10-301/601: Introduction to Machine Learning Lecture 5 – Model Selection

Henry Chai & Matt Gormley & Hoda Heidari 9/13/23

Model Selection

Horas of b-F depth 3

D = { (xi, yi)} i=1

he H

→ A' =

11 - Al linear model

Example - Decision Tree

• Terminology:

• Model ≈ the hypothesis space in which the learning algorithm searches for a classifier to return

- **Parameters** = numeric values or structure selected by the learning algorithm
- Hyperparameters = tunable aspects of the model that need to be specified before learning can happen, set outside of the training procedure

- Model = the set of all possible trees, potentially limited by some hyperparameter, e.g., max depth (see below)
- Parameters = structure of a specific tree, i.e., the order in which features are split on
- Hyperparameters = max depth, splitting criterion, etc...

Model Selection

- Terminology:
 - Model ≈ the hypothesis space in which the learning algorithm searches for a classifier to return
 - Parameters = numeric values or structure selected by the learning algorithm
 - Hyperparameters = tunable aspects of the model that need to be specified before learning can happen, set outside of the training procedure

- Example kNN:
 - Model = the set of all possible nearest neighbor classifiers

- Parameters = none! kNN is a nonparametric model
- Hyperparameters = k

Parametric vs. Nonparametric Models

- Parametric models (e.g., decision trees)
 - Have a parametrized form with parameters learned from training data
 - Can discard training data after parameters have been learned.
 - Cannot exactly model every target function
- Nonparametric models (e.g., kNN)
 - Have no parameters that are learned from training data; can still have hyperparameters
 - Training data generally needs to be stored in order to make predictions
 - Can recover any target function given enough data

Model Selection vs Hyperparameter Optimization

- Hyperparameter optimization can be considered a special case of model selection
 - Changing the hyperparameters changes the hypothesis space or the set of potential classifiers returned by the learning algorithm
- Deciding between a decision tree and kNN (model selection) vs. selecting a value of k for kNN (hyperparameter optimization)
- Both model selection and hyperparameter optimization happen outside the regular training procedure

Setting k

- When k=1:
 - many, complicated decision boundaries
 - liable to overfit
- When k = N:
 - no decision boundaries; always predicts the most common label in the training data (majority vote)
 - liable to underfit
- k controls the complexity of the hypothesis set $\Rightarrow k$ affects how well the learned hypothesis will generalize

Setting *k*

• Theorem:

- If k is some function of N s.t. $k(N) \to \infty$ and $\frac{k(N)}{N} \to 0$ as $N \to \infty$...
- ... then (under certain assumptions) the true error of a kNN model \rightarrow the Bayes error rate

• Practical heuristics:

- $k = \lfloor \sqrt{N} \rfloor$
- k = 3
- Perform model selection!

Model Selection with Test Sets?

• Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models:

$$\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_M$$

• Learn a classifier from each model using only \mathcal{D}_{train} :

$$h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$$

 $h_1\in\mathcal{H}_1,h_2\in\mathcal{H}_2,\dots,h_M\in\mathcal{H}_M$ • Evaluate each one using \mathcal{D}_{test} and choose the one with lowest test error:

$$\widehat{m} = \underset{m \in \{1,...,M\}}{\operatorname{argmin}} err(h_m, \mathcal{D}_{test})$$

• Is $err(h_{\widehat{m}}, \mathcal{D}_{test})$ a good estimate of $err(h_{\widehat{m}})$?

Model Selection with Validation Sets

• Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate models:

$$\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_M$$

• Learn a classifier from each model using only \mathcal{D}_{train} :

$$h_1 \in \mathcal{H}_1, h_2 \in \mathcal{H}_2, \dots, h_M \in \mathcal{H}_M$$

• Evaluate each one using \mathcal{D}_{val} and choose the one with lowest validation error:

$$\widehat{m} = \underset{m \in \{1,...,M\}}{\operatorname{argmin}} err(h_m, \mathcal{D}_{val})$$

• Now $err(h_{\widehat{m}}, D_{test})$ is a good estimate of $err(h_{\widehat{m}})!$

Hyperparameter Optimization with Validation Sets

• Given $\mathcal{D} = \mathcal{D}_{train} \cup \mathcal{D}_{val} \cup \mathcal{D}_{test}$, suppose we have multiple candidate hyperparameter settings:

$$\theta_1, \theta_2, \dots, \theta_M$$

• Learn a classifier for each setting using only \mathcal{D}_{train} :

$$h_1, h_2, ..., h_M$$

• Evaluate each one using \mathcal{D}_{val} and choose the one with lowest validation error:

$$\widehat{m} = \underset{m \in \{1, \dots, M\}}{\operatorname{argmin}} \operatorname{err}(h_m, \mathcal{D}_{val})$$

• Now $err(h_{\widehat{m}}, \mathcal{D}_{test})$ is a good estimate of $err(h_{\widehat{m}})!$

Setting k for kNN with Validation Sets

How should we partition our dataset?

- Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Fold 1 Let h_{-i} be the classifier real...

 folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$ The K-fold cross validation error is • Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all

$$err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i$$

- Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

$$err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i$$

- Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \setminus \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$
- The K-fold cross validation error is

- Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Fold 1 Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \setminus \mathcal{D}_i$ (all folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$ The K-fold cross validation error is

$$err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i$$

- Given \mathcal{D} , split \mathcal{D} into K equally sized datasets or folds: $\mathcal{D}_1, \mathcal{D}_2, \dots, \mathcal{D}_K$
- Use each one as a validation set once:

- Fold 1 Let h_{-i} be the classification folds other than \mathcal{D}_i) and let $e_i = err(h_{-i}, \mathcal{D}_i)$ The K-fold cross validation error is • Let h_{-i} be the classifier learned using $\mathcal{D}_{-i} = \mathcal{D} \backslash \mathcal{D}_i$ (all

$$err_{cv_K} = \frac{1}{K} \sum_{i=1}^{K} e_i$$

- Special case when K = N: Leave-one-out cross-validation
- Choosing between m candidates requires training mK times

Summary

	Input	Output
Training	training datasethyperparameters	 best model parameters
Hyperparameter Optimization	training datasetvalidation dataset	 best hyperparameters
Cross-Validation	training datasetvalidation dataset	 cross-validation error
Testing	test datasetclassifier	• test error

9/13/23