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* Announcements:

* HW2 released 1/24, due 2/5 at 11:59 PM

Front Matter
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Recall:

Decision Tree —
Pseudocode
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def train(Dirgin):
store root = tree recurse(Dsrqin)
def tree recurse(D’):
g = new node()
base case - if (SOME CONDITION):
recursion - else:
find best attribute to split on, x4
g.split = x4

for v in V(x;), all possible values of xg:
DU = {(x(n),y(n)) eD | xc(in) — ’U}

g.children(v) = tree_recurse(D,)

return g



def train(Dirgin):

store root = tree_recurse(Dirgin)
def tree recurse(D’):

q = new node()

base case - if (D' is empty OR
Recall: all labels in D' are the same OR

Decision Tree —
Pseudocode

all features in D' are identical OR
some other stopping criterion):

g.label = majority vote(D')

recursion - else:

return g
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Decision

Trees:
Inductive Bias
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* The inductive bias of a machine learning algorithm is

the principle by which it generalizes to unseen examples

- What is the inductive bias of the ID3 algorithm i.e.,

decision tree learning with mutual information

maximization as the splitting criterion?

* Try to find the tree that achieves

with

features at the top




* Pros

* Interpretable

* Efficient (computational cost and storage)

* Can be used for classification and regression tasks
Decision * Compatible with categorical and real-valued features

Trees: . Cons
Pros & Cons
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X y X y

Resting | Heart Resting | Heart

Systolic | Disease? Systolic | Disease?

Pressure Pressure

135 No 118 No

147 § 191 y — x < 119.5?

s es es

Decision

118 No 125 Yes
Trees & 147 Yes — 126 No

121 Yes 133 No
Real-Valued

133 No 135 No
Features 140 No 140 No

125 Yes 142 Yes

150 Yes 147 Yes

126 No 150 Yes
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X y X y

Resting | Heart Resting | Heart

Systolic | Disease? Systolic | Disease?

Pressure Pressure

135 No 118 No

o o 142 Yes 121 Yes
— x <1237

DECISlon 118 No 125 Yes
Trees & 147 Yes — 126 No

121 Yes 133 No
Real-Valued

133 No 135 No
Features 140 No 140 No

125 Yes 142 Yes

150 Yes 147 Yes

126 No 150 Yes
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Systolic | Disease? Systolic | Disease?

Pressure Pressure

135 No 118 No

o o 142 Yes 121 Yes

Decision

118 No 125 Yes
Trees & 147 Yes — 126 No

121 Yes 133 No
Real-Valued

133 No 135 No
Features 140 No 140 No

— x < 1417
125 Yes 142 Yes
150 Yes 147 Yes

126 No 150 Yes
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X y x y
Resting | Heart Resting | Heart



Decision
Trees &

Real-Valued
Features
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«— x < 125.5?
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X y X y

Resting | Heart Resting | Heart
Systolic | Disease? Systolic | Disease?
Pressure Pressure
135 No 118 No
- _ @ 142 Yes 121 Yes
DECISlon 118 No 125 Yes
Trees & 147 Yes — 126 No
121 Yes 133 No
Real-Valued .
133 No 135 No * Discretize real-valued
Features 140 No 140 No features using thresholds
125 Yes 142 Yes (effectively creating new
150 Yes 147 Yes categorial features)
126 No 150 Yes

* Can split on real-valued
features multiple times in
1/29/24 the same tree




Decision

Trees:
Pros & Cons
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* Pros

* Interpretable
* Efficient (computational cost and storage)
* Can be used for classification and regression tasks

* Compatible with categorical and real-valued features

- Cons

* Learned greedily: each split only considers the

immediate impact on the splitting criterion

* Not guaranteed to find the smallest (fewest number

of splits) tree that achieves a training error rate of O.

* Liable to overfit!
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* Overfitting occurs when the classifier (or model)...

* is too complex

* fits noise or “outliers” in the training dataset as

opposed to the actual pattern of interest
- doesn’t have enough inductive bias pushing it to

Overﬁtting generalize (e.g., the memorizer)

- Underfitting occurs when the classifier (or model)...

* is too simple

° can’t capture the actual pattern of interest in the

training dataset

* has too much inductive bias (e.g., majority vote)

1/29/24
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Recall:
Different Kinds

of Error
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* Training error rate = err(h, Dergin)
- Test error rate = err(h, Dsest)

* True error rate = err(h)

= the error rate of h on all possible examples

* In machine learning, this is the quantity that we care

about but, in most cases, it is unknowable.

- Overfitting occurs when err(h) > err(h, D¢rgin)

* err(h) — err(h, D¢yrqin) can be thought of as a

measure of overfitting

16
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Combatting

Overfitting in
Decision Trees

1/29/24

* Heuristics:

* Do not split leaves past a fixed depth, 6
* Do not split leaves with fewer than ¢ data points

* Do not split leaves where the maximal information

gain is lessthan t

- Take a majority vote in impure leaves

18



Combatting

Overfitting in
Decision Trees
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* Pruning:
* First, learn a decision tree

* Then, evaluate each split using a “validation” dataset
by comparing the validation error rate with and

without that split

- Greedily remove the split that most decreases the

validation error rate

» Stop if no split is removed

19
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Decision Tree

Learning
Objectives

1/29/24

You should be able to...

1.
2.

Implement decision tree training and prediction

Use effective splitting criteria for decision trees and be able to
define entropy, conditional entropy, and mutual information /
information gain

Explain the difference between memorization and
generalization [CIML]

Describe the inductive bias of a decision tree

Formalize a learning problem by identifying the input space,
output space, hypothesis space, and target function

Explain the difference between true error and training error
Judge whether a decision tree is "underfitting" or "overfitting"

Implement a pruning or early stopping method to combat
overfitting in decision tree learning
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REAL VALUED ATTRIBUTES






Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3
different species: Iris setosa (0), Iris virginica (1), Iris versicolor
(2) collected by Anderson (1936)

Sepal Sepal Petal Petal
Length Width Length Width
4.3 3.0 1.1 0.1

0

0 4.9 3.6 1.4 0.1
0 5.3 3.7 1.5 0.2
1 4.9 2.4 3.3 1.0
1 5.7 2.8 4.1 1.3
1 6.3 3.3 4.7 1.6
1 6.7 3.0 5.0 1.7

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set



Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3
different species: Iris setosa (0), Iris virginica (1), Iris versicolor
(2) collected by Anderson (1936)

Sepal Sepal
il 7 | pereteawoof he
0 4.3 3.0 four features, so that
0 4.9 3.6 input space is 2D

0 5-3 3.7

1 4.9 2.4 @

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Full dataset: https://en.wikipedia.org/wiki/lris_flower data_set
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K-NEAREST NEIGHBORS



Nearest Neighbor: Algorithm

def train(D):
Store D

def h(x'):
Let x©) = the point in D that is nearest to x’
return y(i)



Classification & Real-Valued Features

Classification Binary Classification



Classification & Real-Valued Features

Decision Rules / Decision Boundaries



Nearest Neighbor: Algorithm

def train(D):
Store D

def h(x'):
Let x©) = the point in D that is nearest to x’
return y(i)



Nearest Neighbor: Example

13



Nearest Neighbor: Example

* This is a Voronoi
diagram

 Each cell contain .-
one of our
training 0.8
examples

* All points within
a cell are closer
to that training
example, than
to any other
training example ;|

* Points on the
Voronoi line 04
segments are
equidistant to "
one or more
trainin
examples




Nearest Neighbor: Example
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The Nearest Neighbor Model

* Requires no training!

* Always has zero training error!

— A data point is always its own nearest neighbor



k-Nearest Neighbors: Algorithm

def set_hyperparameters(k, d):
Store k
Store d(-, *)

def train(D):
Store D

def h(x"):
Let S = the set of k points in D nearest to x’
according to distance function
d(u, v)
Let v = majority vote(S)
returnv



k-Nearest Neighbors

Suppose we have the

. training dataset below. How should we label
the new point?

_34 - It depends on k:
—‘2 it k= 1, h(xnew) = +1
y + . If <—3; h(xnew) -
7‘"-._ + it k=5, h(xnew) = +1
+ +

18




KNN: Remarks

Distance Functions:
* KNN requires a distance function

d: RMxRM -5 R
e The most common choice is Euclidean distance

@) = | ) (= v’

\
* But there are other choices (e.g. Manhattan distance)

M

d(u,v) = z |um — Uml

m=1




KNN: Computational Efficiency

Suppose we have N training examples and
each one has M features

Computational complexity when k=1:

Tk Inave  lkdTee

Train O(1) ~O(M N log N)
Predict O(MN) ~0O(2Mlog N) on average

(one test example) &

Problem: Very fast for small M, but
very slow for large M

In practice: use stochastic
approximations (very fast, and
empirically often as good)

20



KNN: Theoretical Guarantees

Cover & Hart (1967)

Let h(x) be a Nearest Neighbor (k=1) binary
classifier. As the number of training
examples N goes to infinity...

error,.(h) < 2 x Bayes Error Rate

“In this sense, it may be said that half the
classification information in an infinite
sample set is contained in the nearest
neighbor.”

very
informally,
Bayes Error
Rate can be
thought of as:

‘the best you
could possibly
do’




KNN: Remarks

In-Class Exercises

How can we handle ties for
even values of k?

22



KNN: Inductive Bias

In-Class Exercise Whatis the inductive bias of KNN?
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kNN on Fisher Iris Data

3-Class classification (k = 2, weights = ‘uniform')
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3-Class classification (k = 5, weights = ‘uniform')
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kNN on Fisher Iris Data

3-Class classification (k = 10, weights = 'uniform’)
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kNN on Fisher Iris Data

3-Class classification (k = 20, weights = 'uniform’)
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kNN on Fisher Iris Data

3-Class classification (k = 30, weights = 'uniform')
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kNN on Fisher Iris Data

3-Class classification (k = 50, weights = 'uniform')
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3-Class classification (k = 120, weights = 'uniform’)
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kNN:Pros and Cons

* Pros:
— Intuitive [ explainable
— No training / retraining
— Provably near-optimal in terms of true error rate

* Cons:
— Computationally expensive
 Always needs to store all data: O(ND)
* Finding the k closest points in D dimensions: O(ND + N log(k))
— Affected by feature scale



KNN Learning Objectives

You should be able to...

Describe a dataset as points in a high dimensional space [CIML]
Implement k-Nearest Neighbors with O(N) prediction

Describe the inductive bias of a k-NN classifier and relate it to feature scale [a la.
CIML]

Sketch the decision boundary for a learning algorithm (compare k-NN and DT)
State Cover & Hart (1967)'s large sample analysis of a nearest neighbor classifier
Invent "new' k-NN learning algorithms capable of dealing with even k



How on earth do we go about setting k?

You should be able to...

Describe a dataset as points in a high dimensional space [CIML]
Implement k-Nearest Neighbors with O(N) prediction

Describe the inductive bias of a k-NN classifier and relate it to feature scale [a la.
CIML]

Sketch the decision boundary for a learning algorithm (compare k-NN and DT)
State Cover & Hart (1967)'s large sample analysis of a nearest neighbor classifier
Invent "new' k-NN learning algorithms capable of dealing with even k



How on earth do we go about setting k?

* This is effectively a question of model selection: every value
of k corresponds to a different model.

* WARNING:

— In some sense, our discussion of model selection is premature.

— The models we have considered thus far are fairly simple.

— In the real world, the models and the many decisions available to you will be
much more complex than what we’ve seen so far.



