
10-301/601: Introduction
to Machine Learning
Lecture 3 – Decision
Trees
Hoda Heidari, Henry Chai & Matt Gormley

1/24/24

Front Matter

� Announcements:

� HW1 released 1/17, due 1/24 (today!) at 11:59 PM

� Reminder: we will grant (basically) any extension
requests for this assignment!

� HW2 released 1/24 (today!), due 2/5 at 11:59 PM

� Unlike HW1, you will only have:

� 1 graded submission for the written portion

� 10 submissions of the programming portion to
our autograder

1/24/24 2

Q & A:

How do these
in-class polls
work?

� Open the poll, either by clicking the [Poll] link on the

schedule page of our course website or going to
http://poll.mlcourse.org

� Sign into Google Forms using your Andrew email

� Answer all poll questions during lecture for full credit
or within 24 hours for half credit

� Avoid the toxic option (will be clearly specified in
lecture) which gives negative poll points

� You have 8 free “poll points” for the semester that will
excuse you from all polls from a single lecture; you
cannot use more than 3 poll points consecutively.

1/24/24 3

http://poll.mlcourse.org/

Poll Question 1:

Which of the
following did
you bring to
class today?
Select all that
apply

A. A smartphone

B. A flip phone

C. A payphone (TOXIC)

D. No phone

1/24/24 4

Background:
Recursion

� A binary search tree (BST) consists of nodes, where each node:
� has a value, v
� up to 2 children, a left descendant and a right descendant
� all its left descendants have values less than v and its right

descendants have values greater than v

� We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

def contains_iterative(node, key):
 cur = node
 while true:
 if key < cur.value & cur.left != null:
 cur = cur.left
 else if cur.value < key & cur.right != null:
 cur = cur.right
 else:
 break
 return key == cur.value

7

3

61

9

15

1611

1/24/24 5

Background:
Recursion

� A binary search tree (BST) consists of nodes, where each node:
� has a value, v
� up to 2 children, a left descendant and a right descendant
� all its left descendants have values less than v and its right

descendants have values greater than v

� We like BSTs because they permit search in O(log(n)) time,
assuming n nodes in the tree

7

3

61

9

15

1611

def contains_recursive(node, key):
 if key < node.value & node.left != null:
 return contains_recursive(node.left, key)
 else if node.value < key & node.right != null:
 return contains_recursive(node.right, key)
 else:
 return key == node.value

1/24/24 6

From
Decision
Stump
…

1/24/24

𝑥!
Family
History

𝑥"
Resting Blood
Pressure

𝑥#
Cholesterol

𝑦
Heart
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

𝑥#

“Yes”

“Abnormal” “Normal”

“No”

7

From
Decision
Stump
to
Decision
Tree

1/24/24

𝑥!
Family
History

𝑥"
Resting Blood
Pressure

𝑥#
Cholesterol

𝑦
Heart
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

𝑥#

“Yes”

“Abnormal” “Normal”

𝑥!

“No”

“No” “Yes”

𝑥"

“Low” “Medium/High”

“No” “Yes”

8

From
Decision
Stump
to
Decision
Tree

1/24/24

𝑥!
Family
History

𝑥"
Resting Blood
Pressure

𝑥#
Cholesterol

𝑦
Heart
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

No High Normal No

𝑥#

“Yes”

“Abnormal” “Normal”

𝑥!

“No”

“No” “Yes”

𝑥"

“Low” “Medium/High”

“No” “Yes”

9

From
Decision
Stump
to
Decision
Tree

1/24/24

𝑥!
Family
History

𝑥"
Resting Blood
Pressure

𝑥#
Cholesterol

𝑦
Heart
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

No High Normal No

𝑥#

“Yes”

“Abnormal” “Normal”

𝑥!

“No”

“No” “Yes”

𝑥"

“Low” “Medium/High”

“No” “Yes”

10

From
Decision
Stump
to
Decision
Tree

1/24/24

𝑥!
Family
History

𝑥"
Resting Blood
Pressure

𝑥#
Cholesterol

𝑦
Heart
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

No High Normal No

𝑥#

“Yes”

“Abnormal” “Normal”

𝑥!

“No”

“No” “Yes”

𝑥"

“Low” “Medium/High”

“No” “Yes”

11

From
Decision
Stump
to
Decision
Tree

1/24/24

𝑥!
Family
History

𝑥"
Resting Blood
Pressure

𝑥#
Cholesterol

𝑦
Heart
Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

No High Normal No

𝑥#

“Yes”

“Abnormal” “Normal”

𝑥!

