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Reminders

* Homework 8: Deep RL
— Out: Mon, Apr. 8
— Due: Fri, Apr. 19 at 11:59pm




DIMENSIONALITY REDUCTION



High Dimension Data

Examples of high dimensional data:
— High resolution images (millions of pixels)
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High Dimension Data

Examples of high dimensional data:
— Brain Imaging Data (100s of MBs per scan)

Image from (Wehbe et al., 2014)

Image from https://pixabay.com/en/brain-mrt-magnetic-resonance-imaging-1728449/



High Dimension Data

Examples of high dimensional data:
— Customer Purchase Data
B! g MW S INTERESTING FINDS ON AMAZON ©

amazon

‘1
N

Hello, Matt

Departments ~ Browsing History ~  Matt's Amazon.com Cyber Monday Gift Cards & Registry Sell Help Your Account ~

Your Amazon.com  Your Browsing History =~ Recommended For You Improve Your Recommendations  Your Profile  Learn More
v, .
Matt's You could be seeing useful stuff here!
Amazon Sign in to get your order status, balances and rewards.

Recommended for you, Matt

Grocery Pets ) . Baby Products Engineering Books
14 ITEMS 6 ITEMS 5ITEMS 86 ITEMS



Learning Representations

Dimensionality Reduction Algorithms:

Powerful (often unsupervised) learning techniques for extracting hidden
(potentially lower dimensional) structure from high dimensional datasets.

Examples:
PCA, Kernel PCA, ICA, CCA, t-SNE, Autoencoders, Matrix Factorization

Useful for:

* Visualization

* More efficient use of resources (e.g., time, memory, communication)
e Statistical: fewer dimensions = better generalization

* Noise removal (improving data quality)

Slide adapted from Nina Balcan



This section in one slide...

1. Dimensionality reduction: 2. Random Projection:

[J ' KxM
(D Renlonly gl mckix VeR
© Priech duas DY VRD

A A

4. Algorithm for PCA:

3. Definition of PCA:

The option we’ll focus on:

Choose the matrix V that either... Run Singular Value
1. minimizes reconstruction error Decomposition (SVD) to
2. consists of the K eigenvectors with

obtain all the eigenvectors.
largest eigenvalue

Keep just the top-K to form V.

Play some tricks to keep
The above are equivalent definitions. things efficient.

5. An Example




DIMENSIONALITY REDUCTION BY RANDOM
PROJECTION



Random Projection

2D input data

Example: 2D to 1D

Goal: project from M-dimensions down A o6  VER™
to K-dimensions 4
25 DX
Data: @ @\.
; : / x(S)
D = {xN  wherex(® ¢ RM /
. %(4)
Algorithm: o 7
X2
1. Randomly sample matrix: V ¢ R&*xM ,Q\. o
Viem ~ Gaussian(0, 1) o

2. Projectdown: u'” = vV x /%0 eR

N~~~ N~~~

Kx1 KxMMx1 / x() eR™*2

| . , A >
3. Project up: 5 = VT y® = VT (Vx®) X

N~~~ N~~~
Mx1 — MxKKXxI 1D projection onto the real line
u®erR u® u®® u u® u)
--9--0-0-0--00-
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Random Projection
Example: 2D to 1D

4a
2D input da
Goal: project from M-dimensions down A V ER™
to K-dimensions ®l\.

Data:
D = {xN  wherex(® ¢ RM

Algorithm:

|
|
|
>
1. Randomly sample matrix: V € RE*M M’
|
|

Viem ~ Gaussian(0, 1)

2. Project down: u® = v xO
N~ N
Kx1 KxMMx1

. . , : >
3. Project up: x() = VT yq® = VT (Vx®) X

Mx1 MxKKx1

Problem: a random projection might give
us a poor low dimensional
representation of the data



Johnson-Lindenstrauss Lemma

. But how could we ever hope to preserve any useful information
by randomly projecting into a low-dimensional space?

. Evenrandom projection enjoys some surprisingly impressive properties.
In fact, a standard of the J-L lemma starts by assuming we have a random

linear projection obtained by sampling each matrix entry from a
Gaussian(0,1).

