
10-301/601: Introduction
to Machine Learning
Lecture 6 – Perceptron

Hoda Heidari, Henry Chai & Matt Gormley

2/5/24

Front Matter

� Announcements:

� HW2 released 1/24, due 2/5 (today!) at 11:59 PM

� HW3 released on 2/5 (today!), due 2/12 at 11:59 PM

� HW3 is a written-only homework

� You may only use at most 2 late days on HW3

2/5/24

Q & A:

After we do
model selection
using a validation
dataset, should
we train a final
model using both
the training and
the validation
datasets?

� Yes, absolutely! So really the sketch from last lecture

should look something like:

1. Split 𝒟 into 𝒟!"#$% ∪ 𝒟&#' ∪ 𝒟!()!
2. Learn classifiers using 𝒟!"#$%
3. Evaluate models using 𝒟&#' and choose the one

with lowest validation error:

4. Learn a new classifier from the best model using
𝒟!"#$% ∪ 𝒟&#'

5. Optionally, use 𝒟!()! to estimate the true error

2/5/24

� Yes! We can either:

1. Convert categorical features into binary ones:

2. Use a distance metric that works over categorical
features e.g., the Hamming distance:

𝑑 𝒙, 𝒙* = '
+,-

.

𝟙 𝑥+ = 𝑥+*

� See HW3 for an example of this
2/5/24

Cholesterol

Normal

Normal

Abnormal

Normal
Cholesterol?

Abnormal
Cholesterol?

1 0
1 0
0 1

Q & A:

Can we use
𝑘NNs with
categorical
features?

Hyperparameter Optimization

• Given 𝒟 = 𝒟!"#$% ∪ 𝒟&#' ∪ 𝒟!()!, suppose we have multiple candidate
hyperparameter settings:

𝜃-, 𝜃1, … , 𝜃2

• Learn a classifier for each setting using only 𝒟!"#$%:
ℎ-, ℎ1, … , ℎ2

• Evaluate each one using 𝒟&#' and choose the one with lowest validation error:

-𝑚 = argmin
3∈{-,…,2}

𝑒𝑟𝑟 ℎ3, 𝒟&#'

• Now 𝑒𝑟𝑟 ℎ 93, 𝒟!()! is a good estimate of 𝑒𝑟𝑟 ℎ 93 !

2/5/24

How to pick hyperparameter settings to try?

• Given 𝒟 = 𝒟!"#$% ∪ 𝒟&#' ∪ 𝒟!()!, suppose we have multiple candidate
hyperparameter settings:

𝜃-, 𝜃1, … , 𝜃2

• Learn a classifier for each setting using only 𝒟!"#$%:
ℎ-, ℎ1, … , ℎ2

• Evaluate each one using 𝒟&#' and choose the one with lowest validation error:

-𝑚 = argmin
3∈{-,…,2}

𝑒𝑟𝑟 ℎ3, 𝒟&#'

• Now 𝑒𝑟𝑟 ℎ 93, 𝒟!()! is a good estimate of 𝑒𝑟𝑟 ℎ 93 !

2/5/24

General Methods for Hyperparameter
Optimization
• Idea: set the hyperparameters to optimize some performance metric of the

model

• Issue: if we have many hyperparameters that can all take on lots of different
values, we might not be able to test all possible combinations

• Commonly used methods:
• Grid search

• Random search
• Bayesian optimization (used by Google DeepMind to optimize the hyperparameters of

AlphaGo: https://arxiv.org/pdf/1812.06855v1.pdf)

• Evolutionary algorithms
• Graduate-student descent

2/5/24

https://arxiv.org/pdf/1812.06855v1.pdf

General Methods for Hyperparameter
Optimization
• Idea: set the hyperparameters to optimize some performance metric of the

model

• Issue: if we have many hyperparameters that can all take on lots of different
values, we might not be able to test all possible combinations

• Commonly used methods:
• Grid search

• Random search
• Bayesian optimization (used by Google DeepMind to optimize the hyperparameters of

AlphaGo: https://arxiv.org/pdf/1812.06855v1.pdf)

• Evolutionary algorithms
• Graduate-student descent

2/5/24

https://arxiv.org/pdf/1812.06855v1.pdf

Grid Search vs. Random Search
(Bergstra and Bengio, 2012)

Source: https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf 2/5/24

https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf

Poll Question 1:
Which hyperparameter optimization method do you think will
perform better?

