
Reinforcement Learning:
Value Iteration & Policy Iteration

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley, Hoda Heidari, Henry Chai
Lecture 21

Apr. 3, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 7: Deep Learning
– Out: Thu, Mar. 28
– Due: Mon, Apr. 8 at 11:59pm

• Schedule Notes
– Lecture 22: Fri, Apr. 5
– HW8 Recitation: Mon, Apr. 8

• Homework 8: Deep RL
– Out: Mon, Apr. 8
– Due: Fri, Apr. 19 at 11:59pm

4

Q & A:
I’ve had such a
great experience
with this class,
especially with
your excellent
TAs; how can I be
more like them
and contribute
to future
iterations of this
class?

� You can apply to be a TA for

this course next semester

(F24)!

� Applications are due by

Monday, April 15th

� For more information and the

application, see

https://www.ml.cmu.edu/aca

demics/ta.html

11/14/22 5

Matt wants
601 TA

https://www.ml.cmu.edu/academics/ta.html

https://www.ml.cmu.edu/academics/ta.html
https://www.ml.cmu.edu/academics/ta.html
https://www.ml.cmu.edu/academics/ta.html

MARKOV DECISION PROCESSES

7

RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎 , 𝑅 ∶ 	𝒮	×	𝒜 → ℝ
• Transition probabilities, 𝑝 𝑠!	 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠!	 𝑠, 𝑎) = /1	if	𝛿 𝑠, 𝑎 = 𝑠′
0	otherwise	

where 𝛿 𝑠, 𝑎 is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉": 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and
executing policy 𝜋

8

Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)

Markov Decision Process (MDP)

• For supervised learning the PAC learning framework
provided assumptions about where our data came from:

• For reinforcement learning we assume our data comes from
a Markov decision process (MDP)

9

Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state 𝑠# ∈ 𝒮
2. For time step 𝑡:

1. Agent observes state 𝑠$ ∈ 𝒮
2. Agent takes action 𝑎$ ∈ 𝒜 where 𝑎$ = 𝜋 𝑠$
3. Agent receives reward 𝑟$ ∈ ℝ where 𝑟$ = 𝑅 𝑠$, 𝑎$, 𝑠$%&
4. Agent transitions to state 𝑠$%& ∈ 𝒮 where 𝑠$%& ∼ 𝑝 𝑠!	 𝑠$, 𝑎$)	

3. Total reward is ∑$'#(𝛾$𝑟$	
– The value 𝛾 is the “discount factor”, a hyperparameter 0 < 𝛾 < 1

• Makes the same Markov assumption we used for HMMs! The next state only depends on the
current state and action.

• Def.: we execute a policy 𝜋 by taking action 𝑎 = 𝜋 𝑠 when in state 𝑠

10

RL: Objective Function
• Goal: Find a policy 𝜋 ∶ 𝒮 → 𝒜	 for choosing “good” actions that maximize:

𝔼 total	reward = 𝔼 J
$'#

(

𝛾$𝑟$

• The above is called the
 “finite horizon expected future discounted reward”

11

RL: Optimal Value Function & Policy
• Bellman Equations:

𝑉! 𝑠 = 	𝑅 𝑠, 𝜋(𝑠) + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝜋(𝑠) 𝑉! 𝑠&

• Optimal policy:
– Given 𝑉∗, 	𝑅 𝑠, 𝑎 , 𝑝 𝑠&	|	𝑠, 𝑎 , 𝛾 we can compute this!

