
10-301/601: Introduction
to Machine Learning
Lecture 7 –
Linear Regression
Henry Chai & Matt Gormley & Hoda Heidari

2/7/24

Regression
Goal:
– Given a training dataset of

pairs (x,y) where
• x is a vector
• y is a scalar

– Learn a function (aka. curve
or line) y’ = h(x) that best fits
the training data

Example Applications:
– Stock price prediction
– Forecasting epidemics
– Speech synthesis
– Generation of images (e.g.

Deep Dream)

2

This is what
differentiates
regression from
classification

Regression
Q: What is the function that
best fits these points?

3

x

y Example: Dataset with only
one feature x and one scalar
output y

K-NEAREST NEIGHBOR REGRESSION

4

k-NN Regression

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest

two instances x(n1) and x(n2)
in training data and return
the weighted average of
their y values

Algorithm 1: k=1 Nearest
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x

in training data and return
its y

5

x

y Example: Dataset with only
one feature x and one scalar
output y

k-NN Regression

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest

two instances x(n1) and x(n2)
in training data and return
the weighted average of
their y values

Algorithm 1: k=1 Nearest
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x

in training data and return
its y

6

x

y Example: Dataset with only
one feature x and one scalar
output y

Algorithm 1: drawing
the function is left as
an exercise

k-NN Regression

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest

two instances x(n1) and x(n2)
in training data and return
the weighted average of
their y values

Algorithm 1: k=1 Nearest
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x

in training data and return
its y

7

x

y Example: Dataset with only
one feature x and one scalar
output y

x(n1) x(n2)x’

y (n1)

y (n2)
y’

Algorithm 2

k-NN Regression

Algorithm 2: k=2 Nearest
Neighbors Distance Weighted
Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest

two instances x(n1) and x(n2)
in training data and return
the weighted average of
their y values

Algorithm 1: k=1 Nearest
Neighbor Regression
• Train: store all (x, y) pairs
• Predict: pick the nearest x

in training data and return
its y

8

x

y Example: Dataset with only
one feature x and one scalar
output y

x(n1) x(n2)x’

y (n1)

y (n2)
y’

Algorithm 2

This tends
toward the

average
height of

the
leftmost

two points

The distance
weighted

average of x(n1)

and x(n2)

This region is closer to
the two points to the left

DECISION TREE REGRESSION

9

Decision Tree Regression

10

B

A A

0 1

0 1 0 1

+ -

+

C C

0 1 0 1

+ - +

B

A A

0 1

0 1 0 1

75 21

56

C C

0 1 0 1

32 10 60

Decision Tree for Classification Decision Tree for Regression

67 2.7

Decision Tree Regression

11

Dataset for Regression Decision Tree for Regression

Y A B C

4 1 0 0

1 1 0 1

3 1 0 o

7 0 0 1

5 1 1 0

6 0 1 1

8 1 1 0

9 1 1 1

B

A A

0 1

0 1 0 1

C

0 1

{4,1,3,7} {5,6,8,9}

{5,8,9}

{4,1,3,7,5,6,8,9}

{7} {4,1,3} {6}

{5,8} {9}

During learning, choose the attribute that
minimizes an appropriate splitting
criterion (e.g. mean squared error, mean
absolute error)

6.5 9

LINEAR FUNCTIONS, RESIDUALS, AND MEAN
SQUARED ERROR

12

Linear Functions

Def: Regression is predicting real-valued outputs

𝒟 = 𝐱 ! , 𝑦 !
!"#
$ 	with 𝐱 ! ∈ ℝ%, 𝑦 ! ∈ ℝ

13

Common Misunderstanding:
Linear functions ≠ Linear decision boundaries

𝑦 = 𝑤𝑥 + 𝑏𝑦

𝑥

Linear Functions

Def: Regression is predicting real-valued outputs

𝒟 = 𝐱 ! , 𝑦 !
!"#
$ 	with 𝐱 ! ∈ ℝ%, 𝑦 ! ∈ ℝ

14

Common Misunderstanding:
Linear functions ≠ Linear decision boundaries

𝑦

𝑥!