An Elementary Proof of a Theorem of
Johnson and Lindenstrauss

Sanjoy Dasgupta,’ Anupam Gupta®

ABSTRACT: A result of Johnson and Lindenstrauss [13] shows that a set of n points in high
dimensional Euclidean space can be mapped into an O(log n/e*)-dimensional Euclidean space such
that the distance between any two points changes by only a factor of (1 * €). In this note, we prove
this theorem using elementary probabilistic techniques. © 2003 Wiley Periodicals, Inc. Random Struct.

Alg., 22: 60-65, 2002

http://www.cs.cmu.edu/~anupamg/papers/jl.pdf



DEFINITION OF PRINCIPAL COMPONENT
ANALYSIS (PCA)



Principal Component Analysis (PCA)

* Assumption: the data
lies on a low K-

dimensional linear
subspace

* Goal: identify the axes

of that subspace, and
project each point
onto hyperplane

* Algorithm: find the K
eigenvectors with
largest eigenvalue
using classic matrix
decomposition tools

https://commons.wikimedia.org/wiki/File:Scatter _diagram_for_quality characteristic XXX.svg

1st principal |
component

2nd principal
component

21



Data for PCA

- (x ()T
D = {x N (x(2)T
X —
x() ¢ RM :
(xINT

We assume the data is centered,
l.e. the sample mean is zero

Lo
p= 3 X0 =
P

Q: What if A: Subtract off the sample mean

your data is ~(; - A
not centered? x() = x1) — f, Vi



Background: Sample Variance

Suppose we have a sequence of random samples {z(}), ... z(N)}
from a random variable X.

The (biased) sample variance 52 is given by:

|
~2 L (i) )2
O'—NE($ i)

1=1

where [i is the sample mean.



Sample Covariance Matrix

The sample covariance matrix X & [RERa

s given by:
N

1 i i
Sie =~ (@) = w)(ay) — m)
i=1
Since the data matrix is centered, we rewrite as:
| B (X(l))T N

_ o ~NT (2)\T
E_NXX < (x.>

(x0T



Principal Component Analysis (PCA)

Linear Projection: —vi —]
Given KxM matrix V, and Mx1 — Vi —
vector x() we obtain the Kx1 V= :
projection u® by: -

u® = v x( — VK — |

Definition of PCA:

PCA repeatedly chooses a next vector v; that
s.t. vjis orthogonal to v,, v,,..., Vj...

Vector v; is called the jth principal component.

Notice: Two vectors a and b are orthogonal if a'b = 0.
=>»the K-dimensions in PCA are uncorrelated



Vector Projection
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Objectives for PCA

Minimize the Reconstruction Error Maximize the Variance



Projection Example

Question:

Below are two plots of the same dataset D. Consider the
two projections shown.

1.  Which maximizes the variance?
2.  Which minimizes the reconstruction error?

Answer:




PCA Objective Functions

What is the first principal component v; chosen by PCA?

Option 1: The vector that minimizes the reconstruction error

N
1 . ,
Vi = argmin N E HX(Z) _ (VTX(Z))VHZ

vi||v|[?=1 i=1

Option 2: The vector that maximizes the variance

N

1 T ()2
vy = argmax — » (v'x'")
ve|fvl2=1 IV ;



Equivalence of Maximizing PC A

Variance and Minimizing
Reconstruction Error

Claim: Minimizing the reconstruction error is equivalent to maximiz-
ing the variance.

Proof: First, note that:
x4 — (vTxD)v|? = |[x@P|]2 — (vTxD)? (1)

since viv = ||v|]? = 1.

Substituting into the minimization problem, and removing the extra-
neous terms, we obtain the maximization problem.

N
1 . .
v* = argmin — Z |[x® — (vTx®)v||? (2)
v:||v||2=1 i—1
1 X . .
— argmin > [lx[? - (vx)? G
v:||v]|[|?2=1 i—=1
| N
= argmax — > (vIx(9)2 (4)
viljv|2=1 IV 2

=1



PCA Objective Functions

What is the first principal component v; chosen by PCA?

Option 1: The vector that minimizes the reconstruction error

N
1 . ‘
Vi = argmin N E_l ||X(z) _ (VTX(z))VHQ

vi[Jv]]2=1

Option 2: The vector that maximizes the variance

1
V] = argmax —
vi||v][?=1

N

~ Z(VTX(Z') )2

1=1

Question:

Why can’t we just use
gradient descent to find
the minimum of the PCA
optimization problem?

Answer:



Principal Component Analysis (PCA)

: " N Question:
Linear Projection: — V] — : .
Given KxM matrix V, and Mx1 — Vi — Why.can t we just use
vector x() we obtain the Kx1 V= : gradient descent to find
projection u® by: T the minimum of the PCA
u® = vx® T VK T optimization problem?
Definition of PCA: Answer:

PCA repeatedly chooses a next vector v; that
s.t. vjis orthogonal to v,, v,,..., Vj...

Vector v; is called the jth principal component.

Notice: Two vectors a and b are orthogonal if a'b = 0.
=>»the K-dimensions in PCA are uncorrelated



Background:
Eigenvectors & Eigenvalues

For a square matrix A (n x n matrix), the
vector v (n x 1 matrix) is an eigenvector
iff there exists eigenvalue A (scalar)
such that:

Av = Av

Av = Av
The linear transformation A is only

stretching vectorv.

That is, Av is a scalar multiple of v.




Background:
Eigenvectors & Eigenvalues

Fact #1: The eigenvectors of a symmetric
matrix are orthogonal to each other.

Fact #2: The covariance matrix X is
symmetric.



The First
Principal
Component

Claim: The vector that maximizes the variances is the
eigenvector of X with largest eigenvalue.

Proof Sketch: To find the first principal component, we
wish to solve the following constrained optimization
problem (variance minimization).

v, = argmax v v (1)
vi|[v[?=1

So we turn to the method of Lagrange multipliers. The
Lagrangian is:

LV, =vIZv - AvIv-1) (2)
Taking the derivative of the Lagrangian and setting to
zero gives:
d
— (vIEv-A(vTv-1)) =0 (3)

dv
v—Av=0 (3)
Yv=JAv (5)

PCA

Recall: For a square matrix A, the vector v is an eigen-
vector iff there exists eigenvalue )\ such that:

Av =)v (6)

Rewriting the objective of the maximization shows that
not only will the optimal vector v; be an eigenvector,
it will be one with maximal eigenvalue.

viZv =vi\v (7)
= wlvy (8)
= AllvIP? (9)
= A (10)



Principal Component Analysis (PCA)

(XXT)v = Av, so v (the first PC) is the eigenvector of
sample correlation/covariance matrix X X'

Sample variance of projection v X XTv = Avliv =1

Thus, the eigenvalue 4 denotes the amount of variability
captured along that dimension (aka amount of energy along that

dimension).

Eigenvalues 4, = 4, = 43 = -
« The 15t PC v, is the the eigenvector of the sample covariance matrix X X'
associated with the largest eigenvalue

* The 2nd PC v, is the the eigenvector of the sample covariance matrix
X XT associated with the second largest eigenvalue

e Andsoon...

Slide from Nina Balcan



ALGORITHMS FOR PCA



Algorithms for PCA

How do we find principal components (i.e. eigenvectors)?

* Power iteration (aka. Von Mises iteration)
— finds each principal component one at a time in order

» Singular Value Decomposition (SVD)
— finds all the principal components at once

— two options:
« Option A: run SVD on XX

* Option B: run SVD on X
(not obvious why Option B should work...)

 Stochastic Methods (approximate)
— very efficient for high dimensional datasets with lots of points

38



SVD

gl‘

m

m=n

Data X, one
row per data

point

[from Wall et al., 2003]

X=UST"

Eigenassay

A
u,

U

g |

m

mxn

US gives
coordinates
of rows of X
in the space
of principle
components

Singular
Value -
y 5

n

nxn

S is diagonal,
Sk > Spass

S 2 is kth
largest
eigenvalue

Figengene

nxn

Rows of V7 are unit
length eigenvectors of
XX

If cols of X have zero
mean, then X’ X =c¢ X
and eigenvects are the

Principle Components

39
Slide from Tom Mitchell



Singular Value Decomposition

To generate principle components:

~ ;| N .

 Subtract mean *= P from each data point, to
create zero-centered data

» Create matrix X with one row vector per (zero centered)
data point

« Solve SVD: X =USVT
* Output Principle components: columns of V (= rows of V'7)

— Eigenvectors in V are sorted from largest to smallest eigenvalues
— S is diagonal, with s;? giving eigenvalue for kth eigenvector

40
Slide from Tom Mitchell



Singular Value Decomposition

To project a point (column vector x) into PC coordinates:
VT x

If x; is it" row of data matrix X, then
« (i row of US) = VT x,T
« (US)T=VTX"

To project a column vector x to M dim Principle Components
subspace, take just the first M coordinates of V'” x

Slide from Tom Mitchell

41



How Many PCs?

