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Exam 1 
Logistics

� Exam 1 on 2/19 (next Monday!) from 7 PM – 9 PM

� Location & Seats: You all will be split across multiple 
(large) rooms.

� Everyone will have an assigned seat

� Please watch Piazza carefully for more details

� If you have exam accommodations through ODR, 
they will be proctoring your exam on our behalf; 
you are responsible for submitting the exam 

proctoring request through your student portal. 
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Exam 1 
Logistics

� Format of questions:
� Multiple choice

� True / False (with justification)

� Derivations

� Short answers

� Drawing & Interpreting figures

� Implementing algorithms on paper

� No electronic devices (you won’t need them!)

� You are allowed to bring one letter-size sheet of notes; 
you can put whatever you want on both sides
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Exam 1 
Topics

� Covered material: Lectures 1 – 7
� Foundations

� Probability, Linear Algebra, Geometry, Calculus
� Optimization

� Important Concepts
� Overfitting
� Model selection / Hyperparameter optimization

� Decision Trees
� 𝑘-NN
� Perceptron
� Regression

� Decision Tree and 𝑘-NN Regression
� Linear Regression
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Exam 1 
Preparation

� Review the exam practice problems (released 2/12 on 
the course website, under Coursework)

� Attend the dedicated exam 1 review OH (in lieu of 
recitation on 2/16)

� Review HWs 1 - 3

� Consider whether you have achieved the “learning 
objectives” for each lecture / section

� Write your one-page cheat sheet (back and front)
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http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html


Exam 1 
Tips

� Solve the easy problems first 

� If a problem seems extremely complicated, you might be 
missing something

� If you make an assumption, write it down

� Don’t leave any answer blank

� If you look at a question and don’t know the answer:

� just start trying things

� consider multiple approaches 

� imagine arguing for some answer and see if you like it
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Linear 
Regression as 
Function 
Approximation
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Linear Regression by Rand. Guessing
Optimization Method #0: 
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many 

times
4. Return θ that gives 

smallest J(θ)

8

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

x

y



Gradients
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θ1

θ2

J(θ) = J(θ1, θ2) 



Gradients
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These are the gradients that 

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 



Gradients
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These are the gradients that 

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 

In this picture, each arrow is a 2D 
vector consisting of two partial 
derivatives. 

The vector is evaluated at the 
point [θ1, θ2]T and plotted with its 
origin there as well.

∇J(θ1, θ2) =





∂J

∂θ1

∂J

∂θ2







(Negative) 
Gradients
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These are the negative gradients that 

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 

In this picture, each arrow is a 2D 
vector consisting of two partial 
derivatives. 

The vector is evaluated at the 
point [θ1, θ2]T and plotted with its 
origin there as well.

−∇J(θ1, θ2) =





−
∂J

∂θ1

−
∂J

∂θ2







(Negative) 
Gradients
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These are the negative gradients that 

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2) 



(Negative) 
Gradient Paths

14

Shown are the paths that Gradient Descent 
would follow if it were making infinitesimally 

small steps.

θ1

θ2

J(θ) = J(θ1, θ2) 



Recall: 
Gradient 
Descent for 
Linear 
Regression

� Gradient descent for linear regression repeatedly takes 

steps opposite the gradient of the objective function
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Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓  ✓(0) . Initialize parameters
3: while not converged do
4: ; 

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓  ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg="></latexit>



Gradient Calculation for Linear Regression
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Gradient of J(θ)

∇θJ(θ) =











d

dθ1
J(θ)

d

dθ2
J(θ)
...

d

dθM
J(θ)











=













∑N

i=1(θ
T t(i) − y(i))x(i)

1
∑N

i=1(θ
T t(i) − y(i))x(i)

2
...

∑N

i=1(θ
T t(i) − y(i))x(i)

M













=
N
∑

i=1

(θT t(i)
− y(i))t(i)

[used by Gradient Descent]



Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2

t
1
2
3
4

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2



Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)
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θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))



Linear Regression by Gradient Desc.
Optimization Method #1: 
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives 
smallest J(θ)
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θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2



Linear Regression by Gradient Desc.
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θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

iteration, t

m
ea

n 
sq

ua
re

d 
er

ro
r, 

J(
θ 1

, θ
2)



Linear Regression by Gradient Desc.

21

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

iteration, t

m
ea

n 
sq

ua
re

d 
er

ro
r, 

J(
θ 1

, θ
2)



𝜃2
Why
Gradient 
Descent for 
Linear 
Regression?
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𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m

ea
n 

sq
ua

re
d 

er
ro

r 
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#	)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



� A function 𝑓:ℝ! → ℝ is strictly convex if 
∀	𝒙 " ∈ ℝ!, 𝒙 # ∈ ℝ! and 0 ≤ 𝑐 ≤ 1
𝑓 𝑐𝒙 " + 1 − 𝑐 𝒙 # ≤ 𝑐𝑓 𝒙 " + 1 − 𝑐 𝑓 𝒙 #

𝑓 𝑐𝑥 " + 1 − 𝑐 𝑥 #

Convexity
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𝑓

𝑥 " 𝑥 #𝑐𝑥 " + 1 − 𝑐 𝑥 #

𝑐𝑓 𝑥 " + 1 − 𝑐 𝑓 𝑥 #



� A function 𝑓:ℝ! → ℝ is strictly convex if 
∀	𝒙 " ∈ ℝ!, 𝒙 # ∈ ℝ! and 0 ≤ 𝑐 ≤ 1
𝑓 𝑐𝒙 " + 1 − 𝑐 𝒙 # ≤ 𝑐𝑓 𝒙 " + 1 − 𝑐 𝑓 𝒙 #

𝑓 𝑐𝑥 " + 1 − 𝑐 𝑥 #

Convexity
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𝑓

𝑥 " 𝑥 #𝑐𝑥 " + 1 − 𝑐 𝑥 #

𝑐𝑓 𝑥 " + 1 − 𝑐 𝑓 𝑥 #



� A function 𝑓:ℝ! → ℝ is strictly convex if 
∀	𝒙 " ∈ ℝ!, 𝒙 # ∈ ℝ! and 0 < 𝑐 < 1
𝑓 𝑐𝒙 " + 1 − 𝑐 𝒙 # < 𝑐𝑓 𝒙 " + 1 − 𝑐 𝑓 𝒙 #

𝑓 𝑐𝑥 " + 1 − 𝑐 𝑥 #

Convexity
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𝑓

𝑥 " 𝑥 #𝑐𝑥 " + 1 − 𝑐 𝑥 #

𝑐𝑓 𝑥 " + 1 − 𝑐 𝑓 𝑥 #



Convexity
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Convex functions

Non-convex functions



Convexity
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Given a function 𝑓:ℝ! → ℝ 

• 𝒙∗ is a global minimum iff 
𝑓 𝒙∗ ≤ 𝑓 𝒙 	∀	𝒙 ∈ ℝ!

• 𝒙∗ is a local minimum iff 
∃	𝜖 s.t. 𝑓 𝒙∗ ≤ 𝑓 𝒙 	∀
𝒙 s.t. 𝒙 − 𝒙∗ # < 𝜖



Convexity
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Convex functions:

Each local minimum is a 
global minimum!

Non-convex functions:
A local minimum may or may 
not be a global minimum…



Convexity
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Strictly convex functions:

There exists a unique global 
minimum!

Non-convex functions:
A local minimum may or may 
not be a global minimum…



Gradient 
Descent & 
Convexity

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Works great if the objective function is convex! 
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Gradient 
Descent & 
Convexity

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Works great if the objective function is convex! 
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Gradient 
Descent & 
Convexity

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Works great if the objective function is convex! 
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Gradient 
Descent & 
Convexity

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Works great if the objective function is convex! 
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� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…
Gradient 
Descent & 
Convexity
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� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…
Gradient 
Descent & 
Convexity
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Gradient 
Descent & 
Convexity
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� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…



Gradient 
Descent & 
Convexity

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…
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𝜃2
Why
Gradient 
Descent for 
Linear 
Regression?
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𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m

ea
n 

sq
ua

re
d 

er
ro

r 
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#	)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



𝜃2The mean 
squared 
error is 
convex (but 
not always 
strictly 
convex)
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𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m

ea
n 

sq
ua

re
d 

er
ro

r 
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#	)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



𝜃2
Okay, fine 
but couldn’t 
we do 
something
simpler? 

Yes! 
(sometimes)
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𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 " )

ℎ(𝑥; 𝜽 # )

ℎ(𝑥; 𝜽 $ )

ℎ(𝑥; 𝜽 % )

iteration 𝑡
m

ea
n 

sq
ua

re
d 

er
ro

r 
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#	)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2



Closed Form 
Optimization

� Idea: find the critical points of the objective function, 

specifically the ones where ∇𝐽 𝜃 = 𝟎 (the vector of all 
zeros), and check if any of them are local minima

� Notation: given training data 𝒟 = 𝒙 % , 𝑦 %
%&"
'

� 𝑋 =

1 𝒙 " (

1 𝒙 # (

⋮ ⋮
1 𝒙 ' (

=

1 𝑥"
" ⋯ 𝑥!

