
10-301/601: Introduction 
to Machine Learning
Lecture 6 – Perceptron

Hoda Heidari, Henry Chai & Matt Gormley

2/5/24



Front Matter

� Announcements: 

� HW2 released 1/24, due 2/5 (today!) at 11:59 PM

� HW3 released on 2/5 (today!), due 2/12 at 11:59 PM

� HW3 is a written-only homework

� You may only use at most 2 late days on HW3
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Q & A:

After we do 
model selection 
using a validation 
dataset, should  
we train a final 
model using both
the training and 
the validation 
datasets?

� Yes, absolutely! So really the sketch from last lecture 

should look something like:

1. Split 𝒟 into 𝒟!"#$% ∪ 𝒟&#' ∪ 𝒟!()!
2. Learn classifiers using 𝒟!"#$%
3. Evaluate models using 𝒟&#' and choose the one 

with lowest validation error: 

4. Learn a new classifier from the best model using 
𝒟!"#$% ∪ 𝒟&#'

5. Optionally, use 𝒟!()! to estimate the true error
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� Yes! We can either:

1. Convert categorical features into binary ones:

2. Use a distance metric that works over categorical 
features e.g., the Hamming distance: 

𝑑 𝒙, 𝒙* = '
+,-

.

𝟙 𝑥+ = 𝑥+*

� See HW3 for an example of this
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Q & A:

Can we use 
𝑘NNs with 
categorical 
features?



Hyperparameter Optimization

• Given 𝒟 = 𝒟!"#$% ∪ 𝒟&#' ∪ 𝒟!()!, suppose we have multiple candidate 
hyperparameter settings: 

𝜃-, 𝜃1, … , 𝜃2

• Learn a classifier for each setting using only 𝒟!"#$%: 
ℎ-, ℎ1, … , ℎ2

• Evaluate each one using 𝒟&#' and choose the one with lowest validation error: 

-𝑚 = argmin
3∈{-,…,2}

𝑒𝑟𝑟 ℎ3, 𝒟&#'

• Now 𝑒𝑟𝑟 ℎ 93, 𝒟!()! is a good estimate of 𝑒𝑟𝑟 ℎ 93 !
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How to pick hyperparameter settings to try?

• Given 𝒟 = 𝒟!"#$% ∪ 𝒟&#' ∪ 𝒟!()!, suppose we have multiple candidate 
hyperparameter settings: 

𝜃-, 𝜃1, … , 𝜃2

• Learn a classifier for each setting using only 𝒟!"#$%: 
ℎ-, ℎ1, … , ℎ2

• Evaluate each one using 𝒟&#' and choose the one with lowest validation error: 

-𝑚 = argmin
3∈{-,…,2}

𝑒𝑟𝑟 ℎ3, 𝒟&#'

• Now 𝑒𝑟𝑟 ℎ 93, 𝒟!()! is a good estimate of 𝑒𝑟𝑟 ℎ 93 !
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General Methods for Hyperparameter 
Optimization
• Idea: set the hyperparameters to optimize some performance metric of the 

model 

• Issue: if we have many hyperparameters that can all take on lots of different 
values, we might not be able to test all possible combinations

• Commonly used methods:
• Grid search

• Random search
• Bayesian optimization (used by Google DeepMind to optimize the hyperparameters of 

AlphaGo: https://arxiv.org/pdf/1812.06855v1.pdf)

• Evolutionary algorithms
• Graduate-student descent

2/5/24
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Grid Search vs. Random Search
(Bergstra and Bengio, 2012)

Source: https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf 2/5/24
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Poll Question 1:
Which hyperparameter optimization method do you think will 
perform better? 

Source: https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf 

A. Graduate student descent (TOXIC)
B. Grid search
C. Random search
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Grid Search vs. Random Search
(Bergstra and Bengio, 2012)

Source: https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf 

Grid and random search of nine trials for optimizing a function 𝑓(𝑥, 𝑦) = 𝑔(𝑥) + ℎ(𝑦) ≈ 𝑔(𝑥)	with 
low effective dimensionality. Above each square 𝑔(𝑥)	is shown in green, and left of each square 
ℎ(𝑦) is shown in yellow. With grid search, nine trials only test 𝑔(𝑥) in three distinct places. With 
random search, all nine trials explore distinct values of 𝑔. This failure of grid search is the rule rather 
than the exception in high dimensional hyper-parameter optimization.

2/5/24

https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf


Model 
Selection 
Learning 
Objectives

You should be able to…
� Plan an experiment that uses training, validation, and 

test datasets to predict the performance of a classifier 
on unseen data (without cheating)

� Explain the difference between (1) training error, (2) 
validation error, (3) cross-validation error, (4) test error, 
and (5) true error

� For a given learning technique, identify the model, 
learning algorithm, parameters, and hyperparamters

� Select an appropriate algorithm for optimizing (aka. 
learning) hyperparameters
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Linear Algebra 
Review

� Notation: in this class vectors will be assumed to be 
column vectors by default, i.e., 

𝒂 =

𝑎-
𝑎1
⋮
𝑎.

and 𝒂= = 𝑎- 𝑎1 ⋯ 𝑎.

� The dot product between two 𝐷-dimensional vectors is

𝒂=𝒃 = 𝑎- 𝑎1 ⋯ 𝑎.

𝑏-
𝑏1
⋮
𝑏.

= '
+,-

.

𝑎+𝑏+

� The 𝐿2-norm of 𝒂 = 𝒂 1 = 𝒂=𝒂

� Two vectors are orthogonal iff
𝒂=𝒃 = 0
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Geometry 
Warm-up

1. On the axes below, draw the region corresponding to
𝑤-𝑥- +𝑤1𝑥1 + 𝑏 > 0

where 𝑤- = 1, 𝑤1 = 2 and 𝑏 = −4. 

2. Then draw the vector 𝑤 =
𝑤-
𝑤1
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Linear Decision 
Boundaries

� In 2 dimensions, 𝑤-𝑥- +𝑤1𝑥1 + 𝑏 = 0 defines a line

� In 3 dimensions, 𝑤-𝑥- +𝑤1𝑥1 +𝑤>𝑥> + 𝑏 = 0 defines a plane

� In 4+ dimensions, 𝒘=𝒙 + 𝑏 = 0 defines a hyperplane

� The vector 𝒘 is always orthogonal to this hyperplane and 
always points in the direction where 𝒘=𝒙 + 𝑏 > 0!

� A hyperplane creates two halfspaces: 
� 𝒮? = 𝒙: 𝒘=𝒙 + 𝑏 > 0 or all 𝒙 s.t. 𝒘=𝒙 + 𝑏 is positive

� 𝒮@ = 𝒙: 𝒘=𝒙 + 𝑏 < 0 or all 𝒙 s.t. 𝒘=𝒙 + 𝑏 is negative
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Linear Decision 
Boundaries: 
Example
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Goal: learn 
classifiers of the 
form ℎ 𝒙 =
sign 𝒘=𝒙 + 𝑏
(assuming 
𝑦 ∈ −1,+1 ) 

Key question: 
how do we learn 
the parameters, 
𝒘 and 𝑏?

Figure courtesy of Matt Gormley



Online 
Learning

� So far, we’ve been learning in the batch setting, where we 
have access to the entire training dataset at once

� A common alternative is the online setting, where data 
points arrive gradually over time and we learn continuously

� Examples of online learning:

� Predicting stock prices

� Recommender systems

� Medical diagnosis

� Robotics
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Online 
Learning: 
Setup 

2/5/24

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = ℎ𝒘,B 𝒙 !

� Observe its true label, 𝑦 !

� Pay a penalty if we made a mistake, P𝑦 ≠ 𝑦 !

� Update the parameters, 𝒘 and 𝑏

� Goal: minimize the number of mistakes made



(Online) 
Perceptron 
Learning 
Algorithm

� Initialize the weight vector and intercept to all zeros: 

𝒘 = 0 0 ⋯ 0 and 𝑏 = 0

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = sign 𝒘=𝒙 + 𝑏 = R+1 if 𝒘
=𝒙 + 𝑏 ≥ 0

−1 otherwise
� Observe its true label, 𝑦 !

� If we misclassified a positive point (𝑦 ! = +1, P𝑦 = −1):
� 𝒘 ← 𝒘+ 𝒙 !

� 𝑏 ← 𝑏 + 1
� If we misclassified a negative point (𝑦 ! = −1, P𝑦 = +1):

� 𝒘 ← 𝒘− 𝒙 !

� 𝑏 ← 𝑏 − 1
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� 𝑏 ← 𝑏 + 𝑦 !

� If we misclassified a negative example (𝑦 ! = −1, P𝑦 = +1):
� 𝒘 ← 𝒘− 𝒙 !

� 𝑏 ← 𝑏 − 1
2/5/24



(Online) 
Perceptron 
Learning 
Algorithm:
Example 
(no Intercept)
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𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No
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1 −1 + + No

𝒘 = 0
0

Example courtesy of Nina Balcan
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(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 1
−2

𝒘

Decision 
Boundary

𝒘 ← 𝒘+ 𝑦 > 𝒙 > = 1
−2 + 1

1 = 2
−1

Example courtesy of Nina Balcan



(Online) 
Perceptron 
Learning 
Algorithm:
Example 
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 2
−1

𝒘

Decision 
Boundary

Example courtesy of Nina Balcan



(Online) 
Perceptron 
Learning 
Algorithm:
Example 
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 2
−1

𝒘

Decision 
Boundary

𝒘 ← 𝒘+ 𝑦 H 𝒙 H = 2
−1 − −1

−2 = 3
1

Example courtesy of Nina Balcan



(Online) 
Perceptron 
Learning 
Algorithm:
Example 
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 2
−1

𝒘

Decision 
Boundary

𝒘 ← 𝒘+ 𝑦 H 𝒙 H = 2
−1 − −1

−2 = 3
1

Example courtesy of Nina Balcan



(Online) 
Perceptron 
Learning 
Algorithm:
Example 
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 3
1

𝒘

Decision 
Boundary

Example courtesy of Nina Balcan



Updating the 
Intercept

� The intercept shifts the 
decision boundary off 
the origin

� Increasing 𝑏 shifts 
the decision 
boundary towards 
the negative side

� Decreasing 𝑏 shifts 
the decision 
boundary towards 
the positive side
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𝒘𝑏	 < 	0

𝑏	 = 	0

𝑏	 > 	0



Poll Question 2:

� True or False: Unlike Decision Trees and 𝑘-Nearest 
Neighbors, the Perceptron learning algorithm does not 
suffer from overfitting because it does not have any 
hyperparameters that could be over-tuned on the 
training data.

A. True

B. True and False (TOXIC)

C. False
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Notational 
Hack

� If we add a 1 to the beginning of every feature vector e.g.,

𝒙* = 1
𝒙 =

1
𝑥-
𝑥1
⋮
𝑥.

…

� … we can just fold the intercept into the weight vector!

𝜽 =

𝑏
𝑤-
𝑤1
⋮
𝑤.

→ 𝜽=𝒙* = 𝒘=𝒙 + 𝑏
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(Online) 
Perceptron 
Learning 
Algorithm

� Initialize the weight vector and intercept to all zeros: 

𝒘 = 0 0 ⋯ 0 and 𝑏 = 0

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = sign 𝒘=𝒙 + 𝑏 = R+1 if 𝒘
=𝒙 + 𝑏 ≥ 0

−1 otherwise
� Observe its true label, 𝑦 !

� If we misclassified a point (𝑦 ! ≠ P𝑦):
� 𝒘 ← 𝒘+ 𝑦 ! 𝒙 !

� 𝑏 ← 𝑏 + 𝑦 !

� If we misclassified a negative example (𝑦 ! = −1, P𝑦 = +1):
� 𝒘 ← 𝒘− 𝒙 !

� 𝑏 ← 𝑏 − 1
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� Initialize the parameters to all zeros: 

𝜽 = 0 0 ⋯ 0  

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = sign 𝜽=𝒙* ! = R+1	if	𝜽
=𝒙* ! ≥ 0

−1	otherwise	
� Observe its true label, 𝑦 !

� If we misclassified a point (𝑦 ! ≠ P𝑦):

� 𝜽 ← 𝜽 + 𝑦 ! 𝒙* !

� 𝑏 ← 𝑏 + 𝑦 !

� If we misclassified a negative example (𝑦 ! = −1, P𝑦 = +1):
� 𝒘 ← 𝒘− 𝒙 !

� 𝑏 ← 𝑏 − 1

(Online) 
Perceptron 
Learning 
Algorithm

2/5/24

1 prepended 
to 𝒙 !