* For M original dimensions, sample covariance matrix is MxM, and has
up to M eigenvectors. So M principal components (PCs).

* Where does dimensionality reduction come from?
Can ignore the components of lesser significance.

o5 Variance (%) = ratio of variance along
given principal component to total
0 variance of all principal components
S 45
[«}] —
o
s
‘= 10 -
C
> —
5 4
JHA BB A A0 mmm e

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

* Youdo lose some information, but if the eigenvalues are small, you don’t lose
much

— Mdimensions in original data

— calculate M eigenvectors and eigenvalues

— choose only the first D eigenvectors, based on their eigenvalues
— final data set has only D dimensions

© Eric Xing @ CMU, 2006-2011

44



PCA EXAMPLES



Projecting MNIST digits

Task Setting:
Take each 28x28 image of a digit (i.e. a vector x() of length 784) and project it

1.

down to K components (i.e. a vector u®)

Report percent of variance explained for K components
Then project back up to 28x28 image (i.e. a vector X() of length 784) to

visualize how much information was preserved

Original Image 90% of Explained Variance

95% of Explained Variance
0

5

1
1
20
2

o

5 10 15 20 25 5 10 15 20 25 0 5 10 15 0 25 0 5 10

Original Image % of Explained Variance

5 10 15 20 25 5 10 15 20 25 10 15 20 25
784 components 154 components

Original Image 95% of Explained Variance 90% of Explained Variance

5 10 15 20

0 5 ] 25 10 15 20 25 5 10 15 20
784 components

5 1 0 5 0 25
154 components 87 components

80% of Explained Variance

0 0
5 5
10 10
15 15
20 20
25 L 25 L

784 components 154 components 87 components 43 components 11 components

90% of Explained Variance 80% of Explained Variance

5 0 0 5 10 15 20 0
87 components 43 components 11 components

80% of Explained Variance

0 15 20 25

50% of Explained Variance

15 20 25 0 5 10 15 20 25

% of Explained Variance

25 5 10 15 20 25

50% of Explained Variance

5 1C 5 10 15 20 25
43 components 11 components

Takeaway:
Using fewer
principal
components K
leads to higher
reconstruction
error.

But even a
small number
(say 43) still
preserves a lot
of information
about the
original image.



Projecting MNIST digits

Task Setting:

1. Take each 28x28 image of a digit (i.e. a vector x( of length 784) and project it
down to K=2 components (i.e. a vector u®)

2. Plot the 2 dimensional points u® and label with the (unknown to PCA) label y()
as the color

3. Herewelook at all ten digits0 -9

3 _ 2 Takeaway:
i B O B ﬂ Even with a
g tiny number of
principal
- 6 components
K=2, PCA
learns a
4 representation
that captures
the latent
52 information
about the type
of digit

|
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Projecting MNIST digits

Task Setting:
Take each 28x28 image of a digit (i.e. a vector x( of length 784) and project it

1.

down to K=2 components (i.e. a vector u®)

Plot the 2 dimensional points u®) and label with the (unknown to PCA) label y(

as the color
Here we look at just four digits o, 1, 2, 3

3.0
3 4

2.5

'3‘.:: ‘.'.‘- - 2.0

oo "
1 yt't t"\" "" a 5
'}f"-’ ;‘" \_' .‘_ e B 1,5

if;w

- 1.0

0.5

. T 0.0

|
"
()
=
N
w

Takeaway:
Even with a
tiny number of
principal
components
K=2, PCA
learns a
representation
that captures
the latent
information
about the type
of digit
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Learning Objectives

Dimensionality Reduction [ PCA

You should be able to...

1.

W

Define the sample mean, sample variance, and sample covariance of a
vector-valued dataset

ldentify examples of high dimensional data and common use cases for
dimensionality reduction

Draw the principal components of a given toy dataset

Establish the equivalence of minimization of reconstruction error with
maximization of variance

Given a set of principal components, project from high to low dimensional
space and do the reverse to produce a reconstruction

Explain the connection between PCA, eigenvectors, eigenvalues, and
covariance matrix

Use common methods in linear algebra to obtain the principal components



