
10-301/601: Introduction
to Machine Learning
Lecture 8 – Optimization
for Machine Learning
Henry Chai & Matt Gormley

9/25/23

Exam 1
Logistics

� Exam 1 on 2/19 (next Monday!) from 7 PM – 9 PM

� Location & Seats: You all will be split across multiple
(large) rooms.

� Everyone will have an assigned seat

� Please watch Piazza carefully for more details

� If you have exam accommodations through ODR,
they will be proctoring your exam on our behalf;
you are responsible for submitting the exam

proctoring request through your student portal.

2/12/24 2

Exam 1
Logistics

� Format of questions:
� Multiple choice

� True / False (with justification)

� Derivations

� Short answers

� Drawing & Interpreting figures

� Implementing algorithms on paper

� No electronic devices (you won’t need them!)

� You are allowed to bring one letter-size sheet of notes;
you can put whatever you want on both sides

2/12/24 3

Exam 1
Topics

� Covered material: Lectures 1 – 7
� Foundations

� Probability, Linear Algebra, Geometry, Calculus
� Optimization

� Important Concepts
� Overfitting
� Model selection / Hyperparameter optimization

� Decision Trees
� 𝑘-NN
� Perceptron
� Regression

� Decision Tree and 𝑘-NN Regression
� Linear Regression

2/12/24 4

Exam 1
Preparation

� Review the exam practice problems (released 2/12 on
the course website, under Coursework)

� Attend the dedicated exam 1 review OH (in lieu of
recitation on 2/16)

� Review HWs 1 - 3

� Consider whether you have achieved the “learning
objectives” for each lecture / section

� Write your one-page cheat sheet (back and front)

2/12/24 5

http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html

Exam 1
Tips

� Solve the easy problems first

� If a problem seems extremely complicated, you might be
missing something

� If you make an assumption, write it down

� Don’t leave any answer blank

� If you look at a question and don’t know the answer:

� just start trying things

� consider multiple approaches

� imagine arguing for some answer and see if you like it

2/12/24 6

Linear
Regression as
Function
Approximation

7

Linear Regression by Rand. Guessing
Optimization Method #0:
Random Guessing
1. Pick a random θ
2. Evaluate J(θ)
3. Repeat steps 1 and 2 many

times
4. Return θ that gives

smallest J(θ)

8

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.2 0.2 10.4
0.3 0.7 7.2
0.6 0.4 1.0
0.9 0.7 16.2

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

x

y

Gradients

9

θ1

θ2

J(θ) = J(θ1, θ2)

Gradients

10
These are the gradients that

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2)

Gradients

11
These are the gradients that

Gradient Ascent would follow.

θ1

θ2

J(θ) = J(θ1, θ2)

In this picture, each arrow is a 2D
vector consisting of two partial
derivatives.

The vector is evaluated at the
point [θ1, θ2]T and plotted with its
origin there as well.

∇J(θ1, θ2) =





∂J

∂θ1

∂J

∂θ2





(Negative)
Gradients

12
These are the negative gradients that

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2)

In this picture, each arrow is a 2D
vector consisting of two partial
derivatives.

The vector is evaluated at the
point [θ1, θ2]T and plotted with its
origin there as well.

−∇J(θ1, θ2) =





−
∂J

∂θ1

−
∂J

∂θ2





(Negative)
Gradients

13
These are the negative gradients that

Gradient Descent would follow.

θ1

θ2

J(θ) = J(θ1, θ2)

(Negative)
Gradient Paths

14

Shown are the paths that Gradient Descent
would follow if it were making infinitesimally

small steps.

θ1

θ2

J(θ) = J(θ1, θ2)

Recall:
Gradient
Descent for
Linear
Regression

� Gradient descent for linear regression repeatedly takes

steps opposite the gradient of the objective function

9/25/23 15

Algorithm 1 GD for Linear Regression

1: procedure GDLR(D, ✓(0))
2: ✓ ✓(0) . Initialize parameters
3: while not converged do
4: ;

PN
i=1(✓

T t(i) � y(i))t(i) . Compute gradient
5: ✓ ✓ � �; . Update parameters
6: return ✓

<latexit sha1_base64="gWGdHQfN8j09yYTmSWy+s/g3Usg=">AAAFIXicdVNLbxMxEN6G8FqehSOXEU2lVuojKQcQElJFy0uqUClNi5QNleOd3VjY3pXtbRtW+2v4C9z4BdwQN8SJK/wJxmlSmrb44vG8vpn5xr1cCuuazR9TtQv1i5cuX7kaXrt+4+at29N3dmxWGI5tnsnMvOsxi1JobDvhJL7LDTLVk7jb+7Dm7bv7aKzI9LYb5NhVLNUiEZw5Uu1N17bDqIep0CWTaWaE66uq87IbAkSc5d6nfLEOSWZggxCYgS1MDVqfr/JOp2IFrzqtLszCdh9BF6qHBhxKaeGgjwbBkdqXOrIJnYLtZ4WMwTpmHGWknJsm4xgXBgl6Y6sqG9E6byxAI6Jox/bfl3PN+apRwdCb/N865vDYDFGKzsKkM0RrmVKoXflKCyeYFB8RcmaYQkfTqcapdvtCYqkzBzzTNLcU47HtFFh6DGQLtVeKJ63q/WuYG8NuQ3TowcV8BYswOJLm/ylPVER3XlDO1LBYkOI/gOd1R6mjlCnF6No/kbKdxz7onAaf6XjY4+TsIoeHrpeUBl1hdHWM1gjHQceceNJRxxOUh5OaKty7PdNcag4PnBVaI2EmGJ3Nvempz1Gc8cJXzyWzttNq5q5b0k4ILpEQCos54x9Yih0SNfVlu+Vw/yuYJU08XNIk05460p6MKJmydqB65KmY69vTNq88z9YpXPKoWwrt+dH8CCgpJLgM/GeCWBjkTg5IYJx6Fxx4n4bO/czDMBpGlsttS89lReNREgfLtF5Iz8EiTX0xxoQV0tklelQU4pk4ELHrt5pcheEszD6nvtaYjikveCsIDRvE2uErByyO6U8J6ysa/ntGH3/BfzMNVCscovSej8PIoMYDTvtBmcooYUrIwQi7KiObjOWJ2fhx2hw9w5bWjmnrNeWomiHPrdOsnhV2VpZaD5ZW3qzMrD4dMX4luBfcD+aCVvAwWA1eBptBO+C1L7Vftd+1P/VP9a/1b/XvR661qVHM3WDi1H/+BdBErlY=</latexit>

Gradient Calculation for Linear Regression

16

Gradient of J(θ)

∇θJ(θ) =











d

dθ1
J(θ)

d

dθ2
J(θ)
...

d

dθM
J(θ)











=













∑N

i=1(θ
T t(i) − y(i))x(i)

1
∑N

i=1(θ
T t(i) − y(i))x(i)

2
...

∑N

i=1(θ
T t(i) − y(i))x(i)

M













=
N
∑

i=1

(θT t(i)
− y(i))t(i)

[used by Gradient Descent]

Linear Regression by Gradient Desc.
Optimization Method #1:
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives
smallest J(θ)

17

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2

t
1
2
3
4

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

Linear Regression by Gradient Desc.
Optimization Method #1:
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives
smallest J(θ)

18

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

Linear Regression by Gradient Desc.
Optimization Method #1:
Gradient Descent
1. Pick a random θ
2. Repeat:

a. Evaluate gradient ∇J(θ)
b. Step opposite gradient

3. Return θ that gives
smallest J(θ)

19

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

Linear Regression by Gradient Desc.

20

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

iteration, t

m
ea

n
sq

ua
re

d
er

ro
r,

J(
θ 1

, θ
2)

Linear Regression by Gradient Desc.

