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Front Matter

� Announcements: 

� HW1 released 1/17, due 1/24 (today!) at 11:59 PM

� Reminder: we will grant (basically) any extension 
requests for this assignment!

� HW2 released 1/24 (today!), due 2/5 at 11:59 PM

� Unlike HW1, you will only have: 

� 1 graded submission for the written portion 

� 10 submissions of the programming portion to 
our autograder
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Q & A: 

How do these 
in-class polls 
work?

� Open the poll, either by clicking the [Poll] link on the 

schedule page of our course website or going to 
http://poll.mlcourse.org

� Sign into Google Forms using your Andrew email

� Answer all poll questions during lecture for full credit 
or within 24 hours for half credit

� Avoid the toxic option (will be clearly specified in 
lecture) which gives negative poll points

� You have 8 free “poll points” for the semester that will 
excuse you from all polls from a single lecture; you 
cannot use more than 3 poll points consecutively.
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Poll Question 1:

Which of the 
following did 
you bring to 
class today? 
Select all that 
apply

A. A smartphone

B. A flip phone

C. A payphone (TOXIC)

D. No phone
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Background: 
Recursion

� A binary search tree (BST) consists of nodes, where each node:
� has a value, v 
� up to 2 children, a left descendant and a right descendant
� all its left descendants have values less than v and its right 

descendants have values greater than v

� We like BSTs because they permit search in O(log(n)) time, 
assuming n nodes in the tree

def contains_iterative(node, key):
 cur = node
 while true:
  if key < cur.value & cur.left != null:
   cur = cur.left 
  else if cur.value < key & cur.right != null:
   cur = cur.right
  else:
   break
 return key == cur.value
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def contains_recursive(node, key):
 if key < node.value & node.left != null:
  return contains_recursive(node.left, key)
 else if node.value < key & node.right != null:
  return contains_recursive(node.right, key)
 else:
  return key == node.value

1/24/24 6



From 
Decision 
Stump 
…
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From 
Decision 
Stump 
to 
Decision 
Tree
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Decision 
Tree: 
Pseudocode
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def h(𝒙#):

- walk from root node to a leaf node

while(true):

if current node is internal (non-leaf):

check the associated attribute, 𝑥$
go down branch according to 𝑥$#

if current node is a leaf node: 

return label stored at that leaf
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Decision 
Tree: 
Example
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Decision Trees 
Suppose X = <X1,… Xn>  
where Xi are boolean-valued variables 
 
 
How would you represent Y = X2 X5 ?     Y = X2 ∨ X5 

How would you represent  X2 X5  ∨ X3X4(¬X1) 

 

16 

Decision Trees 
Suppose X = <X1,… Xn>  
where Xi are boolean-valued variables 
 
 
How would you represent Y = X2 X5 ?     Y = X2 ∨ X5 

How would you represent  X2 X5  ∨ X3X4(¬X1) 

 

Figure courtesy of Tom Mitchell 14



Decision 
Stumps: 
Questions

1. Why stop at just one feature?

2. How can we pick which feature to split on?

3. How can we pick the order of the splits? 
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Splitting 
Criterion

� A splitting criterion is a function that measures how 

good or useful splitting on a particular feature is for a 
specified dataset

� Idea: when deciding which feature to split on, use the 
one that optimizes the splitting criterion 

� Potential splitting criteria:

� Training error rate (minimize)

� Gini impurity (minimize) → CART algorithm

� Mutual information (maximize) → ID3 algorithm
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Training 
Error Rate 
as a 
Splitting 
Criterion
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𝑥!

𝑥!
Family History

𝑥"
Resting Blood Pressure

𝑥#
Cholesterol 

𝑦
Heart Disease?

Yes Low Normal No
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No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

“Yes” “No”
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“High”
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Training error 
rate:

Training error 
rate:

Training error 
rate:
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𝑥% 𝑥& 𝑦
1 0 0
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1 1 1
1 1 1
1 1 1
1 1 1
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Training 
Error Rate 
as a 
Splitting 
Criterion?

𝑥!
0 1

Training error rate: ⁄2 8

𝑥"
0 1
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Entropy
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� The entropy of a random variable describes the 

uncertainty of its outcome: the higher the entropy, the 
less certain we are about what the outcome will be.