“No”

“No” “Yes”

𝑥"

“Low” “Medium/High”

“No” “Yes”

12

Decision
Tree:
Pseudocode

1/24/24

def h(𝒙#):

- walk from root node to a leaf node

while(true):

if current node is internal (non-leaf):

check the associated attribute, 𝑥$
go down branch according to 𝑥$#

if current node is a leaf node:

return label stored at that leaf

13

Decision
Tree:
Example

1/24/24

16

Decision Trees
Suppose X = <X1,… Xn>
where Xi are boolean-valued variables

How would you represent Y = X2 X5 ? Y = X2 ∨ X5

How would you represent X2 X5 ∨ X3X4(¬X1)

16

Decision Trees
Suppose X = <X1,… Xn>
where Xi are boolean-valued variables

How would you represent Y = X2 X5 ? Y = X2 ∨ X5

How would you represent X2 X5 ∨ X3X4(¬X1)

Figure courtesy of Tom Mitchell 14

Decision
Stumps:
Questions

1. Why stop at just one feature?

2. How can we pick which feature to split on?

3. How can we pick the order of the splits?

1/24/24 15

Splitting
Criterion

� A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a
specified dataset

� Idea: when deciding which feature to split on, use the
one that optimizes the splitting criterion

� Potential splitting criteria:

� Training error rate (minimize)

� Gini impurity (minimize) → CART algorithm

� Mutual information (maximize) → ID3 algorithm

1/24/24 16

Training
Error Rate
as a
Splitting
Criterion

1/24/24

𝑥!

𝑥!
Family History

𝑥"
Resting Blood Pressure

𝑥#
Cholesterol

𝑦
Heart Disease?

Yes Low Normal No

No Medium Normal No

No Low Abnormal Yes

Yes Medium Normal Yes

Yes High Abnormal Yes

“Yes” “No”

𝑥"

“High”

𝑥#

“Abnormal” “Normal”

Training error
rate:

Training error
rate:

Training error
rate:

“Med.”
“Low”

17

𝑥% 𝑥& 𝑦
1 0 0
1 0 0
1 0 1
1 0 1
1 1 1
1 1 1
1 1 1
1 1 1

1/24/24

Training
Error Rate
as a
Splitting
Criterion?

𝑥!
0 1

Training error rate: ⁄2 8

𝑥"
0 1

18

Splitting
Criterion

� A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a
specified dataset

� Idea: when deciding which feature to split on, use the
one that optimizes the splitting criterion

� Potential splitting criteria:

� Training error rate (minimize)

� Gini impurity (minimize) → CART algorithm

� Mutual information (maximize) → ID3 algorithm

1/24/24 19

Splitting
Criterion

� A splitting criterion is a function that measures how

good or useful splitting on a particular feature is for a
specified dataset

� Idea: when deciding which feature to split on, use the
one that optimizes the splitting criterion

� Potential splitting criteria:

� Training error rate (minimize)

� Gini impurity (minimize) → CART algorithm

� Mutual information (maximize) → ID3 algorithm

1/24/24 20

Entropy

1/24/24

� The entropy of a random variable describes the

uncertainty of its outcome: the higher the entropy, the
less certain we are about what the outcome will be.

𝐻 𝑋 = − 0
'	∈	* +

𝑃 𝑋 = 𝑣 log& 𝑃 𝑋 = 𝑣

where 𝑋 is a (discrete) random variable

 𝑉 𝑋 is the set of possible values 𝑋 can take on

 𝑆' is the collection of elements in 𝑆 with value 𝑣

� If all the elements in 𝑆 are the same, then
H 𝑆 = −1 log& 1 = 0

21

Entropy

1/24/24

� The entropy of a set describes how uniform or pure it is:

the higher the entropy, the more impure or “mixed-up”
the set is

𝐻 𝑆 = − 0
'	∈	* ,

|𝑆'|
|𝑆|

log&
|𝑆'|
|𝑆|

where 𝑆 is a collection of values,

 𝑉 𝑆 is the set of unique values in 𝑆

 𝑆' is the collection of elements in 𝑆 with value 𝑣

� If all the elements in 𝑆 are the same, then
H 𝑆 = −1 log& 1 = 0

22

Entropy

1/24/24

� The entropy of a set describes how uniform or pure it is:

the higher the entropy, the more impure or “mixed-up”
the set is

𝐻 𝑆 = − 0
'	∈	* ,

|𝑆'|
|𝑆|

log&
|𝑆'|
|𝑆|

where 𝑆 is a collection of values,

 𝑉 𝑆 is the set of unique values in 𝑆

 𝑆' is the collection of elements in 𝑆 with value 𝑣

� If 𝑆 is split fifty-fifty between two values, then

H 𝑆 = −
1
2
log&

1
2
−
1
2
log&

1
2

= −log&
1
2

= 1

23

� The mutual information between two random variables

describes how much clarity knowing the value of one random
variables provides about the other