Source: https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf

A. Graduate student descent (TOXIC)
B. Grid search
C. Random search

2/5/24

https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf

Grid Search vs. Random Search
(Bergstra and Bengio, 2012)

Source: https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf

Grid and random search of nine trials for optimizing a function 𝑓(𝑥, 𝑦) = 𝑔(𝑥) + ℎ(𝑦) ≈ 𝑔(𝑥)	with
low effective dimensionality. Above each square 𝑔(𝑥)	is shown in green, and left of each square
ℎ(𝑦) is shown in yellow. With grid search, nine trials only test 𝑔(𝑥) in three distinct places. With
random search, all nine trials explore distinct values of 𝑔. This failure of grid search is the rule rather
than the exception in high dimensional hyper-parameter optimization.

2/5/24

https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf

Model
Selection
Learning
Objectives

You should be able to…
� Plan an experiment that uses training, validation, and

test datasets to predict the performance of a classifier
on unseen data (without cheating)

� Explain the difference between (1) training error, (2)
validation error, (3) cross-validation error, (4) test error,
and (5) true error

� For a given learning technique, identify the model,
learning algorithm, parameters, and hyperparamters

� Select an appropriate algorithm for optimizing (aka.
learning) hyperparameters

2/5/24

sepal width

se
pa

l l
en

gt
h 𝑦 = 0

𝑦	 = 	1

Recall:
Fisher Iris
Dataset

Figure courtesy of Matt Gormley2/5/24

Linear Algebra
Review

� Notation: in this class vectors will be assumed to be
column vectors by default, i.e.,

𝒂 =

𝑎-
𝑎1
⋮
𝑎.

and 𝒂= = 𝑎- 𝑎1 ⋯ 𝑎.

� The dot product between two 𝐷-dimensional vectors is

𝒂=𝒃 = 𝑎- 𝑎1 ⋯ 𝑎.

𝑏-
𝑏1
⋮
𝑏.

= '
+,-

.

𝑎+𝑏+

� The 𝐿2-norm of 𝒂 = 𝒂 1 = 𝒂=𝒂

� Two vectors are orthogonal iff
𝒂=𝒃 = 0

2/5/24

Geometry
Warm-up

1. On the axes below, draw the region corresponding to
𝑤-𝑥- +𝑤1𝑥1 + 𝑏 > 0

where 𝑤- = 1, 𝑤1 = 2 and 𝑏 = −4.

2. Then draw the vector 𝑤 =
𝑤-
𝑤1

2/5/24

𝑥-

𝑥1

Geometry
Warm-up

1. On the axes below, draw the region corresponding to
𝑤-𝑥- +𝑤1𝑥1 + 𝑏 > 0

where 𝑤- = 1, 𝑤1 = 2 and 𝑏 = −4.

2. Then draw the vector 𝑤 =
𝑤-
𝑤1

2/5/24

𝑥-

𝑥1

Linear Decision
Boundaries

� In 2 dimensions, 𝑤-𝑥- +𝑤1𝑥1 + 𝑏 = 0 defines a line

� In 3 dimensions, 𝑤-𝑥- +𝑤1𝑥1 +𝑤>𝑥> + 𝑏 = 0 defines a plane

� In 4+ dimensions, 𝒘=𝒙 + 𝑏 = 0 defines a hyperplane

� The vector 𝒘 is always orthogonal to this hyperplane and
always points in the direction where 𝒘=𝒙 + 𝑏 > 0!

� A hyperplane creates two halfspaces:
� 𝒮? = 𝒙: 𝒘=𝒙 + 𝑏 > 0 or all 𝒙 s.t. 𝒘=𝒙 + 𝑏 is positive

� 𝒮@ = 𝒙: 𝒘=𝒙 + 𝑏 < 0 or all 𝒙 s.t. 𝒘=𝒙 + 𝑏 is negative

2/5/24

Linear Decision
Boundaries:
Example

2/5/24

Goal: learn
classifiers of the
form ℎ 𝒙 =
sign 𝒘=𝒙 + 𝑏
(assuming
𝑦 ∈ −1,+1)

Key question:
how do we learn
the parameters,
𝒘 and 𝑏?

Figure courtesy of Matt Gormley

Online
Learning

� So far, we’ve been learning in the batch setting, where we
have access to the entire training dataset at once

� A common alternative is the online setting, where data
points arrive gradually over time and we learn continuously

� Examples of online learning:

� Predicting stock prices

� Recommender systems

� Medical diagnosis

� Robotics

2/5/24

Online
Learning:
Setup

2/5/24

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = ℎ𝒘,B 𝒙 !

� Observe its true label, 𝑦 !

� Pay a penalty if we made a mistake, P𝑦 ≠ 𝑦 !

� Update the parameters, 𝒘 and 𝑏

� Goal: minimize the number of mistakes made

(Online)
Perceptron
Learning
Algorithm

� Initialize the weight vector and intercept to all zeros:

𝒘 = 0 0 ⋯ 0 and 𝑏 = 0

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = sign 𝒘=𝒙 + 𝑏 = R+1 if 𝒘
=𝒙 + 𝑏 ≥ 0

−1 otherwise
� Observe its true label, 𝑦 !

� If we misclassified a positive point (𝑦 ! = +1, P𝑦 = −1):
� 𝒘 ← 𝒘+ 𝒙 !

� 𝑏 ← 𝑏 + 1
� If we misclassified a negative point (𝑦 ! = −1, P𝑦 = +1):

� 𝒘 ← 𝒘− 𝒙 !

� 𝑏 ← 𝑏 − 1
2/5/24

(Online)
Perceptron
Learning
Algorithm

� Initialize the weight vector and intercept to all zeros:

𝒘 = 0 0 ⋯ 0 and 𝑏 = 0

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = sign 𝒘=𝒙 + 𝑏 = R+1 if 𝒘
=𝒙 + 𝑏 ≥ 0

−1 otherwise
� Observe its true label, 𝑦 !

� If we misclassified a point (𝑦 ! ≠ P𝑦):
� 𝒘 ← 𝒘+ 𝑦 ! 𝒙 !

� 𝑏 ← 𝑏 + 𝑦 !

� If we misclassified a negative example (𝑦 ! = −1, P𝑦 = +1):
� 𝒘 ← 𝒘− 𝒙 !

� 𝑏 ← 𝑏 − 1
2/5/24

(Online)
Perceptron
Learning
Algorithm:
Example
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 0
0

Example courtesy of Nina Balcan

(Online)
Perceptron
Learning
Algorithm:
Example
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 ← 𝒘+ 𝑦 - 𝒙 - = 0
0 − −1

2 = 1
−2

𝒘 = 0
0

𝒘

Decision
Boundary

Example courtesy of Nina Balcan

(Online)
Perceptron
Learning
Algorithm:
Example
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 1
−2

𝒘

Decision
Boundary

Example courtesy of Nina Balcan

(Online)
Perceptron
Learning
Algorithm:
Example
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 1
−2

𝒘

Decision
Boundary

𝒘 ← 𝒘+ 𝑦 > 𝒙 > = 1
−2 + 1

1 = 2
−1

Example courtesy of Nina Balcan

(Online)
Perceptron
Learning
Algorithm:
Example
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 1
−2

𝒘

Decision
Boundary

𝒘 ← 𝒘+ 𝑦 > 𝒙 > = 1
−2 + 1

1 = 2
−1

Example courtesy of Nina Balcan

(Online)
Perceptron
Learning
Algorithm:
Example
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 2
−1

𝒘

Decision
Boundary

Example courtesy of Nina Balcan

(Online)
Perceptron
Learning
Algorithm:
Example
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 2
−1

𝒘

Decision
Boundary

𝒘 ← 𝒘+ 𝑦 H 𝒙 H = 2
−1 − −1

−2 = 3
1

Example courtesy of Nina Balcan

(Online)
Perceptron
Learning
Algorithm:
Example
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 2
−1

𝒘

Decision
Boundary

𝒘 ← 𝒘+ 𝑦 H 𝒙 H = 2
−1 − −1

−2 = 3
1

Example courtesy of Nina Balcan

(Online)
Perceptron
Learning
Algorithm:
Example
(no Intercept)

2/5/24

-
+
+
+

-
-

𝑥-

𝑥1

𝒙𝟏 𝒙𝟐 9𝒚 𝒚 Mistake?

