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Front Matter

� Announcements:

� HW9 released 4/19, due 4/25 (Thursday) at 11:59 PM 

� You may only use at most 2 late days on HW9

� Exam 3 on 4/30 from 9:30 AM to 11:30 AM

� We will not use the full 3-hour window

� All topics from Lectures 17 to 25 (inclusive) are in-scope

� Exam 1 and 2 content may be referenced but will not 
be the primary focus of any question

� Please watch Piazza carefully for your room and seat 

assignments

� You are allowed to bring one letter-size sheet of notes; 

you may put whatever you want on both sides
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Recall: 
Transformer 
Language 
Model

3

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back 
at the hidden vectors of the 
current and previous timesteps 
in the previous layer.

The language model part is just 
like an RNN-LM.
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Recall: 
Mini-batch
Stochastic 
Gradient 
Descent…

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 

step size 𝛾, and batch size 𝐵

1. Randomly initialize the parameters 𝜽 %  and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the loss w.r.t. the sampled batch,

∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 ( − 𝛾∇𝐽 ' 𝜽 (

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (
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Reality

� You have some niche task that you want to apply machine 

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high
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• “gradient-based 
optimization starting 
from random initialization 
appears to often get 

stuck in poor solutions for 
such deep networks.” 

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Reality

� You have some niche task that you want to apply machine 

learning to 

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high
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• Idea: if shallow 
networks are easier to 
train, let’s just 
decompose our deep 

network into a series 
of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Pre-training
(Bengio et al., 
2006)
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Output layer� Train each layer of the 

network iteratively using 
the training dataset

� Start at the input layer 

and move towards the 
output layer

� Once a layer has been 
trained, fix its weights 

and use those to train 
subsequent layers
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Output layer� Train each layer of the 

network iteratively using 
the training dataset

� Start at the input layer 

and move towards the 
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� Once a layer has been 
trained, fix its weights 

and use those to train 
subsequent layers
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Fine-tuning
(Bengio et al., 
2006)
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Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the 

network iteratively using 
the training dataset

� Use the pre-trained 

weights as an 
initialization and 

fine-tune the entire 
network e.g., via SGD 

with the training dataset
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Supervised
Pre-training
(Bengio et al., 
2006)
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� Use the pre-trained weights as 

an initialization and fine-tune 
the entire network e.g., via SGD 
with the training dataset

� Train each layer of the 

network iteratively using 
the training dataset

� Use the pre-trained 
weights as an 
initialization and 

fine-tune the entire 
network e.g., via SGD 

with the training dataset
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� Train each layer of the 

network iteratively using 
the training dataset to 
predict the labels

� Use  pre-trained weights 
as an initialization and 

fine-tune the entire 
network e.g., via SGD 

with the training dataset

Supervised
Pre-training
(Bengio et al., 
2006)
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� Use the pre-trained weights as 

an initialization and fine-tune 
the entire network e.g., via SGD 
with the training dataset



Unsupervised
Pre-training
(Bengio et al., 
2006)
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� Idea: a good representation is 

one preserves a lot of 
information and could be used 
to recreate the inputs

� Train each layer of the 

network iteratively using 
the training dataset to 
learn useful representations

� Use  pre-trained weights as 
an initialization and 

fine-tune the entire network 
e.g., via SGD with the 
training dataset

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset 



� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 *

� This objective defines an 
autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 *

� This architecture/ 
objective defines an 

autoencoder

Unsupervised
Pre-training
(Bengio et al., 
2006)
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� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 *

� This architecture/ 
objective defines an 

autoencoder

Unsupervised
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� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 *

� This architecture/ 
objective defines an 

autoencoder
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Fine-tuning
(Bengio et al., 
2006)
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� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 *

� When fine-tuning, we’re 
effectively swapping out 
the last layer and fitting 
all the weights to the 
training dataset

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Unsupervised
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(Bengio et al., 
2006)
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� Train each layer of the 

network iteratively using 
the training dataset by 
minimizing the 
reconstruction error

𝒙 − ℎ 𝒙 *

� When fine-tuning, we’re 
effectively swapping out 
the last layer and fitting 
all the weights to the 
training dataset
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� Idea: a good representation is 

one preserves a lot of 
information and could be used 
to recreate the inputs



Another 
dose of
Reality

� You have some niche task that you want to apply machine 

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high
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• Problem: what if you 
don’t even have 
enough data to train a 
single layer/fine-tune 

the pre-trained 
network? 

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf 

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf


Another 
dose of
Reality

� You have some niche task that you want to apply machine 

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

� Ideally, you want to use a large dataset related to your 

goal task
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Another 
dose of
Reality

� You have some niche task that you want to apply machine 

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

� GPT-3 pre-training data:

4/22/24 27Source: https://arxiv.org/pdf/2005.14165.pdf 
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� You have some niche task that you want to apply machine 

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled 

or unlabelled dataset!