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 𝐻 𝑌 𝑋

𝐼 𝑌; 𝑋 = 𝐻 𝑌 − 0
' ∈ * +

𝑃 𝑋 = 𝑣 𝐻 𝑌 𝑋 = 𝑣

where 𝑋 and 𝑌 are random variables

𝑉 𝑋 is the set of possible values 𝑋 can take on

𝐻 𝑌 𝑋 = 𝑣 is the conditional entropy of 𝑌 given 𝑋 = 𝑣

Mutual
Information

1/24/24 24

Mutual
Information

1/24/24

� The mutual information between a feature and the label
describes how much clarity knowing the feature provides
about the label

𝐼 𝑦; 𝑥$ = 𝐻 𝑦 − 𝐻 𝑦 𝑥$

𝐼 𝑦; 𝑥$ = 	𝐻 𝑦 − 0
'	∈	* -!

𝑓' 𝐻 𝑌-!.'

where 𝑥$ is a feature and 𝑦 is the set of all labels

 𝑉 𝑥$ is the set of possible values 𝑥$	can take on

 𝑓' is the fraction of data points where 𝑥$ = 𝑣

 𝑌-!.'	is the set of all labels where 𝑥$ = 𝑣

25

Mutual
Information:
Example

𝑥$ 𝑦
1 1
1 1
0 0
0 0

𝐼 𝑥$, 𝑌 = 𝐻 𝑌 − 0
'	∈	* -!

𝑓' 𝐻 𝑌-!.'

1/24/24

𝐼 𝑥$, 𝑦 = 1 −
1
2𝐻 𝑌-!./ −

1
2𝐻 𝑌-!.%

𝐼 𝑥$, 𝑦 = 1 −
1
2
0 −

1
2
0 = 1

26

Mutual
Information:
Example

𝑥$ 𝑦
1 1
0 1
1 0
0 0

𝐼 𝑥$, 𝑌 = 𝐻 𝑌 − 0
'	∈	* -!

𝑓' 𝐻 𝑌-!.'

1/24/24

𝐼 𝑥$, 𝑦 = 1 −
1
2𝐻 𝑌-!./ −

1
2𝐻 𝑌-!.%

𝐼 𝑥$, 𝑦 = 1 −
1
2
1 −

1
2
1 = 0

27

𝑥% 𝑥& 𝑦
1 0 0
1 0 0
1 0 1
1 0 1
1 1 1
1 1 1
1 1 1
1 1 1

1/24/24

Mutual
Information
as a
Splitting
Criterion

𝑥!

1

0 1

𝑥"

1

0 1

Mutual Information: 0

Mutual Information: 𝐻 𝑌 − %
&𝐻 𝑌-"./ − %

&𝐻 𝑌-".%

28

0 or 1

0 or 1

𝑥% 𝑥& 𝑦
1 0 0
1 0 0
1 0 1
1 0 1
1 1 1
1 1 1
1 1 1
1 1 1

1/24/24

Mutual
Information
as a
Splitting
Criterion

𝑥!

0 or 1 1

0 1

𝑥"

1

0 1

Mutual Information: 0

Mutual Information: − &
0 log&

&
0−

1
0 log&

1
0 − %

& 1 − %
& 0 ≈ 0.31

29

0 or 1

Decision
Stumps:
Questions

1. Why stop at just one feature?

2. How can we pick which feature to split on?

3. How can we pick the order of the splits?

1/24/24 30

Decision
Tree:
Pseudocode

1/24/24

def train(𝒟23456):

store root = tree_recurse(𝒟23456)

def tree_recurse(𝒟#):

q = new node()

base case – if (SOME CONDITION):

recursion – else:

find best attribute to split on, 𝑥$
q.split = 𝑥$
for 𝑣 in 𝑉 𝑥$, all possible values of 𝑥$:

𝒟' = 𝒙 6 , 𝑦 6 ∈ 𝒟 | 𝑥$
6 = 𝑣

q.children(𝑣) = tree_recurse(𝒟')

return q
31

Decision
Tree:
Pseudocode

1/24/24

def train(𝒟23456):

 store root = tree_recurse(𝒟23456)

def tree_recurse(𝒟#):

 q = new node()

 base case – if (𝒟#	 is empty OR

 all labels in 𝒟# are the same OR

 all features in 𝒟# are identical OR

 some other stopping criterion):

 q.label = majority_vote(𝒟#)

 recursion – else:

 return q
32