−1 2 + − Yes

1 0 + + No

1 1 − + Yes

−1 0 − − No

−1 −2 + − Yes

1 −1 + + No

𝒘 = 3
1

𝒘

Decision
Boundary

Example courtesy of Nina Balcan

Updating the
Intercept

� The intercept shifts the
decision boundary off
the origin

� Increasing 𝑏 shifts
the decision
boundary towards
the negative side

� Decreasing 𝑏 shifts
the decision
boundary towards
the positive side

2/5/24

𝒘𝑏	 < 	0

𝑏	 = 	0

𝑏	 > 	0

Poll Question 2:

� True or False: Unlike Decision Trees and 𝑘-Nearest
Neighbors, the Perceptron learning algorithm does not
suffer from overfitting because it does not have any
hyperparameters that could be over-tuned on the
training data.

A. True

B. True and False (TOXIC)

C. False

2/5/24

Notational
Hack

� If we add a 1 to the beginning of every feature vector e.g.,

𝒙* = 1
𝒙 =

1
𝑥-
𝑥1
⋮
𝑥.

…

� … we can just fold the intercept into the weight vector!

𝜽 =

𝑏
𝑤-
𝑤1
⋮
𝑤.

→ 𝜽=𝒙* = 𝒘=𝒙 + 𝑏

2/5/24

(Online)
Perceptron
Learning
Algorithm

� Initialize the weight vector and intercept to all zeros:

𝒘 = 0 0 ⋯ 0 and 𝑏 = 0

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = sign 𝒘=𝒙 + 𝑏 = R+1 if 𝒘
=𝒙 + 𝑏 ≥ 0

−1 otherwise
� Observe its true label, 𝑦 !

� If we misclassified a point (𝑦 ! ≠ P𝑦):
� 𝒘 ← 𝒘+ 𝑦 ! 𝒙 !

� 𝑏 ← 𝑏 + 𝑦 !

� If we misclassified a negative example (𝑦 ! = −1, P𝑦 = +1):
� 𝒘 ← 𝒘− 𝒙 !

� 𝑏 ← 𝑏 − 1
2/5/24

� Initialize the parameters to all zeros:

𝜽 = 0 0 ⋯ 0

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = sign 𝜽=𝒙* ! = R+1	if	𝜽
=𝒙* ! ≥ 0

−1	otherwise	
� Observe its true label, 𝑦 !

� If we misclassified a point (𝑦 ! ≠ P𝑦):

� 𝜽 ← 𝜽 + 𝑦 ! 𝒙* !

� 𝑏 ← 𝑏 + 𝑦 !

� If we misclassified a negative example (𝑦 ! = −1, P𝑦 = +1):
� 𝒘 ← 𝒘− 𝒙 !

� 𝑏 ← 𝑏 − 1

(Online)
Perceptron
Learning
Algorithm

2/5/24

1 prepended
to 𝒙 !

Automatically handles
updating the intercept

(Online)
Perceptron
Learning
Algorithm:
Inductive Bias

� The decision boundary is linear and recent mistakes are
more important than older ones (and should be
corrected immediately)

2/5/24

(Online)
Perceptron
Learning
Algorithm

2/5/24

� Initialize the parameters to all zeros:

𝜽 = 0 0 ⋯ 0

� For 𝑡 = 1, 2, 3, …
� Receive an unlabeled data point, 𝒙 !

� Predict its label, P𝑦 = sign 𝜽=𝒙* ! = R+1	−1	

� Observe its true label, 𝑦 !

� If we misclassified a point (𝑦 ! ≠ P𝑦):

� 𝜽 ← 𝜽 + 𝑦 ! 𝒙* !

(Batch)
Perceptron
Learning
Algorithm

2/5/24

� Input: 𝒟 = 𝒙 - , 𝑦 - , 𝒙 1 , 𝑦 1 , … , 𝒙 I , 𝑦 I

� Initialize the parameters to all zeros:

𝜽 = 0 0 ⋯ 0

� While NOT CONVERGED
� For 𝑡 ∈ 1,… ,𝑁 	

� Predict the label of 𝒙* ! , P𝑦 = sign 𝜽=𝒙* ! = R+1	−1	

� Observe its true label, 𝑦 !

� If we misclassified 𝒙* ! (𝑦 ! ≠ P𝑦):

� 𝜽 ← 𝜽 + 𝑦 ! 𝒙* !

Poll Question 3:
(SKIPPED)

� True or False: The parameter vector 𝒘 learned by the
batch Perceptron Learning Algorithm can be written as
a linear combination of the examples, i.e.,

𝒘 = 𝑐-𝒙 - + 𝑐1𝒙 1 +⋯+ 𝑐I𝒙 2

A. True and False (TOXIC)

B. True

C. False

2/5/24

Perceptron
Mistake Bound

� Definitions:
� A dataset 𝒟 is linearly separable if ∃ a linear decision

boundary that perfectly classifies the data points in 𝒟

� The margin, 𝛾, of a dataset 𝒟 is the greatest possible
distance between a linear separator and the closest
data point in 𝒟 to that linear separator

2/5/24

+ +
+
+-

-
-

-

𝛾
𝛾

-

-

𝒘

Perceptron
Mistake Bound

� Theorem: if the data points seen by the Perceptron

Learning Algorithm (online and batch)

1. lie in a ball of radius 𝑅 (centered around the origin)

2. have a margin of 𝛾

then the algorithm makes at most ⁄𝑅 𝛾 1 mistakes.

� Key Takeaway: if the training dataset is linearly separable,
the batch Perceptron Learning Algorithm will converge
(i.e., stop making mistakes on the training dataset or
achieve 0 training error) in a finite number of steps!

2/5/24

Computing the
Margin

� Let 𝒙′ be an arbitrary point on the hyperplane

𝒘=𝒙 + 𝑏 = 0 and let 𝒙” be an arbitrary point

� The distance between 𝒙” and 𝒘=𝒙 + 𝑏 = 0 is equal to

the magnitude of the projection of 𝒙” − 𝒙′ onto 𝒘
𝒘 !

,

the unit vector orthogonal to the hyperplane

𝒙′

𝒙”

2/5/24

𝒘
𝒘 1

𝒘=𝒙 + 𝑏 = 0

Computing the
Margin

� Let 𝒙′ be an arbitrary point on the hyperplane

𝒘=𝒙 + 𝑏 = 0 and let 𝒙” be an arbitrary point

� The distance between 𝒙” and 𝒘=𝒙 + 𝑏 = 0 is equal to

the magnitude of the projection of 𝒙” − 𝒙′ onto 𝒘
𝒘 𝟐

,

the unit vector orthogonal to the hyperplane

𝒙′

𝒙”

2/5/24

𝒘=𝒙 + 𝑏 = 0

𝒘
𝒘 1

Computing the
Margin

� Let 𝒙′ be an arbitrary point on the hyperplane

𝒘=𝒙 + 𝑏 = 0 and let 𝒙” be an arbitrary point

� The distance between 𝒙” and 𝒘=𝒙 + 𝑏 = 0 is equal to

the magnitude of the projection of 𝒙” − 𝒙′ onto 𝒘
𝒘 𝟐

,

the unit vector orthogonal to the hyperplane

𝒙′

𝒙”

2/5/24

𝒘=𝒙 + 𝑏 = 0

𝒘
𝒘 1

Computing the
Margin

2/5/24

� Let 𝒙′ be an arbitrary point on the hyperplane

 and let 𝒙” be an arbitrary point

� The distance between 𝒙” and 𝒘=𝒙 + 𝑏 = 0 is equal to

the magnitude of the projection of 𝒙” − 𝒙′ onto 𝒘
𝒘 𝟐

,

the unit vector orthogonal to the hyperplane

𝒘= 𝒙” − 𝒙*

𝒘 1
=

𝒘=𝒙” − 𝒘=𝒙′
𝒘 1

=
𝒘=𝒙” + 𝑏

𝒘 1

Perceptron
Learning
Objectives

You should be able to…
� Explain the difference between online learning and

batch learning
� Implement the perceptron algorithm for binary

classification [CIML]
� Determine whether the perceptron algorithm will

converge based on properties of the dataset, and the
limitations of the convergence guarantees

� Describe the inductive bias of perceptron and the
limitations of linear models

� Draw the decision boundary of a linear model
� Identify whether a dataset is linearly separable or not
� Defend the use of a bias term in perceptron (shifting

points after projection onto weight vector)

2/5/24