21

θ1

θ2

θ1 θ2 J(θ1, θ2)
0.01 0.02 25.2
0.30 0.12 8.7
0.51 0.30 1.5
0.59 0.43 0.2x

y

y = h*(x)
(unknown)

t
1
2
3
4

h(x; θ(1))

h(x; θ(2))

h(x; θ(3))

h(x; θ(4))

J(θ) = J(θ1, θ2) = (10(θ1 – 0.5))2 + (6(θ1 – 0.4))2

iteration, t

m
ea

n
sq

ua
re

d
er

ro
r,

J(
θ 1

, θ
2)

𝜃2
Why
Gradient
Descent for
Linear
Regression?

9/25/23 22

𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 ")

ℎ(𝑥; 𝜽 #)

ℎ(𝑥; 𝜽 $)

ℎ(𝑥; 𝜽 %)

iteration 𝑡
m

ea
n

sq
ua

re
d

er
ro

r
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2

� A function 𝑓:ℝ! → ℝ is strictly convex if
∀	𝒙 " ∈ ℝ!, 𝒙 # ∈ ℝ! and 0 ≤ 𝑐 ≤ 1
𝑓 𝑐𝒙 " + 1 − 𝑐 𝒙 # ≤ 𝑐𝑓 𝒙 " + 1 − 𝑐 𝑓 𝒙 #

𝑓 𝑐𝑥 " + 1 − 𝑐 𝑥 #

Convexity

9/25/23 23

𝑓

𝑥 " 𝑥 #𝑐𝑥 " + 1 − 𝑐 𝑥 #

𝑐𝑓 𝑥 " + 1 − 𝑐 𝑓 𝑥 #

� A function 𝑓:ℝ! → ℝ is strictly convex if
∀	𝒙 " ∈ ℝ!, 𝒙 # ∈ ℝ! and 0 ≤ 𝑐 ≤ 1
𝑓 𝑐𝒙 " + 1 − 𝑐 𝒙 # ≤ 𝑐𝑓 𝒙 " + 1 − 𝑐 𝑓 𝒙 #

𝑓 𝑐𝑥 " + 1 − 𝑐 𝑥 #

Convexity

9/25/23 24

𝑓

𝑥 " 𝑥 #𝑐𝑥 " + 1 − 𝑐 𝑥 #

𝑐𝑓 𝑥 " + 1 − 𝑐 𝑓 𝑥 #

� A function 𝑓:ℝ! → ℝ is strictly convex if
∀	𝒙 " ∈ ℝ!, 𝒙 # ∈ ℝ! and 0 < 𝑐 < 1
𝑓 𝑐𝒙 " + 1 − 𝑐 𝒙 # < 𝑐𝑓 𝒙 " + 1 − 𝑐 𝑓 𝒙 #

𝑓 𝑐𝑥 " + 1 − 𝑐 𝑥 #

Convexity

9/25/23 25

𝑓

𝑥 " 𝑥 #𝑐𝑥 " + 1 − 𝑐 𝑥 #

𝑐𝑓 𝑥 " + 1 − 𝑐 𝑓 𝑥 #

Convexity

9/25/23 26

Convex functions

Non-convex functions

Convexity

9/25/23 27

Given a function 𝑓:ℝ! → ℝ

• 𝒙∗ is a global minimum iff
𝑓 𝒙∗ ≤ 𝑓 𝒙 	∀	𝒙 ∈ ℝ!

• 𝒙∗ is a local minimum iff
∃	𝜖 s.t. 𝑓 𝒙∗ ≤ 𝑓 𝒙 	∀
𝒙 s.t. 𝒙 − 𝒙∗ # < 𝜖

Convexity

9/25/23 28

Convex functions:

Each local minimum is a
global minimum!

Non-convex functions:
A local minimum may or may
not be a global minimum…

Convexity

9/25/23 29

Strictly convex functions:

There exists a unique global
minimum!

Non-convex functions:
A local minimum may or may
not be a global minimum…

Gradient
Descent &
Convexity

� Gradient descent is a local optimization algorithm – it

will converge to a local minimum (if it converges)

� Works great if the objective function is convex!

9/25/23 30

Gradient
Descent &
Convexity

� Gradient descent is a local optimization algorithm – it

will converge to a local minimum (if it converges)

� Works great if the objective function is convex!

9/25/23 31

Gradient
Descent &
Convexity

� Gradient descent is a local optimization algorithm – it

will converge to a local minimum (if it converges)

� Works great if the objective function is convex!

9/25/23 32

Gradient
Descent &
Convexity

� Gradient descent is a local optimization algorithm – it

will converge to a local minimum (if it converges)

� Works great if the objective function is convex!

9/25/23 33

� Gradient descent is a local optimization algorithm – it

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…
Gradient
Descent &
Convexity

9/25/23 34

� Gradient descent is a local optimization algorithm – it

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…
Gradient
Descent &
Convexity

9/25/23 35

Gradient
Descent &
Convexity

9/25/23 36

� Gradient descent is a local optimization algorithm – it

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…

Gradient
Descent &
Convexity

� Gradient descent is a local optimization algorithm – it

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…

9/25/23 37

𝜃2
Why
Gradient
Descent for
Linear
Regression?

9/25/23 38

𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 ")

ℎ(𝑥; 𝜽 #)

ℎ(𝑥; 𝜽 $)

ℎ(𝑥; 𝜽 %)

iteration 𝑡
m

ea
n

sq
ua

re
d

er
ro

r
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2

𝜃2The mean
squared
error is
convex (but
not always
strictly
convex)

9/25/23 39

𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 ")

ℎ(𝑥; 𝜽 #)

ℎ(𝑥; 𝜽 $)

ℎ(𝑥; 𝜽 %)

iteration 𝑡
m

ea
n

sq
ua

re
d

er
ro

r
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2

𝜃2
Okay, fine
but couldn’t
we do
something
simpler?

Yes!
(sometimes)

9/25/23 40

𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)

ℎ(𝑥; 𝜽 ")

ℎ(𝑥; 𝜽 #)

ℎ(𝑥; 𝜽 $)

ℎ(𝑥; 𝜽 %)

iteration 𝑡
m

ea
n

sq
ua

re
d

er
ro

r
𝐽(
𝜃 1
,𝜃

2)

𝐽 𝜃1, 𝜃2 =
1
𝑁
1
&'"

(

𝑦 & − 𝜽)𝒙 & #

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#)
1 0.01 0.02 25.2
2 0.30 0.12 8.7
3 0.51 0.30 1.5
4 0.59 0.43 0.2

Closed Form
Optimization

� Idea: find the critical points of the objective function,

specifically the ones where ∇𝐽 𝜃 = 𝟎 (the vector of all
zeros), and check if any of them are local minima

� Notation: given training data 𝒟 = 𝒙 % , 𝑦 %
%&"
'

� 𝑋 =

1 𝒙 " (

1 𝒙 # (

⋮ ⋮
1 𝒙 ' (

=

1 𝑥"
" ⋯ 𝑥!

"

1 𝑥"
⋯ 𝑥!

#

⋮ ⋮ ⋱ ⋮
1 𝑥"

' ⋯ 𝑥!
'

∈ ℝ'×!*"	

is the design matrix

� 𝒚 = 𝑦 " , … , 𝑦 ' (
∈ ℝ' is the target vector

9/25/23 41

𝐽 𝜽 =
1
𝑁
D
+&"

'
1
2
𝑦 + − 𝜽(𝒙 + #

=
1
2𝑁

D
+&"

'

𝒙 + (𝜽 − 𝑦 +
#

Minimizing the
Mean Squared
Error

42

=
1
2𝑁

𝑋𝜃 − 𝒚 (𝑋𝜃 − 𝒚

9/25/23

∇𝜽𝐽 𝜽 =
1
2𝑁

2𝑋(𝑋𝜽 − 2𝑋(𝒚

=
1
2𝑁

𝜽(𝑋(𝑋𝜽 − 2𝜽(𝑋(𝒚 + 𝒚(𝒚

∇𝜽𝐽 F𝜽 =
1
2𝑁

2𝑋(𝑋F𝜽 − 2𝑋(𝒚 = 0

→ 𝑋(𝑋F𝜽 = 𝑋(𝒚

→ F𝜽 = 𝑋(𝑋 -"𝑋(𝒚

𝜃2

Closed Form
Optimization

9/25/23 43

𝜃1

𝑥

𝑦

𝑦	 = 𝑐∗(𝑥) (unknown)
ℎ(𝑥; ?𝜽)

𝑡 𝜃" 𝜃# 𝐽(𝜃", 𝜃#)
1 0.59 0.43 0.2

F𝜽 = 𝑋(𝑋 -"𝑋(𝒚

Closed Form
Solution

449/25/23

1. Is 𝑋(𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋(𝑋	is (almost always) full rank and
therefore, invertible!
• If 𝑋(𝑋	is not invertible (occurs when one of the

features is a linear combination of the others) then
there are either 0 or infinitely many solutions!

2. If so, how computationally expensive is inverting 𝑋(𝑋?
• 𝑋(𝑋 ∈ ℝ!*"×!*" so inverting 𝑋(𝑋	takes 𝑂 𝐷. time…

• Can use gradient descent to speed things up!

F𝜽 = 𝑋(𝑋 -"𝑋(𝒚

Linear
Regression:
Uniqueness

45

𝑦

𝑥

� Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of parameters 𝜃) are
there for the given
dataset?

9/25/23

Linear
Regression:
Uniqueness

46

𝑦

𝑥

� Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of parameters 𝜃) are
there for the given
dataset?

9/25/23

Linear
Regression:
Uniqueness

47

𝑦

𝑥

� Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of parameters 𝜃) are
there for the given
dataset?

9/25/23

Poll Question 3

48

𝑦

𝑥

� Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of parameters 𝜃) are
there for the given
dataset?

A. -1 (TOXIC) B. 0 C. 1 D. 2 E. ∞

9/25/23

Linear
Regression:
Uniqueness

49

� Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of parameters 𝜃) are
there for the given
dataset?

𝑦

𝑥1

𝑥2

9/25/23

Linear
Regression:
Uniqueness

50

� Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of parameters 𝜃) are
there for the given
dataset?

𝑦

𝑥1

𝑥2

9/25/23

Linear
Regression:
Uniqueness

51

� Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many

optimal solutions (i.e.,
sets of parameters 𝜃) are
there for the given
dataset?

𝑦

𝑥1

𝑥2

9/25/23

Closed Form
Solution

529/25/23

1. Is 𝑋(𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋(𝑋	is (almost always) full rank and
therefore, invertible!
• If 𝑋(𝑋	is not invertible (occurs when one of the

features is a linear combination of the others) then
there are either 0 or infinitely many solutions

2. If so, how computationally expensive is inverting 𝑋(𝑋?
• 𝑋(𝑋 ∈ ℝ!*"×!*" so inverting 𝑋(𝑋	takes 𝑂 𝐷. time…

• Computing 𝑋(𝑋 takes 𝑂 𝑁𝐷# time
• Can use gradient descent to (potentially) speed things

up when 𝑁 and 𝐷 are large!

F𝜽 = 𝑋(𝑋 -"𝑋(𝒚

Closed Form
Solution

539/25/23

1. Is 𝑋(𝑋 invertible?

• When 𝑁 ≫ 𝐷 + 1, 𝑋(𝑋	is (almost always) full rank and
therefore, invertible!
• If 𝑋(𝑋	is not invertible (occurs when one of the

features is a linear combination of the others), then
there are infinitely many solutions

2. If so, how computationally expensive is inverting 𝑋(𝑋?
• 𝑋(𝑋 ∈ ℝ!*"×!*" so inverting 𝑋(𝑋	takes 𝑂 𝐷. time…

• Computing 𝑋(𝑋 takes 𝑂 𝑁𝐷# time
• Can use gradient descent to (potentially) speed things

up when 𝑁 and 𝐷 are large!

F𝜽 = 𝑋(𝑋 -"𝑋(𝒚

Linear
Regression
Learning
Objectives

You should be able to…
� Design k-NN Regression and Decision Tree Regression
� Implement learning for Linear Regression using

gradient descent or closed form optimization
� Choose a Linear Regression optimization technique

that is appropriate for a particular dataset by
analyzing the tradeoff of computational complexity
vs. convergence speed

� Identify situations where least squares regression has
exactly one solution or infinitely many solutions

549/25/23

