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* Announcements:
* HWO released 4/19, due 4/25 (Thursday) at 11:59 PM
* You may only use at most 2 late days on HW9

* Exam 3 on 4/30 from 9:30 AM to 11:30 AM

- We will not use the full 3-hour window

* All topics from Lectures 17 to 25 (inclusive) are in-scope

Front Matter

* Exam 1 and 2 content may be referenced but will not

be the primary focus of any question

* Please watch Piazza carefully for your room and seat

assignments

* You are allowed to bring one letter-size sheet of notes;

you may put whatever you want on both sides
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Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Recall:
Transformer

Each hidden vector looks back
at the hidden vectors of the
current and previous timesteps
in the previous layer.

Language
Model

The language model part is just
like an RNN-LM.
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[ Transformer layer ]

4/22/24



Recall:
Mini-batch

Stochastic
Gradient
Descent...

4/22/24

* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B
1. Randomly initialize the parameters 0 and sett = 0
2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b), y(b))}izl

b. Compute the gradient of the loss w.r.t. the sampled batch,
vJ(B) (g(t))

c. Update 8: 0+D (O _ yv](B)(g(t))
d. Incrementt:t<t+1

- Qutput: 8



4/22/24

* You have some niche task that you want to apply machine

learning to
* You have a tiny labelled dataset to train with
* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * “gradient-based

52 L .

v optimization starting

Q

=1 from random initialization
0)

appears to often get
Shallow "Deep" PP 5

Network Network (no stuck in poor solutions for

pre-training) such deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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* You have some niche task that you want to apply machine

learning to
* You have a tiny labelled dataset to train with
* You fit a massive deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * |ldea: if shallow
o5 .
L; networks are easier to
v 1 . .
= train, let’s just
0

decompose our deep
Shallow "Deep"

Network Network (no network into a series

pre-training) of shallow networks!
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https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training

(Bengio et al.,
2006)

4/22/24

* Train each layer of the Output layer

- Start at the input layer

* Once a layer has been

network iteratively using

the training dataset
34 hidden layer

and move towards the

nd hi
output layer 2"% hidden layer

trained, fix its weights 1* hidden layer
and use those to train

subsequent layers
Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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* Train each layer of the
network iteratively using

the training dataset

- Start at the input layer

Pre-training and move towards the
(Bengio et al., output layer Output layer

2006)

* Once a layer has been
trained, fix its weights 1% hidden layer
and use those to train

subsequent layers
Input layer
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* Train each layer of the Output layer

- Start at the input layer

* Once a layer has been

network iteratively using

the training dataset
34 hidden layer

and move towards the

nd hi
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trained, fix its weights 1** hidden layer
and use those to train

subsequent layers
Input layer
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Fine-tuning

(Bengio et al.,
2006)
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* Train each layer of the Output layer

* Use the pre-trained

network iteratively using

the training dataset
34 hidden layer

weights as an
initialization and 2" hidden laver
fine-tune the entire

network e.g., via SGD 15t hidden layer

with the training dataset

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset the entire network e.g., via SGD
Su pervised with the training dataset
Pre-training
(BengiO et g | > = Classification error on MNIST handwritten digit dataset
= 3
2006) 5
g 2
0
Shallow "Deep" "Deep"
Network Network (no Network

pre-training)  (supervised

re-trainin
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* Train each layer of the * Use the pre-trained weights as

network iteratively using an initialization and fine-tune

the training dataset to the entire network e.g., via SGD
Su o]S rvised predict the labels with the training dataset
Pre-training
(Bengio et al — Classification error on MNIST handwritten digit dataset
°) Q\O
— 3
2006) 5
0
Shallow "Deep"” "Deep"
Network Network (no Network

pre-training)  (supervised

re-trainin
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* Train each layer of the * ldea: a good representation is

network iteratively using one preserves a lot of
the training dataset to information and could be used
Unsu pe rvised learn useful representations  to recreate the inputs
Pre-training
(BengiO et g I > E\f 3 Classification error on MNIST handwritten digit dataset
2006) 5
LlJ 2
0
Shallow "Deep" "Deep"
Network Network (no Network

pre-training)  (supervised

22220 pre-training) ,



Unsupervised
Pre-training

(Bengio et al.,
2006)
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* Train each layer of the Output layer

network iteratively using

the training dataset by

o 34 hidden layer
minimizing the

reconstruction error

||x — h(x) ||2 2"9 hidden layer

15t hidden layer

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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Unsupervised
Pre-training

(Bengio et al.,
2006)
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* Train each layer of the
network iteratively using
the training dataset by
minimizing the
reconstruction error

|lx — h(x)]|, Reconstructed
input

* This architecture/
objective defines an 15t hidden layer

autoencoder

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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* Train each layer of the
network iteratively using

the training dataset by Reconstructed

Unsu pervised minimizing the hidden layer
Pre-trainin g reconstruction error
(BengiO et al,, lx — h(x) |2 2" hidden layer

2006) * This architecture/

objective defines an 15t hidden layer

autoencoder

Input layer
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Unsupervised
Pre-training

(Bengio et al.,
2006)
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* Train each layer of the

* This architecture/

Reconstructed
hidden layer
network iteratively using

the training dataset by

. 3 hidden layer
minimizing the
reconstruction error

lx — h(x)||5 2nd hidden layer

objective defines an 15t hidden layer

autoencoder

Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf
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Fine-tuning

(Bengio et al.,
2006)
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* Train each layer of the Output layer

* When fine-tuning, we’re

network iteratively using
the training dataset by
o 3rd hidden layer
minimizing the
reconstruction error

|x — h(x)llz 2"9 hidden layer

effectively swapping out 1« higden layer
the last layer and fitting
all the weights to the

training dataset Input layer

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf

23


https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

* Train each layer of the * ldea: a good representation is

network iteratively using one preserves a lot of
the training dataset by information and could be used
Unsu pervised minimizing the to recreate the inputs
Pre-trainin g reconstruction error
(BengiO et g I > E\i 3 Classification error on MNIST handwritten digit dataset
2006) 5
52
B I 1 n
0)
Shallow "Deep" "Deep" "Deep"
Network Network (no Network Network

pre-training)  (supervised (unsupervised

\aon pre-training) pre-training) »



Another
dose of

Reality
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* You have some niche task that you want to apply machine

learning to
* You have a tiny labelled dataset to train with

* You fit a-deep learning model to the dataset

* Surprise, surprise: it overfits and your test error is super high

Classification error on MNIST handwritten digit dataset

5 * Problem: what if you

v 2 don’t even have

Q

=1 enough data to train a
0)

single layer/fine-tune
Shallow "Deep" 5 Y

Network Network (no the pre-trained

pre-training) network?

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn supervised tr1282.pdf 25
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Another
dose of

Reality
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* You have some niche task that you want to apply machine

learning to

* You have a tiny labelled dataset to train with
* You fit a-deep learning model to the dataset
* Surprise, surprise: it overfits and your test error is super high

* Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

- Ideally, you want to use a large dataset related to your

goal task

26



* You have some niche task that you want to apply machine

learning to

* You have a tiny labelled dataset to train with

* You fit a deep learning model to the dataset
Another massive

dose of - Surprise, surprise: it overfits and your test error is super high

Reality * Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

* GPT-3 pre-training data:

Quantity Weight in

Dataset (tokens) training mix
Common Crawl (filtered) 410 billion 60%
WebText2 19 billion 22%
Booksl 12 billion 8%
Books2 55 billion 8%
Wikipedia 3 billion 3%

4/22/24 Source: https://arxiv.org/pdf/2005.14165.pdf 27
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Another
dose of

Reality
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* You have some niche task that you want to apply machine

learning to

* You have a tiny labelled dataset to train with
* You fit a-deep learning model to the dataset
* Surprise, surprise: it overfits and your test error is super high

* Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

* Okay that’s great for pre-training and all, but what if

A. the concept of labelled data doesn’t apply to your task

i.e., not every input has a “correct” label e.g., chatbots?

B. you don’t have enough data to fine-tune your model?

28



Reinforcement
Learning from

Human
Feedback
(RLHF)
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* Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

* Idea: use human feedback to determine how good or

bad some prediction/response is!

* Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation...

* |dea: use a small number of annotations to learn a

“reward” function!

29



Reinforcement
Learning from

Human
Feedback

(RLHF)
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Step 1

Collect demonstration data
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

Alabeler
demonstrates the
desired output
behavior.

This datais used to
fine-tune GPT-3.5
with supervised
learning.

* RLHF is a special form of fine-tuning, used to fine-tune GPT-
3.5 into ChatGPT

Source: https://openai.com/blog/chatgpt

N
o

Explain reinforcement

learning to a 6 year old.

'

o)

z

We give treats and

punishments to teach...

}

Step 2

Collect comparison data and
train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

r N

./
Explain reinforcement
learning to a 6 year old.

o

In reinforcement Es in rewards...
learning, the L
agentis...

o o

Inmachine We givetreats and
learning.. punishments to
teach...

S=
®

0-0-0-0

Nt
0-0-0-0

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new promptis
sampled from
the dataset.

The PPO model is
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

=~

Write a story
about otters.

/

PPO

30


https://openai.com/blog/chatgpt

* Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

* Idea: leverage the LLM’s context window by passing a
few examples to the model as input,

without performing any updates to the parameters

In-context * Intuition: during training, the LLM is exposed to a
| ea rning massive number of examples/tasks and the input

conditions the model to “locate” the relevant concepts

4/22/24 Source: https://arxiv.org/pdf/2111.02080.pdf 32
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Few-shot,
One-shot &

Zero-shot
(in-context)
Learning
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* Idea: leverage the LLM’s context window by passing a

few examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: < task description
sea otter => loutre de mer < examples
peppermint => menthe poivrée <

plush girafe => girafe peluche «-

cheese => ¢ prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer < example #1
\Z
\Z

1 peppermint => menthe poivrée ¢ example #2

gradient update

eIé

4

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

33
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Few-shot,
One-shot &

Zero-shot
(in-context)
Learning
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* Idea: leverage the LLM'’s context window by passing a
few one examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT-3)

One-shot Fine-tuning

In addition to the task description, the model sees a single The model is trained via repeated gradient updates using a

example of the task. No gradient updates are performed. large corpus of example tasks.