𝑥"

𝑦 = 𝑤!𝑥! + 𝑤"𝑥" + 𝑏

• A general linear function is
𝑦 = 𝐰#𝐱 + 𝑏

• A general linear decision boundary is
𝑦 = sign 𝐰#𝐱 + 𝑏

Key Idea of Linear Regression

Residuals Key Idea of Linear Regression

16

Mean squared error

OPTIMIZATION FOR ML
The Big Picture

17

Unconstrained Optimization

• Def: In unconstrained optimization, we try minimize (or
maximize) a function with no constraints on the inputs to the
function

Given a function

Our goal is to find

18

For ML, these are
the parameters

For ML, this is the
objective function

Optimization for ML

Not quite the same setting as other fields…
– Function we are optimizing might not be the true goal

(e.g. likelihood vs generalization error)
– Precision might not matter

(e.g. data is noisy, so optimal up to 1e-16 might not help)
– Stopping early can help generalization error

(i.e. “early stopping” is a technique for regularization – discussed
more next time)

19

min vs. argmin

20

y = f(x) =x2 + 1
1

2

3 v* = minx f(x)

x* = argminx f(x)

1. Question: What is v*?

2. Question: What is x*?
v* = 1, the minimum value of the function

x* = 0, the argument that yields the minimum value

OPTIMIZATION METHOD #0:
RANDOM GUESSING

22

Notation Trick:
Folding in the Intercept Term

23

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one!

This convenience trick allows us to more compactly talk
about linear functions as a simple dot product (without

explicitly writing out the intercept term every time).

Notation Trick:
Folding in the Intercept Term

55

Notation Trick: fold the
bias b and the weights w
into a single vector θ by

prepending a constant to
x and increasing

dimensionality by one!

This convenience trick allows us to more compactly talk
about linear functions as a simple dot product (without

explicitly writing out the intercept term every time).

Linear Regression as Function Approximation

24

Contour Plots
Contour Plots
1. Each level curve labeled

with value
2. Value label indicates the

value of the function for
all points lying on that
level curve

3. Just like a topographical
map, but for a function

25

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

Optimization by Random Guessing
Optimization Method #0:
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many

times
4. Return θ that gives

smallest J(θ)

26

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

t
1
2
3
4

Optimization by Random Guessing
Optimization Method #0:
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many

times
4. Return θ that gives

smallest J(θ)

27

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

t
1
2
3
4

For Linear Regression:
• objective function is Mean

Squared Error (MSE)
• MSE = J(w, b)

 = J(θ1, θ2) =
• contour plot: each line labeled with

MSE – lower means a better fit
• minimum corresponds to

parameters (w,b) = (θ1, θ2) that
best fit some training dataset

Linear Regression:
Running Example

28

29

Counting Butterflies

30

x, # of mountains

y,
 #

 o
f m

on
ar

ch
s

y = h*(x)
(unknown)

h(x; θ(3))

31

32

33

Counting Butterflies

34

x, # of mountains

y,
 #

 o
f m

on
ar

ch
s

y = h*(x)
(unknown)

h(x; θ(3))

Linear Regression in High Dimensions
• In our discussions of linear regression, we

will always assume there is just one output,
y

• But our inputs will usually have many
features:
 x = [x1, x2,…,xM]T

• For example:
– suppose we had a drone take pictures of

each section of forest
– each feature could correspond to a pixel in

this image such that xm = 1 if the pixel is
orange and xm = 0 otherwise

– the output y would be the number of
butterflies in each picture

35

Q: How would you obtain ground truth
data?

Linear Regression by Rand. Guessing
Optimization Method #0:
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many

times
4. Return θ that gives

smallest J(θ)

36
x

y

y = h*(x)
(unknown)

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

For Linear Regression:
• target function h*(x) is unknown
• only have access to h*(x) through

training examples (x(i),y(i))
• want h(x; θ(t)) that best

approximates h*(x)
• enable generalization w/inductive

bias that restricts hypothesis class
to linear functions

Linear Regression by Rand. Guessing
Optimization Method #0:
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many

times
4. Return θ that gives

smallest J(θ)

37

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

x

y

OPTIMIZATION METHOD #1:
GRADIENT DESCENT

38

Derivatives

40

Gradient

41

3D illustration

42

Gradients

43

θ1

θ2

J(θ) = J(θ1, θ2)

Gradients

44
These are the gradients that

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2)

Gradients

45
These are the gradients that

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2)

In this picture, each arrow is a 2D
vector consisting of two partial
derivatives.

The vector is evaluated at the
point [θ1, θ2]T and plotted with its
origin there as well.

∇J(θ1, θ2) =





∂J

∂θ1

∂J

∂θ2





(Negative) Gradients

46
These are the negative gradients that

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2)

In this picture, each arrow is a 2D
vector consisting of two partial
derivatives.

The vector is evaluated at the
point [θ1, θ2]T and plotted with its
origin there as well.

−∇J(θ1, θ2) =





−
∂J

∂θ1

−
∂J

∂θ2





(Negative) Gradients

47
These are the negative gradients that

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2)

(Negative) Gradient Paths

48

Shown are the paths that Gradient Descent
would follow if it were making infinitesimally

small steps.

θ1

θ2

J(θ) = J(θ1, θ2)

Gradient Descent

Gradient Descent Algorithm Remarks

51

Answer:

Gradient Descent: Step Size

52

Question:
In gradient descent, what could go wrong if
we always use the same step size (or step size
schedule) for every problem we encounter?

Gradient Descent

53

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

In order to apply GD to Linear
Regression all we need is the
gradient of the objective
function (i.e. vector of partial
derivatives).

��J(�) =

�

����

d
d�1

J(�)
d

d�2
J(�)
...

d
d�N

J(�)

�

����

—

M

Gradient Descent

54

Algorithm 1 Gradient Descent

1: procedure GD(D, �(0))
2: � � �(0)

3: while not converged do
4: � � � + ���J(�)

5: return �

There are many possible ways to detect convergence.
For example, we could check whether the L2 norm of
the gradient is below some small tolerance.

||��J(�)||2 � �
Alternatively we could check that the reduction in the
objective function from one iteration to the next is small.

—

GRADIENT DESCENT FOR
LINEAR REGRESSION

55

Linear Regression as Function Approximation

56

Linear Regression by Gradient Desc.
Optimization Method #1:
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives
smallest J(θ)

57

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2

t
1
2
3
4

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

Linear Regression by Gradient Desc.
Optimization Method #1:
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives
smallest J(θ)

58

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

Linear Regression by Gradient Desc.
Optimization Method #1:
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives
smallest J(θ)

59

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

Linear Regression by Gradient Desc.

60

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

iteration, t

m
ea

n
sq

ua
re

d
er

ro
r,

J(
θ 1

, θ
2)

Linear Regression by Gradient Desc.

61

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

iteration, t

m
ea

n
sq

ua
re

d
er

ro
r,

J(
θ 1

, θ
2)

Gradient Calculation for Linear Regression

63

Gradient Calculation for Linear Regression

64

Gradient of J(θ)

∇θJ(θ) =











d

dθ1
J(θ)

d

dθ2
J(θ)
...

d

dθM
J(θ)











=













∑N

i=1(θ
T t(i) − y(i))x(i)

1
∑N

i=1(θ
T t(i) − y(i))x(i)

2
...

∑N

i=1(θ
T t(i) − y(i))x(i)

M













=
N
∑

i=1

(θT t(i)
− y(i))t(i)

[used by Gradient Descent]

GD for Linear Regression
Gradient Descent for Linear Regression repeatedly takes
steps opposite the gradient of the objective function

65

Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓ ✓(0) . Initialize parameters
3: while not converged do
4: ;

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓ ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg=">AAAFIXicdVNLbxMxEN6G8FqehSOXEU2lVuojKQcQElJFy0uqUClNi5QNleOd3VjY3pXtbRtW+2v4C9z4BdwQN8SJK/wJxmlSmrb44vG8vpn5xr1cCuuazR9TtQv1i5cuX7kaXrt+4+at29N3dmxWGI5tnsnMvOsxi1JobDvhJL7LDTLVk7jb+7Dm7bv7aKzI9LYb5NhVLNUiEZw5Uu1N17bDqIep0CWTaWaE66uq87IbAkSc5d6nfLEOSWZggxCYgS1MDVqfr/JOp2IFrzqtLszCdh9BF6qHBhxKaeGgjwbBkdqXOrIJnYLtZ4WMwTpmHGWknJsm4xgXBgl6Y6sqG9E6byxAI6Jox/bfl3PN+apRwdCb/N865vDYDFGKzsKkM0RrmVKoXflKCyeYFB8RcmaYQkfTqcapdvtCYqkzBzzTNLcU47HtFFh6DGQLtVeKJ63q/WuYG8NuQ3TowcV8BYswOJLm/ylPVER3XlDO1LBYkOI/gOd1R6mjlCnF6No/kbKdxz7onAaf6XjY4+TsIoeHrpeUBl1hdHWM1gjHQceceNJRxxOUh5OaKty7PdNcag4PnBVaI2EmGJ3Nvempz1Gc8cJXzyWzttNq5q5b0k4ILpEQCos54x9Yih0SNfVlu+Vw/yuYJU08XNIk05460p6MKJmydqB65KmY69vTNq88z9YpXPKoWwrt+dH8CCgpJLgM/GeCWBjkTg5IYJx6Fxx4n4bO/czDMBpGlsttS89lReNREgfLtF5Iz8EiTX0xxoQV0tklelQU4pk4ELHrt5pcheEszD6nvtaYjikveCsIDRvE2uErByyO6U8J6ysa/ntGH3/BfzMNVCscovSej8PIoMYDTvtBmcooYUrIwQi7KiObjOWJ2fhx2hw9w5bWjmnrNeWomiHPrdOsnhV2VpZaD5ZW3qzMrD4dMX4luBfcD+aCVvAwWA1eBptBO+C1L7Vftd+1P/VP9a/1b/XvR661qVHM3WDi1H/+BdBErlY=</latexit>