𝐻 𝑋 = − 0
'	∈	* +

𝑃 𝑋 = 𝑣 log& 𝑃 𝑋 = 𝑣

where 𝑋 is a (discrete) random variable

             𝑉 𝑋  is the set of possible values 𝑋 can take on

             𝑆' is the collection of elements in 𝑆 with value 𝑣 

� If all the elements in 𝑆 are the same, then              
H 𝑆 = −1 log& 1 = 0
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Entropy
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� The entropy of a set describes how uniform or pure it is: 

the higher the entropy, the more impure or “mixed-up” 
the set is

𝐻 𝑆 = − 0
'	∈	* ,

|𝑆'|
|𝑆|

log&
|𝑆'|
|𝑆|

where 𝑆 is a collection of values,

             𝑉 𝑆  is the set of unique values in 𝑆  

             𝑆' is the collection of elements in 𝑆 with value 𝑣 

� If all the elements in 𝑆 are the same, then              
H 𝑆 = −1 log& 1 = 0
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� The entropy of a set describes how uniform or pure it is: 

the higher the entropy, the more impure or “mixed-up” 
the set is

𝐻 𝑆 = − 0
'	∈	* ,

|𝑆'|
|𝑆|

log&
|𝑆'|
|𝑆|

where 𝑆 is a collection of values,

             𝑉 𝑆  is the set of unique values in 𝑆  

             𝑆' is the collection of elements in 𝑆 with value 𝑣 

� If 𝑆 is split fifty-fifty between two values, then 

H 𝑆 = −
1
2
log&

1
2
−
1
2
log&

1
2

= −log&
1
2

= 1
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� The mutual information between two random variables 

describes how much clarity knowing the value of one random 
variables provides about the other

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻 𝑌 𝑋

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 0
' ∈ * +

𝑃 𝑋 = 𝑣 𝐻 𝑌 𝑋 = 𝑣

where 𝑋 and 𝑌 are random variables

𝑉 𝑋 is the set of possible values 𝑋 can take on

𝐻 𝑌 𝑋 = 𝑣 is the conditional entropy of 𝑌 given 𝑋 = 𝑣

Mutual 
Information
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Mutual 
Information

1/24/24

� The mutual information between a feature and the label 
describes how much clarity knowing the feature provides 
about the label

𝐼 𝑦; 𝑥$ = 𝐻 𝑦 − 𝐻 𝑦 𝑥$

𝐼 𝑦; 𝑥$ = 	𝐻 𝑦 − 0
'	∈	* -!

𝑓' 𝐻 𝑌-!.'

where 𝑥$ is a feature and 𝑦 is the set of all labels

             𝑉 𝑥$  is the set of possible values 𝑥$	can take on

             𝑓' is the fraction of data points where 𝑥$ = 𝑣 

 𝑌-!.'	is the set of all labels where 𝑥$ = 𝑣 
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Mutual 
Information:
Example

𝑥$ 𝑦
1 1
1 1
0 0
0 0

𝐼 𝑥$, 𝑌 = 𝐻 𝑌 − 0
'	∈	* -!

𝑓' 𝐻 𝑌-!.'
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𝐼 𝑥$, 𝑦 = 1 −
1
2𝐻 𝑌-!./ −

1
2𝐻 𝑌-!.%

𝐼 𝑥$, 𝑦 = 1 −
1
2
0 −

1
2
0 = 1
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𝑥% 𝑥& 𝑦
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Mutual 
Information
as a 
Splitting 
Criterion

𝑥!

1

0 1

𝑥"

1

0 1

Mutual Information: 0

Mutual Information: 𝐻 𝑌 − %
&𝐻 𝑌-"./ − %

&𝐻 𝑌-".%
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𝑥% 𝑥& 𝑦
1 0 0
1 0 0
1 0 1
1 0 1
1 1 1
1 1 1
1 1 1
1 1 1
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Mutual 
Information
as a 
Splitting 
Criterion

𝑥!

0 or 1 1

0 1

𝑥"

1

0 1

Mutual Information: 0

Mutual Information: − &
0 log&

&
0−

1
0 log&

1
0 − %

& 1 − %
& 0 ≈ 0.31
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Decision 
Stumps: 
Questions

1. Why stop at just one feature?

2. How can we pick which feature to split on?

3. How can we pick the order of the splits? 
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Decision 
Tree: 
Pseudocode
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def train(𝒟23456):

store root = tree_recurse(𝒟23456)

def tree_recurse(𝒟#):

q = new node()

base case – if (SOME CONDITION):

recursion – else:

find best attribute to split on, 𝑥$
q.split = 𝑥$
for 𝑣 in 𝑉 𝑥$ , all possible values of 𝑥$:

𝒟' = 𝒙 6 , 𝑦 6 ∈ 𝒟 | 𝑥$
6 = 𝑣

q.children(𝑣) = tree_recurse(𝒟')

return q
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Decision 
Tree: 
Pseudocode
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def train(𝒟23456):

   store root = tree_recurse(𝒟23456)

def tree_recurse(𝒟#):

   q = new node()

   base case – if (𝒟#	 is empty OR

 all labels in 𝒟# are the same OR

 all features in 𝒟# are identical OR

 some other stopping criterion):

 q.label = majority_vote(𝒟#)

  

   recursion – else:

   return q
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