉∗ 𝑠&

• Optimal value function:

𝑉∗ 𝑠 = max
(	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉∗ 𝑠&

– System of 𝒮  equations and 𝒮  variables (each variable is some 𝑉∗ 𝑠  for some state 𝑠)
– Can be written without 𝜋∗
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Immediate 
reward

(Discounted) 
Future 
reward



Example: Path Planning
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Value Iteration
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Algorithm: Example:



Value Iteration
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Variant 1: without Q(s,a) table



Value Iteration
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Variant 2: with Q(s,a) table



Synchronous vs. Asynchronous
Value Iteration
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asynchronous 
updates: compute 
and update V(s) for 
each state one at a 
time

synchronous 
updates: compute all 
the fresh values of 
V(s) from all the stale 
values of V(s), then 
update V(s) with 
fresh values

Algorithm 1 Asynchronous Value Iteration
1: procedure AĘĞēĈčėĔēĔĚĘVĆđĚĊIęĊėĆęĎĔē(R(s, a), p(·|s, a))
2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π



Value Iteration Convergence
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Provides 
reasonable 

stopping criterion 
for value iteration

Often greedy policy 
converges well 

before the value 
function

Holds for both 
asynchronous and 

sychronous 
updates

very abridged



POLICY ITERATION

35



Policy Iteration
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Policy Iteration

37

System of |S| 
equations and |S| 

variables

Compute value 
function for fixed 

policy is easy

Greedy policy 
w.r.t. current 

value function

Greedy policy might remain the 
same for a particular state if there is 

no better action



Policy Iteration Convergence
Question: 
How many policies are there for a finite sized state and action space?
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Question: 
Suppose policy iteration is shown to improve the policy at every 
iteration. Can you bound the number of iterations it will take to 
converge? If yes, what is the bound? If no, why not?



Value Iteration vs. Policy Iteration
• Value iteration requires 

O(|A| |S|2) 
computation per iteration

• Policy iteration requires 
O(|A| |S|2 + |S|3) 
computation per iteration

• In practice, policy iteration 
converges in fewer 
iterations
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STOCHASTIC REWARDS AND VALUE 
ITERATION
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Q&A

41

Q: What if the rewards are also stochastic?

A: No problem. Everything we’ve been doing here still works 
just fine.

The Q-Learning algorithm doesn’t need to change at all.

Let’s consider how value iteration would look slightly 
different though…



RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎, 𝑠′ , 𝑅 ∶ 	𝒮	×	𝒜	×	𝒮 → ℝ
• Transition probabilities, 𝑝 𝑠!	 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠!	 𝑠, 𝑎) = /1	if	𝛿 𝑠, 𝑎 = 𝑠′
0	otherwise	

where 𝛿 𝑠, 𝑎  is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉": 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and 
executing policy 𝜋

42

Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)



Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state 𝑠# ∈ 𝒮
2. For time step 𝑡:

1. Agent observes state 𝑠$ ∈ 𝒮
2. Agent takes action 𝑎$ ∈ 𝒜 where 𝑎$ = 𝜋 𝑠$
3. Agent receives reward 𝑟$ ∈ ℝ where  𝑟$ = 𝑅 𝑠$, 𝑎$, 𝑠$%&
4. Agent transitions to state 𝑠$%& ∈ 𝒮 where 𝑠$%& ∼ 𝑝 𝑠!	 𝑠$, 𝑎$)	

3. Total reward is ∑$'#( 𝛾$𝑟$	
– The value 𝛾 is the “discount factor”, a hyperparameter 0 < 𝛾 < 1

• Makes the same Markov assumption we used for HMMs! The next state only depends on the 
current state and action.

• Def.: we execute a policy 𝜋 by taking action 𝑎 = 𝜋 𝑠 when in state 𝑠
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Optimal Value Function
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This optimal value function can be represented recursively as:

V ∗(s) = max
a∈A

∑

s
′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′)).

For the optimal policy functionπ∗ we can compute its value function
as:

V π
∗

(s) = V ∗(s)

= E[R(s0,π
∗(s0), s1) + γR(s1,π

∗(s1), s2)

+ γ2R(s2,π
∗(s2), s3) · · · | s0 = s,π∗].

If R(s, a, s′) = R(s, a) (deterministic transition), then we have the
form:

V ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s
′∈S

p(s′|s, a)V ∗(s′)

}

.



Value Iteration
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This is (more or less) fixed point iteration applied to the 
recursive definition of the optimal value function.

Algorithm 1 Value Iteration with Stochastic Rewards
1: procedure VĆđĚĊIęĊėĆęĎĔē(R(s, a, s′) reward function, p(·|s, a) transition

probabilities)
2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa

∑
s
′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′))

6: Let π(s) = argmax
a

∑
s
′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′)), ∀s
7: return π



RL: Value 
Function 
Example

46

7

3

-2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Rield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5

61
2 3 4

𝛾 = 0.9



RL: Value 
Function 
Example
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7

3

-2

-2 -1.8 2.7 3 0

0

0

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Rield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9



RL: Value 
Function 
Example
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7

3

-2

5.103 5.67 6.3 7 0

0

0

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Rield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9



Example: 
Stochastic
Transitions and 
Rewards
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7

3

-2

𝑅 𝑠, 𝑎, 𝑠′ =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Rield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5

61 2 3 4

𝛾 = 0.9



Example: 
Stochastic
Transitions and 
Rewards
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0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎, 𝑠′  represented by 

𝛾 = 0.9

Suppose 
• 𝑝 𝑠6	 𝑠4, 𝑎) = 0.5
• 𝑝 𝑠5	 𝑠4, 𝑎) = 0.5   

What is 𝑉∗(𝑠4)?

𝛾 = 0.9



Example: 
Stochastic
Transitions and 
Rewards
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0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎, 𝑠′  represented by 

𝛾 = 0.9

Suppose 
• 𝑝 𝑠6	 𝑠4, 𝑎) = 0.5
• 𝑝 𝑠5	 𝑠4, 𝑎) = 0.5   

What is 𝑉∗(𝑠4)?

3.64 4.05 4.5 5 0

0

0

𝛾 = 0.9



Learning Objectives
Reinforcement Learning: Value and Policy Iteration

You should be able to…
1. Compare the reinforcement learning paradigm to other learning paradigms
2. Cast a real-world problem as a Markov Decision Process
3. Depict the exploration vs. exploitation tradeoff via MDP examples
4. Explain how to solve a system of equations using fixed point iteration
5. Define the Bellman Equations
6. Show how to compute the optimal policy in terms of the optimal value function
7. Explain the relationship between a value function mapping states to expected rewards and a 

value function mapping state-action pairs to expected rewards
8. Implement value iteration
9. Implement policy iteration
10. Contrast the computational complexity and empirical convergence of value iteration vs. policy 

iteration
11. Identify the conditions under which the value iteration algorithm will converge to the true 

value function
12. Describe properties of the policy iteration algorithm

52