𝜋∗ 𝑠 = argmax
(∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉∗ 𝑠&

• Optimal value function:

𝑉∗ 𝑠 = max
(∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉∗ 𝑠&

– System of 𝒮 equations and 𝒮 variables (each variable is some 𝑉∗ 𝑠 for some state 𝑠)
– Can be written without 𝜋∗

12

Immediate
reward

(Discounted)
Future
reward

FIXED POINT ITERATION

17

Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of

equations
• Under the right conditions, it will converge

18

1. Assume we have n equations and
n variables, written f(x) = 0
where x is a vector

2. Rearrange the equations s.t.
each variable xi has one equation
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each

parameter and increment t:
5. Repeat #5 until convergence

f1(x1, . . . , xn) = 0

...
fn(x1, . . . , xn) = 0

x1 = g1(x1, . . . , xn)

...
xn = gn(x1, . . . , xn)

x
(t+1)
1 = g1(x

(t)
1 , . . . , x

(t)
n
)

...

x
(t+1)
n

= gn(x
(t)
1 , . . . , x

(t)
n
)

Fixed Point Iteration
• Fixed point iteration is a general tool for solving systems of

equations
• Under the right conditions, it will converge

19

1. Assume we have n equations and
n variables, written f(x) = 0
where x is a vector

2. Rearrange the equations s.t.
each variable xi has one equation
where it is isolated on the LHS

3. Initialize the parameters.
4. For i in {1,…,n}, update each

parameter and increment t:
5. Repeat #5 until convergence

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

Fixed Point Iteration

20

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

We can implement our example in a few lines of code

Fixed Point Iteration
We can implement our example in a few lines of code

21

cos(y)− x = 0

sin(x)− y = 0

x = cos(y)
y = sin(x)

x
(t+1) = cos(y(t))

y
(t+1) = sin(x(t))

$ python fixed-point-iteration.py
i= 0 x=-1.0000 y=-1.000 f(x,y)=(1.5403, 0.1585)
i= 1 x=0.5403 y=0.5144 f(x,y)=(0.3303, 0.0000)
i= 2 x=0.8706 y=0.7647 f(x,y)=(-0.1490, 0.0000)
i= 3 x=0.7216 y=0.6606 f(x,y)=(0.0681, 0.0000)
i= 4 x=0.7896 y=0.7101 f(x,y)=(-0.0313, 0.0000)
i= 5 x=0.7583 y=0.6877 f(x,y)=(0.0144, 0.0000)
i= 6 x=0.7727 y=0.6981 f(x,y)=(-0.0066, 0.0000)
i= 7 x=0.7661 y=0.6933 f(x,y)=(0.0031, 0.0000)
i= 8 x=0.7691 y=0.6955 f(x,y)=(-0.0014, 0.0000)
i= 9 x=0.7677 y=0.6945 f(x,y)=(0.0006, 0.0000)
i=10 x=0.7684 y=0.6950 f(x,y)=(-0.0003, 0.0000)
i=11 x=0.7681 y=0.6948 f(x,y)=(0.0001, 0.0000)
i=12 x=0.7682 y=0.6949 f(x,y)=(-0.0001, 0.0000)
i=13 x=0.7681 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=14 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=15 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=16 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=17 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=18 x=0.7682 y=0.6948 f(x,y)=(-0.0000, 0.0000)
i=19 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)
i=20 x=0.7682 y=0.6948 f(x,y)=(0.0000, 0.0000)

VALUE ITERATION

22

RL Terminology

Terms:
A. a reward function
B. a transition probability
C. a policy
D. state/action/reward triples
E. a value function
F. transition function
G. an optimal policy
H. Matt’s favorite statement

24

Statements:
1. gives the expected future

discounted reward of a state
2. maps from states to actions
3. quantifies immediate success of

agent
4. is a deterministic map from

state/action pairs to states
5. quantifies the likelihood of landing

a new state, given a state/action
pair

6. is the desired output of an RL
algorithm

7. can be influenced by trading off
between exploitation/exploration

Question: Match each term (on the left) to the
corresponding statement or definition (on the right)

RL: Optimal Value Function & Policy
• Bellman Equations:

𝑉! 𝑠 = 	𝑅 𝑠, 𝜋(𝑠) + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝜋(𝑠) 𝑉! 𝑠&

• Optimal policy:
– Given 𝑉∗, 	𝑅 𝑠, 𝑎 , 𝑝 𝑠&	|	𝑠, 𝑎 , 𝛾 we can compute this!