"

1 𝑥"
# ⋯ 𝑥!

#

⋮ ⋮ ⋱ ⋮
1 𝑥"

' ⋯ 𝑥!
'

∈ ℝ'×!*"	

is the design matrix

� 𝒚 = 𝑦 " , … , 𝑦 ' (
∈ ℝ' is the target vector
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𝐽 𝜽 =
1
𝑁
D
+&"

'
1
2
𝑦 + − 𝜽(𝒙 + #

=
1
2𝑁

D
+&"

'

𝒙 + (𝜽 − 𝑦 +
#

Minimizing the 
Mean Squared 
Error

42

=
1
2𝑁

𝑋𝜃 − 𝒚 ( 𝑋𝜃 − 𝒚

9/25/23

∇𝜽𝐽 𝜽 =
1
2𝑁

2𝑋(𝑋𝜽 − 2𝑋(𝒚

=
1
2𝑁

𝜽(𝑋(𝑋𝜽 − 2𝜽(𝑋(𝒚 + 𝒚(𝒚

∇𝜽𝐽 F𝜽 =
1
2𝑁

2𝑋(𝑋F𝜽 − 2𝑋(𝒚 = 0

→ 𝑋(𝑋F𝜽 = 𝑋(𝒚

→ F𝜽 = 𝑋(𝑋 -"𝑋(𝒚



𝜃2

Closed Form 
Optimization
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𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)
ℎ(𝑥; ?𝜽)

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#	)
1 0.59 0.43 0.2

F𝜽 = 𝑋(𝑋 -"𝑋(𝒚



Closed Form 
Solution

449/25/23

1. Is 𝑋(𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋(𝑋	is (almost always) full rank and 
therefore, invertible!
• If 𝑋(𝑋	is not invertible (occurs when one of the 

features is a linear combination of the others) then 
there are either 0 or infinitely many solutions!

2. If so, how computationally expensive is inverting 𝑋(𝑋?
• 𝑋(𝑋 ∈ ℝ!*"×!*" so inverting 𝑋(𝑋	takes 𝑂 𝐷.  time… 

• Can use gradient descent to speed things up!

F𝜽 = 𝑋(𝑋 -"𝑋(𝒚



Linear 
Regression: 
Uniqueness

45

𝑦

𝑥

� Consider a 1D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset?
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Linear 
Regression: 
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𝑦

𝑥

� Consider a 1D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset?
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Linear 
Regression: 
Uniqueness
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𝑦

𝑥

� Consider a 1D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset?
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Poll Question 3

48

𝑦

𝑥

� Consider a 1D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset?

A. -1 (TOXIC)  B. 0  C. 1  D. 2  E. ∞
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Linear 
Regression: 
Uniqueness

49

� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset? 

𝑦

𝑥1

𝑥2
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Linear 
Regression: 
Uniqueness
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� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset? 

𝑦

𝑥1

𝑥2
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Linear 
Regression: 
Uniqueness

51

� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset? 

𝑦

𝑥1

𝑥2
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Closed Form 
Solution

529/25/23

1. Is 𝑋(𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋(𝑋	is (almost always) full rank and 
therefore, invertible!
• If 𝑋(𝑋	is not invertible (occurs when one of the 

features is a linear combination of the others) then 
there are either 0 or infinitely many solutions

2. If so, how computationally expensive is inverting 𝑋(𝑋?
• 𝑋(𝑋 ∈ ℝ!*"×!*" so inverting 𝑋(𝑋	takes 𝑂 𝐷.  time…

• Computing 𝑋(𝑋 takes 𝑂 𝑁𝐷#  time
• Can use gradient descent to (potentially) speed things 

up when 𝑁 and 𝐷 are large!

F𝜽 = 𝑋(𝑋 -"𝑋(𝒚



Closed Form 
Solution
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1. Is 𝑋(𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋(𝑋	is (almost always) full rank and 
therefore, invertible!
• If 𝑋(𝑋	is not invertible (occurs when one of the 

features is a linear combination of the others), then 
there are infinitely many solutions

2. If so, how computationally expensive is inverting 𝑋(𝑋?
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• Computing 𝑋(𝑋 takes 𝑂 𝑁𝐷#  time
• Can use gradient descent to (potentially) speed things 

up when 𝑁 and 𝐷 are large!
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You should be able to…
� Design k-NN Regression and Decision Tree Regression 
� Implement learning for Linear Regression using 

gradient descent or closed form optimization
� Choose a Linear Regression optimization technique 

that is appropriate for a particular dataset by 
analyzing the tradeoff of computational complexity 
vs. convergence speed 

� Identify situations where least squares regression has 
exactly one solution or infinitely many solutions
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