Automatically handles 
updating the intercept 



(Online) 
Perceptron 
Learning 
Algorithm:
Inductive Bias

� The decision boundary is linear and recent mistakes are 
more important than older ones (and should be 
corrected immediately)
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(Online) 
Perceptron 
Learning 
Algorithm

2/5/24

� Initialize the parameters to all zeros: 

𝜽 = 0 0 ⋯ 0  

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = sign 𝜽=𝒙* ! = R+1	−1	

� Observe its true label, 𝑦 !

� If we misclassified a point (𝑦 ! ≠ P𝑦):

� 𝜽 ← 𝜽 + 𝑦 ! 𝒙* !



(Batch) 
Perceptron 
Learning 
Algorithm

2/5/24

� Input: 𝒟 = 𝒙 - , 𝑦 - , 𝒙 1 , 𝑦 1 , … , 𝒙 I , 𝑦 I

� Initialize the parameters to all zeros: 

𝜽 = 0 0 ⋯ 0  

� While NOT CONVERGED
� For 𝑡 ∈ 1,… ,𝑁 	

� Predict the label of 𝒙* ! , P𝑦 = sign 𝜽=𝒙* ! = R+1	−1	

� Observe its true label, 𝑦 !

� If we misclassified 𝒙* !  (𝑦 ! ≠ P𝑦):

� 𝜽 ← 𝜽 + 𝑦 ! 𝒙* !



Poll Question 3: 
(SKIPPED)

� True or False: The parameter vector 𝒘 learned by the 
batch Perceptron Learning Algorithm can be written as 
a linear combination of the examples, i.e.,

𝒘 = 𝑐-𝒙 - + 𝑐1𝒙 1 +⋯+ 𝑐I𝒙 2

A. True and False (TOXIC)

B. True

C. False
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Perceptron 
Mistake Bound

� Definitions:
� A dataset 𝒟 is linearly separable if ∃ a linear decision 

boundary that perfectly classifies the data points in 𝒟

� The margin, 𝛾, of a dataset 𝒟 is the greatest possible 
distance between a linear separator and the closest 
data point in 𝒟 to that linear separator
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Perceptron 
Mistake Bound

� Theorem: if the data points seen by the Perceptron 

Learning Algorithm (online and batch) 

1. lie in a ball of radius 𝑅 (centered around the origin) 

2. have a margin of 𝛾

then the algorithm makes at most ⁄𝑅 𝛾 1 mistakes.

� Key Takeaway: if the training dataset is linearly separable, 
the batch Perceptron Learning Algorithm will converge 
(i.e., stop making mistakes on the training dataset or 
achieve 0 training error) in a finite number of steps! 
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Computing the 
Margin

� Let 𝒙′ be an arbitrary point on the hyperplane            

𝒘=𝒙 + 𝑏 = 0 and let 𝒙” be an arbitrary point

� The distance between 𝒙” and 𝒘=𝒙 + 𝑏 = 0 is equal to 

the magnitude of the projection of 𝒙” − 𝒙′ onto 𝒘
𝒘 !

, 

the unit vector orthogonal to the hyperplane

𝒙′

𝒙”
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𝒘=𝒙 + 𝑏 = 0

𝒘
𝒘 1



Computing the 
Margin
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� Let 𝒙′ be an arbitrary point on the hyperplane               

 and let 𝒙” be an arbitrary point

� The distance between 𝒙” and 𝒘=𝒙 + 𝑏 = 0 is equal to 

the magnitude of the projection of 𝒙” − 𝒙′ onto 𝒘
𝒘 𝟐

,    

the unit vector orthogonal to the hyperplane

𝒘= 𝒙” − 𝒙*

𝒘 1
=

𝒘=𝒙” − 𝒘=𝒙′
𝒘 1

=
𝒘=𝒙” + 𝑏

𝒘 1



Perceptron
Learning 
Objectives

You should be able to…
� Explain the difference between online learning and 

batch learning
� Implement the perceptron algorithm for binary 

classification [CIML]
� Determine whether the perceptron algorithm will 

converge based on properties of the dataset, and the 
limitations of the convergence guarantees

� Describe the inductive bias of perceptron and the 
limitations of linear models

� Draw the decision boundary of a linear model
� Identify whether a dataset is linearly separable or not
� Defend the use of a bias term in perceptron (shifting 

points after projection onto weight vector)
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