. o 1 sea otter => loutre de mer < example #1
1 Translate English to French: < task description
\Z
2 sea otter => loutre de mer ¢ example
gradient update
3 cheese => < prompt
\Z
1 peppermint => menthe poivrée ¢ example #2

gradient update

eIé

4

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt

Source: https://arxiv.org/pdf/2005.14165.pdf
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Few-shot,
One-shot &

Zero-shot
(in-context)
Learning
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* Idea: leverage the LLM'’s context window by passing a

few-one zero(!) examples to the model as input,

without performing any updates to the parameters

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

1 Translate English to French: < task description

2 cheese => «—— prompt

Source: https://arxiv.org/pdf/2005.14165.pdf

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a
large corpus of example tasks.

1 sea otter => loutre de mer < example #1
\Z
\Z

1 peppermint => menthe poivrée ¢ example #2

gradient update

éIe

2

1 plush giraffe => girafe peluche < example #N

gradient update

T

1 cheese => prompt
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* Idea: leverage the LLM'’s context window by passing a
few-one zero(!) examples to the model as input,
without performing any updates to the parameters

106 Aggregate Performance Across Benchmarks

—e— Few Shot
—e— One Shot

FEW—ShOt, 80 —e— Zero Shot
One-shot &

o

60

40/

20

Accuracy

Zero-shot
(in-context)
Lea rn i ng 8152—;048'/;)—8; 1.3B 2.6B 6.7B _13B 175B

Parameters in LM (Billions)

* Key Takeaway: LLMs can perform well on novel tasks

without having to fine-tune the model, sometimes even

with just one or zero labelled training data points!

4/22/24 Source: https://arxiv.org/pdf/2005.14165.pdf
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* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B

Mini-batch 1. —the parameters 0 andsett =0

Stochastic 2. While TERMINATION CRITERION is not satisfied

Gradient a. Randomly sample B data points from D, {(x(b), y(b))}izl

Descent is a-iel
just the RICIE)

beginning!
c. Update : 8¢+1)  g(®) __

d. Incrementt:t < t+1

b. Compute the gradient of the-w.r.t. the sampled batch,

- Qutput: 8
4/22/24 37



Mini-batch
Stochastic
Gradient

Descent
just the
beginning!
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* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B
1. Pre-train the parameters 0 andsett =0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b), y(b))}izl

b. Compute the gradient of the fine-tuning loss
vJ(B) (g(t))

c. Update 8: 0+D (O _ yv](B)(g(t))
d. Incrementt:t<t+1

- Qutput: 8
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Mini-batch
Stochastic
Gradient

Descent
with
Momentum
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* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B, decay parameter [
1. Pre-train the parameters 0 and set t = 0,G_.1=00 00

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b),y(b))}gzl

b. Compute the gradient of the fine-tuning loss
G, = V](B)(g(t))

c. Update 8: 8¢*D « () —y(BG,_, + G,)
d. Incrementt:t < t+1

- Qutput:
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Mini-batch
Stochastic
Gradient

Descent
with
Momentum
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Mini-batch
Stochastic
Gradient

Descent
with
Momentum
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Mini-batch
Stochastic
Gradient

Descent
with
Momentum
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Mini-batch
Stochastic
Gradient
Descent with

Root Mean
Square
Propagation
(RMSProp)
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. o~~~ N
* Input: training dataset D = {(x(l):y(l))}izl’
step size y, and batch size B, decay parameter [

1. Pre-train the parameters 00 gnd sett = 0,5.1=00 9®

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample B data points from D, {(x(b),y(b))}izl

b. Compute the gradient of the fine-tuning loss
G, = V](B)(g(t))
c. Update the scaling factor: Sy = £S;_1 + (1 — B)(G; © G;)
d. Update 8: 8¢+ « (&) — \/Ls_t O G;
e. Incrementt:t <t +1

43
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SGD

- - Momentum
Mini-batch wene: NAG
. - Adagrad
Stochastic Adadeita

Gradient 4

Rmsprop

Descent with ";
Root Mean =
Square 4

1.0

Propagation
(RMSProp)

4/22/24 Source: https://www.ruder.io/optimizing-gradient-descent/
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* Input: training dataset D = {(x(i),y(i))}livzl,

step size y, and batch size B, decay parameters [5; and (55
1. Pre-train the parameters 8, t =0, M_; =5_; =00
Adam

(Adaptive ;
Moment a. Randomly sample B data points from D, {(x(b),y(b))}bzl

2. While TERMINATION CRITERION is not satisfied

Estimation) — b. Compute the gradient, momentum and scaling factor
SGD + G, = V](B)(g(t))

Momentum + M, = ByM;_1 + (1 — B) G, and Sy = ByS;—1 + (1 — B) (G, O Gy)

RMSPro
P c. Update 8: 0¢*D () — L O M:/(1 - BD))
\/St/(l—ﬁﬁ)

d. Incrementt:t < t+1

e - Qutput: O



