10-301/601: Introduction
to Machine Learning
Lecture 3 — Decision
Trees

Hoda Heidari, Henry Chai & Matt Gormley
1/24/24

Front Matter

1/24/24

* Announcements:

* HW1 released 1/17, due 1/24 (today!) at 11:59 PM

* Reminder: we will grant (basically) any extension

requests for this assignment!
* HW2 released 1/24 (today!), due 2/5 at 11:59 PM
* Unlike HW1, you will only have:
* 1 graded submission for the written portion

* 10 submissions of the programming portion to

our autograder

Q&A:

How do these
in-class polls
work?

1/24/24

* Open the poll, either by clicking the [Poll] link on the

schedule page of our course website or going to

http://poll.mlcourse.org

- Sign into Google Forms using your Andrew email

- Answer all poll questions during lecture for full credit

or within 24 hours for half credit

* Avoid the toxic option (will be clearly specified in

lecture) which gives negative poll points

* You have 8 free “poll points” for the semester that will

excuse you from all polls from a single lecture; you

cannot use more than 3 poll points consecutively.

http://poll.mlcourse.org/

Poll Question 1:

Which of the
following did

you bring to
class today?
Select all that

apply

1/24/24

. A smartphone
. Aflip phone
. A payphone (TOXIC)

. No phone

* A binary search tree (BST) consists of nodes, where each node:
* has a value, v

* up to 2 children, a left descendant and a right descendant

Background:
Recursion

- all its left descendants have values less than v and its right
descendants have values greater than v

* We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree/ berl,cm) (,WL/ §>

def contains iterative (node, key): \)
cu? = node /_
while true:
1f key < cur.value & cur.left != null:
cur = cur.left
else if cur.value < key & cur.right != null:
cur = cur.right
else:
break

1/24/24 return key == cur.value

* A binary search tree (BST) consists of nodes, where each node:
* has a value, v

* up to 2 children, a left descendant and a right descendant

Background:
Recursion

- all its left descendants have values less than v and its right
descendants have values greater than v

* We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

def contains recursive (node, key):
1if key < node.value & node.left != null:
return contains(node.left, key)
else 1f node.value'fﬂﬁg§v% node.right != null:
return contains (node.right, key)
else: T revarnve

return key == node.value

1/24/24

From X3 %

0 c Resting Blood | Cholesterol | Heart
DECISIOH Pressure Disease?
Stu m p Yes Low Normal No

No Medium Normal No
No Low Abnormal Yes
Yes Medium Normal Yes

Yes High Abnormal Yes

1/24/24

From
Decision
Stump

to
Decision
Tree

1/24/24

Yes

Yes

Resting Blood
Pressure

Low
Medium
Low
Medium
High

X3
Cholesterol

Normal
Normal
Abnormal
Normal

Abnormal

y
Heart

Disease?
No

No

Yes

Yes

Yes

From
Decision
Stump

to
Decision
Tree

1/24/24

Yes

Yes

No

Resting Blood
Pressure

Low
Medium
Low
Medium
High

High

X3
Cholesterol

Normal
Normal
Abnormal
Normal

Abnormal

Normal

y
Heart

Disease?
No

No

Yes

Yes

Yes

No

From
Decision
Stump

to
Decision
Tree

1/24/24

Yes

Yes

No

Resting Blood
Pressure

Low
Medium
Low
Medium
High

High

X3
Cholesterol

Normal
Normal
Abnormal
Normal

Abnormal

Normal

y
Heart

Disease?
No

No

Yes

Yes

Yes

No

10

From
Decision
Stump

to
Decision
Tree

1/24/24

Yes

Yes

No

Resting Blood
Pressure

Low
Medium
Low
Medium
High

High

X3
Cholesterol

Normal
Normal
Abnormal
Normal

Abnormal

Normal

y
Heart

Disease?
No

No

Yes

Yes

Yes

No

11

From
Decision
Stump

to
Decision
Tree

1/24/24

Yes

Yes

No

Resting Blood
Pressure

Low
Medium
Low
Medium
High

High

X3
Cholesterol

Normal
Normal
Abnormal
Normal

Abnormal

Normal

y
Heart

Disease?
No

No

Yes

Yes

Yes

No

12

) /
//, 1:37*:\) [7%;'21, [t) .7<: E)’j:]
-

ST e bk b o ke

uL \c (ere.) ,
? Jr\rf Cu roe/\jr wocle. SR e/na -
C\\ALC\< ‘_\A/\ ASS O Ctajdcc&, \Qvo\qu re, 7<

Decision

Tree:
Pseudocode

6\36, CCUFPCHA(_YLOA,L 1S 4 \ef)df
ﬁ’}(urc\ _PE‘A assoc\aA;LCf \Llpf;\

1/24/24

Decision

Tree:
Example

1/24/24

Learned from medical records of 1000 women

Negative examples are C-sections

— T ——
[833+,167-1 .83+ .17-]

— Fetal_Presentation = 1: [822+yid6=] .88+ .12-
—2| Previous_Csection = 0: [767+,81-] .90+ .10-
— Primiparous = 0: [399+,13-] .97+ .03-

) Primiparous = 1: [368+,68-] .84+ .16-

| Fetal_Distress = 0: [334+,47-] .88+ .12-
| Fetal_Distress = 1: [34+,21-] .62+ .38-
—>| Previous_Csection = 1: [55+,35-] .61+ .39-
——>Fetal_Presentation = 2: [3+,29-] .11+ .89-
—>Fetal_Presentation = 3: [8+,22-] 27+4.73-<

[304.\00\3— 3‘\‘0,’\’6’LCS

Figure courtesy of Tom Mitchell

14

Decision

Stumps:
Questions

1/24/24

1. Why stop at just one feature?
Don

y How can we pick which feature to split on?

3. How can we pick the order of the splits?

15

Splitting
Criterion

1/24/24

* A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a

specified dataset

* Idea: when deciding which feature to split on, use the

one that optimizes the splitting criterion

16

Training
Error Rate

as a
Splitting
Criterion

1/24/24

X1 X3
Famlly History Restmg BIood Pressure | Cholesterol

No
No
Yes

Yes

Training error

rate: 2 /§

Medium
Low
Medium
High

Normal
Normal
Abnormal
Normal

Abnormal

Training error

rate: 7—/§_

No
Yes

Yes ﬁ(

Yes

Training error

rate:) /§

17

Training
Error Rate

as a
Splitting
Criterion?

1/24/24

e S N

== =R O O O O

o Y = G S S S = Bl

Aoty

‘
\S}
=

o
‘
=
[N

Training error rate: Z/
J

18

Splitting
Criterion

1/24/24

> A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a
specified dataset

* Idea: when deciding which feature to split on, use the

one that optimizes the splitting criterion

* Potential splitting criteria:

* Training error rate (minimize)
* Gini impurity (minimize) = CART algorithm

* Mutual information (maximize) — ID3 algorithm

19

Splitting
Criterion

1/24/24

> A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a
specified dataset

* Idea: when deciding which feature to split on, use the

one that optimizes the splitting criterion

* Potential splitting criteria:

* Training error rate (minimize)
* Gini impurity (minimize) = CART algorithm

* Mutual information (maximize) — ID3 algorithm

20

1/24/24

* The entropy of a random variable describes the
uncertainty of its outcome: the higher the entropy, the

less certain we are about what the outcome will be.

HX) = — z P(X = v)log,(P(X =v))
vEV(X)
where X is a (discrete) random variable

V' (X) is the set of possible values X can take on

21

1/24/24

* The entropy of a set describes how uniform or pure it is:

the higher the entropy, the more impure or “mixed-up”

the set is /7 H, = Car&m\& a? A

S S. - "
H(S) = — Z Mlogz(ﬂ) wze of
S| S|
vEeV(S)

where S is a collection of values,

V(S) is the set of unique values in S

S, is the collection of elements in S with value v

* If all the elements in S are the same, then

HC@ = - % l”ﬁz% :'l loﬁzl = @

22

* The entropy of a set describes how uniform or pure it is:
the higher the entropy, the more impure or “mixed-up”

the set is

S| S|
H(S) = — Z —log, ()
N S|
vevV(S)
where S is a collection of values,
V(S) is the set of unique values in S

S, is the collection of elements in S with value v

* If S is split fifty-fifty between two values, then

H(S)=- (x ,%Z%% L'c’s{b“(slyes v2lgh
= (3 F) =\ .

Mutual
Information

1/24/24

* The mutual information between two random variables
describes how much clarity knowing the value of one random

variables provides about the other
[(Y;X)=H{)—-H(Y|X)

=Hwy-§:Pa=umww=m
vEV(X)
where X and Y are random variables

V' (X) is the set of possible values X can take on

H(Y|X = v) is the conditional entropy of Y given X = v

24

Mutual
Information

1/24/24

* The mutual information between a feature and the label
describes how much clarity knowing the feature provides
about the label

I(y; xq) = H(y) — H(y|xq)

= H(y) — z fv(H(de=v))

veEV(xyq)

where x4 is a feature and y is the set of all labels
V(x4) is the set of possible values x4 can take on

f, is the fraction of data points where x; = v

Yy ,=v is the set of all labels where x4 = v

25

Mutual
Information:

Example

///////

Mutual
Information:

Example

///////

Mutual
Information

as a
Splitting
Criterion

1/24/24

=<

NN
0 1

Mutual Information: 0

0 1

Mutual Information: H(Y) — %H(Yxfo) — %H(szﬂ)
i\ 7

e S N
_ R = = O O O O
T e Y ==y S S Y = W

28

Mutual
Information

as a
Splitting
Criterion

1/24/24

H<ﬂ - ’?—H(/X\:’I\ R%HQ,:O>

NN

=<

e S N
_ R = = O O O O
T e Y ==y S S Y = W

: 2
Mutual Information: (— S log,

2 6
8 8

0 1

Mutual Information: 0
0 1

6 1 1
log, g) —~(1) —2(0) ~ 0.31

29

Decision

Stumps:
Questions

1/24/24

1. Why stop at just one feature?

2. How can we pick which feature to split on?

3. How can we pick the order of the splits?

r;2/€C_u r$H 0N)"

30

def train(Dirgin):
store root = tree recurse(Dsrqin)
def tree recurse(D’):

g = new node()

base case - if (SOME CONDITION):

Decision

recursion - else:

Tree: £d ﬁw A«er[‘ (efore © 5(?” N 7%
Pseudocode 7-5p = x,

L " \/(X) al) fos,\lL Vel op?ﬂ"
’D S2(x™ () e D) 1% =S
‘f Ch: M/‘m (\,) 'J-N,e, W‘(’C\N}Q(D«/>

return g

1/24/24 31

Decision

Tree:
Pseudocode

1/24/24

def train(Dirgin):
store root = tree recurse(Dsrqin)
def tree recurse(D’):

q = nhew node()

base case - if(-“; mX-m@/ - Jy\&,\ LLL \a :D}AJS
JDJI \S \e,sﬁ %a«\ C,/
al G vedos 0 D oon -
Some o’{'l;_,/ 5& W er&%a)f
£P) |
7L‘~LC) = VUO&(JG»L»&)@)0 D)

recursion - else:

return g

32