𝜋∗ 𝑠 = argmax
(∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉∗ 𝑠&

• Optimal value function:

𝑉∗ 𝑠 = max
(∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ,
"!∈	𝒮

𝑝 𝑠&	|	𝑠, 𝑎 𝑉∗ 𝑠&

– System of 𝒮 equations and 𝒮 variables (each variable is some 𝑉∗ 𝑠 for some state 𝑠)
– Can be written without 𝜋∗

25

Immediate
reward

(Discounted)
Future
reward

Example: Path Planning

28

Value Iteration

29

Algorithm: Example:

Value Iteration

30

Variant 1: without Q(s,a) table

Value Iteration

31

Variant 2: with Q(s,a) table

Synchronous vs. Asynchronous
Value Iteration

32

asynchronous
updates: compute
and update V(s) for
each state one at a
time

synchronous
updates: compute all
the fresh values of
V(s) from all the stale
values of V(s), then
update V(s) with
fresh values

Algorithm 1 Asynchronous Value Iteration
1: procedure AĘĞēĈčėĔēĔĚĘVĆđĚĊIęĊėĆęĎĔē(R(s, a), p(·|s, a))
2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′)

6: Let π(s) = argmax
a
R(s, a) + γ

∑
s
′∈S

p(s′|s, a)V (s′), ∀s
7: return π

Value Iteration Convergence

33

Provides
reasonable

stopping criterion
for value iteration

Often greedy policy
converges well

before the value
function

Holds for both
asynchronous and

sychronous
updates

very abridged

POLICY ITERATION

35

Policy Iteration

36

Policy Iteration

37

System of |S|
equations and |S|

variables

Compute value
function for fixed

policy is easy

Greedy policy
w.r.t. current

value function

Greedy policy might remain the
same for a particular state if there is

no better action

Policy Iteration Convergence
Question:
How many policies are there for a finite sized state and action space?

38

Question:
Suppose policy iteration is shown to improve the policy at every
iteration. Can you bound the number of iterations it will take to
converge? If yes, what is the bound? If no, why not?

Value Iteration vs. Policy Iteration
• Value iteration requires

O(|A| |S|2)
computation per iteration

• Policy iteration requires
O(|A| |S|2 + |S|3)
computation per iteration

• In practice, policy iteration
converges in fewer
iterations

39

STOCHASTIC REWARDS AND VALUE
ITERATION

40

Q&A

41

Q: What if the rewards are also stochastic?

A: No problem. Everything we’ve been doing here still works
just fine.

The Q-Learning algorithm doesn’t need to change at all.

Let’s consider how value iteration would look slightly
different though…

RL: Components
From the Environment (i.e. the MDP)
• State space, 𝒮
• Action space, 𝒜
• Reward function, 𝑅 𝑠, 𝑎, 𝑠′ , 𝑅 ∶ 	𝒮	×	𝒜	×	𝒮 → ℝ
• Transition probabilities, 𝑝 𝑠!	 𝑠, 𝑎)

– Deterministic transitions:

𝑝 𝑠!	 𝑠, 𝑎) = /1	if	𝛿 𝑠, 𝑎 = 𝑠′
0	otherwise	

where 𝛿 𝑠, 𝑎 is a transition function

From the Model
• Policy, 𝜋 ∶ 𝒮 → 𝒜
• Value function, 𝑉": 𝒮 → ℝ

– Measures the expected total payoff of starting in some state 𝑠 and
executing policy 𝜋

42

Markov Assumption
p(st+1 | st, at, . . . , s1, a1)

= p(st+1 | st, at)

Markov Decision Processes (MDP)
In RL, the source of our data is an MDP:

1. Start in some initial state 𝑠# ∈ 𝒮
2. For time step 𝑡:

1. Agent observes state 𝑠$ ∈ 𝒮
2. Agent takes action 𝑎$ ∈ 𝒜 where 𝑎$ = 𝜋 𝑠$
3. Agent receives reward 𝑟$ ∈ ℝ where 𝑟$ = 𝑅 𝑠$, 𝑎$, 𝑠$%&
4. Agent transitions to state 𝑠$%& ∈ 𝒮 where 𝑠$%& ∼ 𝑝 𝑠!	 𝑠$, 𝑎$)	

3. Total reward is ∑$'#(𝛾$𝑟$	
– The value 𝛾 is the “discount factor”, a hyperparameter 0 < 𝛾 < 1

• Makes the same Markov assumption we used for HMMs! The next state only depends on the
current state and action.

• Def.: we execute a policy 𝜋 by taking action 𝑎 = 𝜋 𝑠 when in state 𝑠

43

Optimal Value Function

44

This optimal value function can be represented recursively as:

V ∗(s) = max
a∈A

∑

s
′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′)).

For the optimal policy functionπ∗ we can compute its value function
as:

V π
∗

(s) = V ∗(s)

= E[R(s0,π
∗(s0), s1) + γR(s1,π

∗(s1), s2)

+ γ2R(s2,π
∗(s2), s3) · · · | s0 = s,π∗].

If R(s, a, s′) = R(s, a) (deterministic transition), then we have the
form:

V ∗(s) = max
a∈A

{

R(s, a) + γ
∑

s
′∈S

p(s′|s, a)V ∗(s′)

}

.

Value Iteration

45

This is (more or less) fixed point iteration applied to the
recursive definition of the optimal value function.

Algorithm 1 Value Iteration with Stochastic Rewards
1: procedure VĆđĚĊIęĊėĆęĎĔē(R(s, a, s′) reward function, p(·|s, a) transition

probabilities)
2: Initialize value function V (s) = 0 or randomly
3: while not converged do
4: for s ∈ S do
5: V (s) = maxa

∑
s
′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′))

6: Let π(s) = argmax
a

∑
s
′∈S

p(s′|s, a)(R(s, a, s′) + γV (s′)), ∀s
7: return π

RL: Value
Function
Example

46

7

3

-2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Rield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5

61
2 3 4

𝛾 = 0.9

RL: Value
Function
Example

47

7

3

-2

-2 -1.8 2.7 3 0

0

0

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Rield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9

RL: Value
Function
Example

48

7

3

-2

5.103 5.67 6.3 7 0

0

0

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Rield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9

Example:
Stochastic
Transitions and
Rewards

49

7

3

-2

𝑅 𝑠, 𝑎, 𝑠′ =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Rield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5

61 2 3 4

𝛾 = 0.9

Example:
Stochastic
Transitions and
Rewards

50

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎, 𝑠′ represented by

𝛾 = 0.9

Suppose
• 𝑝 𝑠6	 𝑠4, 𝑎) = 0.5
• 𝑝 𝑠5	 𝑠4, 𝑎) = 0.5

What is 𝑉∗(𝑠4)?

𝛾 = 0.9

Example:
Stochastic
Transitions and
Rewards

51

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎, 𝑠′ represented by

𝛾 = 0.9

Suppose
• 𝑝 𝑠6	 𝑠4, 𝑎) = 0.5
• 𝑝 𝑠5	 𝑠4, 𝑎) = 0.5

What is 𝑉∗(𝑠4)?

3.64 4.05 4.5 5 0

0

0

𝛾 = 0.9

Learning Objectives
Reinforcement Learning: Value and Policy Iteration

You should be able to…
1. Compare the reinforcement learning paradigm to other learning paradigms
2. Cast a real-world problem as a Markov Decision Process
3. Depict the exploration vs. exploitation tradeoff via MDP examples
4. Explain how to solve a system of equations using fixed point iteration
5. Define the Bellman Equations
6. Show how to compute the optimal policy in terms of the optimal value function
7. Explain the relationship between a value function mapping states to expected rewards and a

value function mapping state-action pairs to expected rewards
8. Implement value iteration
9. Implement policy iteration
10. Contrast the computational complexity and empirical convergence of value iteration vs. policy

iteration
11. Identify the conditions under which the value iteration algorithm will converge to the true

value function
12. Describe properties of the policy iteration algorithm

52