� Okay that’s great for pre-training and all, but what if

A. the concept of labelled data doesn’t apply to your task 
i.e., not every input has a “correct” label e.g., chatbots?

B. you don’t have enough data to fine-tune your model?

Another 
dose of
Reality

4/22/24 28



Reinforcement 
Learning from 
Human 
Feedback 
(RLHF)

� Insight: for many machine learning tasks, there is no 

universal ground truth, e.g., there are lots of possible 

ways to respond to a question or prompt.

� Idea: use human feedback to determine how good or 

bad some prediction/response is! 

� Issue: if the input space is huge (e.g., all possible chat 

prompts), to train a good model, we might need tons 

and tons of (potentially expensive) human annotation…

� Idea: use a small number of annotations to learn a 

“reward” function!
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Reinforcement 
Learning from 
Human 
Feedback 
(RLHF)

4/22/24 30

� RLHF is a special form of fine-tuning, used to fine-tune GPT-

3.5 into ChatGPT
Source: https://openai.com/blog/chatgpt 

https://openai.com/blog/chatgpt


In-context 
Learning

� Problem: given their size, effectively fine-tuning LLMs 

can require lots of labelled data points. 

� Idea: leverage the LLM’s context window by passing a 
few one zero(!) examples to the model as input, 

without performing any updates to the parameters

� Intuition: during training, the LLM is exposed to a 
massive number of examples/tasks and the input 
conditions the model to “locate” the relevant concepts 

4/22/24 32Source: https://arxiv.org/pdf/2111.02080.pdf 
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Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

� Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 
without performing any updates to the parameters
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Few-shot, 
One-shot & 
Zero-shot 
(in-context) 
Learning

� Idea: leverage the LLM’s context window by passing a 

few one zero(!) examples to the model as input, 
without performing any updates to the parameters
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• Key Takeaway: LLMs can perform well on novel tasks 
without having to fine-tune the model, sometimes even 
with just one or zero labelled training data points! 

https://arxiv.org/pdf/2005.14165.pdf


Mini-batch
Stochastic 
Gradient 
Descent is a lie!
just the 
beginning!

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 

step size 𝛾, and batch size 𝐵

1. Randomly initialize the parameters 𝜽 %  and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the loss w.r.t. the sampled batch,

∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 ( − 𝛾∇𝐽 ' 𝜽 (

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (
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Mini-batch
Stochastic 
Gradient 
Descent 
just the 
beginning!

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 

step size 𝛾, and batch size 𝐵

1. Pre-train the parameters 𝜽 %  and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the fine-tuning loss 

∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 ( − 𝛾∇𝐽 ' 𝜽 (

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (
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Mini-batch
Stochastic 
Gradient 
Descent 
with 
Momentum
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� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 

step size 𝛾, and batch size 𝐵, decay parameter 𝛽

1. Pre-train the parameters 𝜽 %  and set 𝑡 = 0, 𝐺+# = 0⊙ 𝜽 %

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the fine-tuning loss 

𝐺( = ∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 ( − 𝛾 𝛽𝐺(+# + 𝐺(

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (
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Mini-batch
Stochastic 
Gradient 
Descent 
with 
Momentum
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Mini-batch
Stochastic 
Gradient 
Descent 
with 
Momentum
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Mini-batch
Stochastic 
Gradient 
Descent 
with 
Momentum



Mini-batch
Stochastic 
Gradient 
Descent with 
Root Mean 
Square 
Propagation 
(RMSProp)
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� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 

step size 𝛾, and batch size 𝐵, decay parameter 𝛽

1. Pre-train the parameters 𝜽 %  and set 𝑡 = 0, 𝑆+# = 0⊙ 𝜽 %

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the fine-tuning loss 

𝐺( = ∇𝐽 ' 𝜽 (

c. Update the scaling factor: 𝑆( = 𝛽𝑆(+# + 1 − 𝛽 𝐺(⊙𝐺(

d. Update 𝜽: 𝜽 ()# ← 𝜽 ( − ,
-!
⊙𝐺(

e. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (



Mini-batch
Stochastic 
Gradient 
Descent with 
Root Mean 
Square 
Propagation 
(RMSProp)

4/22/24 44Source: https://www.ruder.io/optimizing-gradient-descent/ 

https://www.ruder.io/optimizing-gradient-descent/


Adam 
(Adaptive 
Moment 
Estimation) = 
SGD + 
Momentum + 
RMSProp
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� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 

step size 𝛾, and batch size 𝐵, decay parameters 𝛽# and 𝛽*

1. Pre-train the parameters 𝜽 % , 𝑡 = 0, 𝑀+# = 𝑆+# = 0⊙ 𝜽 %

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient, momentum and scaling factor

𝐺( = ∇𝐽 ' 𝜽 (

𝑀( = 𝛽#𝑀(+# + 1 − 𝛽# 𝐺(	and	𝑆( = 𝛽*𝑆(+# + 1 − 𝛽* 𝐺(⊙𝐺(

c. Update 𝜽: 𝜽 ()# ← 𝜽 ( − ,

⁄-! #+/"!
⊙ ⁄𝑀( 1 − 𝛽#(

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (


