
10-301/601: Introduction to
Machine Learning
Lecture 26 – Pre-training,
Fine-tuning & In-Context
Learning
Hoda Heidari, Henry Chai & Matt Gormley

4/22/24

Front Matter

� Announcements:

� HW9 released 4/19, due 4/25 (Thursday) at 11:59 PM

� You may only use at most 2 late days on HW9

� Exam 3 on 4/30 from 9:30 AM to 11:30 AM

� We will not use the full 3-hour window

� All topics from Lectures 17 to 25 (inclusive) are in-scope

� Exam 1 and 2 content may be referenced but will not
be the primary focus of any question

� Please watch Piazza carefully for your room and seat

assignments

� You are allowed to bring one letter-size sheet of notes;

you may put whatever you want on both sides
4/22/24 2

Recall:
Transformer
Language
Model

3

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back
at the hidden vectors of the
current and previous timesteps
in the previous layer.

The language model part is just
like an RNN-LM.

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…
Transformer layer

Transformer layer

Transformer layer

4/22/24

Recall:
Mini-batch
Stochastic
Gradient
Descent…

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

,

step size 𝛾, and batch size 𝐵

1. Randomly initialize the parameters 𝜽 % and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the loss w.r.t. the sampled batch,

∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 (− 𝛾∇𝐽 ' 𝜽 (

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (
4/22/24 5

Reality

� You have some niche task that you want to apply machine

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

4/22/24 8

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• “gradient-based
optimization starting
from random initialization
appears to often get

stuck in poor solutions for
such deep networks.”

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Reality

� You have some niche task that you want to apply machine

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

4/22/24 9

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• Idea: if shallow
networks are easier to
train, let’s just
decompose our deep

network into a series
of shallow networks!

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

4/22/24 10Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

4/22/24 11Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

Output layer

� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

4/22/24 12Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

Output layer

� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Pre-training
(Bengio et al.,
2006)

4/22/24 13Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Start at the input layer

and move towards the
output layer

� Once a layer has been
trained, fix its weights

and use those to train
subsequent layers

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

4/22/24 14Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer� Train each layer of the

network iteratively using
the training dataset

� Use the pre-trained

weights as an
initialization and

fine-tune the entire
network e.g., via SGD

with the training dataset

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Supervised
Pre-training
(Bengio et al.,
2006)

4/22/24 15

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

� Train each layer of the

network iteratively using
the training dataset

� Use the pre-trained
weights as an
initialization and

fine-tune the entire
network e.g., via SGD

with the training dataset
0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Train each layer of the

network iteratively using
the training dataset to
predict the labels

� Use pre-trained weights
as an initialization and

fine-tune the entire
network e.g., via SGD

with the training dataset

Supervised
Pre-training
(Bengio et al.,
2006)

4/22/24 16

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Use the pre-trained weights as

an initialization and fine-tune
the entire network e.g., via SGD
with the training dataset

Unsupervised
Pre-training
(Bengio et al.,
2006)

4/22/24 18

� Idea: a good representation is

one preserves a lot of
information and could be used
to recreate the inputs

� Train each layer of the

network iteratively using
the training dataset to
learn useful representations

� Use pre-trained weights as
an initialization and

fine-tune the entire network
e.g., via SGD with the
training dataset

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� This objective defines an
autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

4/22/24 19Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

⋯

⋯

Input layer

1st hidden layer

2nd hidden layer

3rd hidden layer

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

4/22/24 20Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯
Reconstructed

input

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

4/22/24 21Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� This architecture/
objective defines an

autoencoder

Unsupervised
Pre-training
(Bengio et al.,
2006)

4/22/24 22Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯

⋯

2nd hidden layer

Reconstructed
hidden layer

⋯3rd hidden layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Fine-tuning
(Bengio et al.,
2006)

4/22/24 23Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

⋯

⋯

Input layer

1st hidden layer

⋯2nd hidden layer

⋯3rd hidden layer

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� When fine-tuning, we’re
effectively swapping out
the last layer and fitting
all the weights to the
training dataset

Output layer

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Unsupervised
Pre-training
(Bengio et al.,
2006)

4/22/24 24

� Train each layer of the

network iteratively using
the training dataset by
minimizing the
reconstruction error

𝒙 − ℎ 𝒙 *

� When fine-tuning, we’re
effectively swapping out
the last layer and fitting
all the weights to the
training dataset

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised
pre-training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

� Idea: a good representation is

one preserves a lot of
information and could be used
to recreate the inputs

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

4/22/24 25

0

1

2

3

Shallow
Network

"Deep"
Network (no
pre-training)

"Deep"
Network

(supervised pre-
training)

"Deep"
Network

(unsupervised
pre-training)

Te
st

 E
rr

or
 (%

) Classification error on MNIST handwritten digit dataset

• Problem: what if you
don’t even have
enough data to train a
single layer/fine-tune

the pre-trained
network?

Source: https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

https://www.cs.toronto.edu/~larocheh/publications/dbn_supervised_tr1282.pdf

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� Ideally, you want to use a large dataset related to your

goal task

4/22/24 26

Another
dose of
Reality

� You have some niche task that you want to apply machine

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� GPT-3 pre-training data:

4/22/24 27Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

� You have some niche task that you want to apply machine

learning to

� You have a tiny labelled dataset to train with

� You fit a massive deep learning model to the dataset

� Surprise, surprise: it overfits and your test error is super high

� Key observation: you can pre-train on basically any labelled

or unlabelled dataset!

� Okay that’s great for pre-training and all, but what if

A. the concept of labelled data doesn’t apply to your task
i.e., not every input has a “correct” label e.g., chatbots?

B. you don’t have enough data to fine-tune your model?

Another
dose of
Reality

4/22/24 28

Reinforcement
Learning from
Human
Feedback
(RLHF)

� Insight: for many machine learning tasks, there is no

universal ground truth, e.g., there are lots of possible

ways to respond to a question or prompt.

� Idea: use human feedback to determine how good or

bad some prediction/response is!

� Issue: if the input space is huge (e.g., all possible chat

prompts), to train a good model, we might need tons

and tons of (potentially expensive) human annotation…

� Idea: use a small number of annotations to learn a

“reward” function!
4/22/24 29

Reinforcement
Learning from
Human
Feedback
(RLHF)

4/22/24 30

� RLHF is a special form of fine-tuning, used to fine-tune GPT-

3.5 into ChatGPT
Source: https://openai.com/blog/chatgpt

https://openai.com/blog/chatgpt

In-context
Learning

� Problem: given their size, effectively fine-tuning LLMs

can require lots of labelled data points.

� Idea: leverage the LLM’s context window by passing a
few one zero(!) examples to the model as input,

without performing any updates to the parameters

� Intuition: during training, the LLM is exposed to a
massive number of examples/tasks and the input
conditions the model to “locate” the relevant concepts

4/22/24 32Source: https://arxiv.org/pdf/2111.02080.pdf

https://arxiv.org/pdf/2111.02080.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

4/22/24 33Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

4/22/24 34Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

4/22/24 35Source: https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Few-shot,
One-shot &
Zero-shot
(in-context)
Learning

� Idea: leverage the LLM’s context window by passing a

few one zero(!) examples to the model as input,
without performing any updates to the parameters

4/22/24 36Source: https://arxiv.org/pdf/2005.14165.pdf

• Key Takeaway: LLMs can perform well on novel tasks
without having to fine-tune the model, sometimes even
with just one or zero labelled training data points!

https://arxiv.org/pdf/2005.14165.pdf

Mini-batch
Stochastic
Gradient
Descent is a lie!
just the
beginning!

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

,

step size 𝛾, and batch size 𝐵

1. Randomly initialize the parameters 𝜽 % and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the loss w.r.t. the sampled batch,

∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 (− 𝛾∇𝐽 ' 𝜽 (

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (
4/22/24 37

Mini-batch
Stochastic
Gradient
Descent
just the
beginning!

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

,

step size 𝛾, and batch size 𝐵

1. Pre-train the parameters 𝜽 % and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the fine-tuning loss

∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 (− 𝛾∇𝐽 ' 𝜽 (

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (
4/22/24 38

Mini-batch
Stochastic
Gradient
Descent
with
Momentum

4/22/24 39

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

,

step size 𝛾, and batch size 𝐵, decay parameter 𝛽

1. Pre-train the parameters 𝜽 % and set 𝑡 = 0, 𝐺+# = 0⊙ 𝜽 %

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the fine-tuning loss

𝐺(= ∇𝐽 ' 𝜽 (

c. Update 𝜽: 𝜽 ()# ← 𝜽 (− 𝛾 𝛽𝐺(+# + 𝐺(

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (

4/22/24 40

Mini-batch
Stochastic
Gradient
Descent
with
Momentum

4/22/24 41

Mini-batch
Stochastic
Gradient
Descent
with
Momentum

4/22/24 42

Mini-batch
Stochastic
Gradient
Descent
with
Momentum

Mini-batch
Stochastic
Gradient
Descent with
Root Mean
Square
Propagation
(RMSProp)

4/22/24 43

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

,

step size 𝛾, and batch size 𝐵, decay parameter 𝛽

1. Pre-train the parameters 𝜽 % and set 𝑡 = 0, 𝑆+# = 0⊙ 𝜽 %

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient of the fine-tuning loss

𝐺(= ∇𝐽 ' 𝜽 (

c. Update the scaling factor: 𝑆(= 𝛽𝑆(+# + 1 − 𝛽 𝐺(⊙𝐺(

d. Update 𝜽: 𝜽 ()# ← 𝜽 (− ,
-!
⊙𝐺(

e. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (

Mini-batch
Stochastic
Gradient
Descent with
Root Mean
Square
Propagation
(RMSProp)

4/22/24 44Source: https://www.ruder.io/optimizing-gradient-descent/

https://www.ruder.io/optimizing-gradient-descent/

Adam
(Adaptive
Moment
Estimation) =
SGD +
Momentum +
RMSProp

4/22/24 45

� Input: training dataset 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

,

step size 𝛾, and batch size 𝐵, decay parameters 𝛽# and 𝛽*

1. Pre-train the parameters 𝜽 % , 𝑡 = 0, 𝑀+# = 𝑆+# = 0⊙ 𝜽 %

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 & , 𝑦 &
&"#
'

b. Compute the gradient, momentum and scaling factor

𝐺(= ∇𝐽 ' 𝜽 (

𝑀(= 𝛽#𝑀(+# + 1 − 𝛽# 𝐺(and	𝑆(= 𝛽*𝑆(+# + 1 − 𝛽* 𝐺(⊙𝐺(

c. Update 𝜽: 𝜽 ()# ← 𝜽 (− ,

⁄-! #+/"!
⊙ ⁄𝑀(1 − 𝛽#(

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝜽 (

