10-301/601: Introduction to Machine Learning Lecture 8 – Optimization for Machine Learning

Henry Chai & Matt Gormley 9/25/23

Exam 1 Logistics

- Exam 1 on 2/19 (next Monday!) from 7 PM 9 PM
- Location & Seats: You all will be split across multiple (large) rooms.
 - Everyone will have an assigned seat
 - Please watch Piazza carefully for more details
 - If you have exam accommodations through ODR, they will be proctoring your exam on our behalf;
 you are responsible for submitting the exam proctoring request through your student portal.

Exam 1 Logistics

- Format of questions:
 - Multiple choice
 - True / False (with justification)
 - Derivations
 - Short answers
 - Drawing & Interpreting figures
 - Implementing algorithms on paper
- No electronic devices (you won't need them!)
- You are allowed to bring one letter-size sheet of notes;
 you can put whatever you want on both sides

Exam 1
Topics

- Covered material: Lectures 1 − 7
 - Foundations
 - Probability, Linear Algebra, Geometry, Calculus
 - Optimization
 - Important Concepts
 - Overfitting
 - Model selection / Hyperparameter optimization
 - Decision Trees
 - *k*-NN
 - Perceptron
 - Regression
 - Decision Tree and k-NN Regression
 - Linear Regression

Exam 1 Preparation

- Review the exam practice problems (released 2/12 on the course website, under <u>Coursework</u>)
- Attend the dedicated exam 1 review OH (in lieu of recitation on 2/16)
- Review HWs 1 3
- Consider whether you have achieved the "learning objectives" for each lecture / section
- Write your one-page cheat sheet (back and front)

Exam 1 Tips

- Solve the easy problems first
- If a problem seems extremely complicated, you might be missing something
- If you make an assumption, write it down
- Don't leave any answer blank
 - If you look at a question and don't know the answer:
 - just start trying things
 - consider multiple approaches
 - imagine arguing for some answer and see if you like it

$$\mathcal{D} = \{\mathbf{x}^{(i)}, y^{(i)}\}_{i=1}^N$$
 where $\mathbf{x} \in \mathbb{R}^M$ and $y \in \mathbb{R}$

Linear
Regression as
Function
Approximation

1. Assume \mathcal{D} generated as:

$$\mathbf{x}^{(i)} \sim p^*(\cdot)$$
 $y^{(i)} = h^*(\mathbf{x}^{(i)})$

2. Choose hypothesis space, \mathcal{H} : all linear functions in M-dimensional space

$$\mathcal{H} = \{ h_{\boldsymbol{\theta}} : h_{\boldsymbol{\theta}}(\mathbf{x}) = \boldsymbol{\theta}^T \mathbf{x}, \boldsymbol{\theta} \in \mathbb{R}^M \}$$

3. Choose an objective function: mean squared error (MSE)

$$MSE = J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} e_{i}^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - h_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}) \right)^{2}$$

$$= \frac{1}{N} \sum_{i=1}^{N} \left(y^{(i)} - \boldsymbol{\theta}^{T} \mathbf{x}^{(i)} \right)^{2}$$

- 4. Solve the unconstrained optimization problem via favorite method:
 - gradient descent
 - closed form
 - stochastic gradient descent
 - . . .

$$\hat{oldsymbol{ heta}} = \operatorname*{argmin}_{oldsymbol{ heta}} J(oldsymbol{ heta})$$

5. Test time: given a new x, make prediction \hat{y}

$$\hat{y} = h_{\hat{\boldsymbol{\theta}}}(\mathbf{x}) = \hat{\boldsymbol{\theta}}^T \mathbf{x}$$

Linear Regression by Rand. Guessing

Optimization Method #0: $J(\theta) = J(\theta_1, \theta_2) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$

Optimization Method #0: Random Guessing

- Pick a random θ
- Evaluate $J(\theta)$
- Repeat steps 1 and 2 many times
- Return θ that gives smallest $J(\theta)$

Gradients

These are the **gradients** that Gradient **Ascent** would follow.

Gradients

These are the **gradients** that Gradient **Ascent** would follow.

(Negative) Gradients

These are the **negative** gradients that Gradient **Descent** would follow.

(Negative) Gradients

(Negative) Gradient *Pa*

Shown are the **paths** that Gradient Descent would follow if it were making **infinitesimally small steps**.

Recall: Gradient Descent for Linear Regression

 Gradient descent for linear regression repeatedly takes steps opposite the gradient of the objective function

Algorithm 1 GD for Linear Regression

9/25/23

Gradient Calculation for Linear Regression

Derivative of
$$J^{(i)}(\theta)$$
:

 $i \rightarrow traing instance is 1,-1,N$
 $k \rightarrow teature k \in 1,-1,M$

Derivative of $J(\theta)$:

 $d = d \cdot (0^{T} - (i) - (i))^{2}$

$$\frac{d}{d\theta_k} J^{(i)}(\boldsymbol{\theta}) = \frac{d}{d\theta_k} \frac{1}{2} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2$$

$$= \frac{1}{2} \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})^2$$

$$= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)})$$

$$= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \frac{d}{d\theta_k} \left(\sum_{j=1}^K \theta_j x_j^{(i)} - y^{(i)} \right)$$

$$= (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_k^{(i)}$$

1) MSE =
$$J(\vec{\theta}) = \frac{1}{2N} \sum_{i=1}^{N} (y^{(i)} - \vec{\theta} \cdot \vec{x}^{(i)})^{2}$$

(2) Gradient of
$$J(\theta)$$

[used by Gradient Descent]

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}) = \begin{bmatrix} \frac{d}{d\theta_1} J(\boldsymbol{\theta}) \\ \frac{d}{d\theta_2} J(\boldsymbol{\theta}) \\ \vdots \\ \frac{d}{d\theta_M} J(\boldsymbol{\theta}) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_1^{(i)} \\ \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_2^{(i)} \\ \vdots \\ \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_M^{(i)} \end{bmatrix} \underbrace{\partial J}_{\partial \boldsymbol{\theta}_k}$$

$$= \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$$

$$= \sum_{i=1}^N (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}^{(i)}$$

Linear Regression by Gradient Desc. Optimization Method #1: $J(\theta) = J(\theta_1, \theta_2) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$

Optimization Method #1: Gradient Descent

- Pick a random θ
- Repeat:
 - a. Evaluate gradient $\nabla J(\boldsymbol{\theta})$
 - b. Step opposite gradient
- Return θ that gives smallest $J(\theta)$

Linear Regression by Gradient Desc.

Optimization Method #1: Gradient Descent

- 1. Pick a random θ
- 2. Repeat:
 - a. Evaluate gradient $\nabla J(\boldsymbol{\theta})$
 - b. Step opposite gradient
- 3. Return θ that gives smallest $J(\theta)$

t	θ_1	θ_2	$J(\theta_1, \theta_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

Linear Regression by Gradient Desc. $J(\theta) = J(\theta_1, \theta_2) = \frac{1}{N} \sum_{i=1}^{N} (y^{(i)} - \theta^T \mathbf{x}^{(i)})^2$

Optimization Method #1: Gradient Descent

- 1. Pick a random $oldsymbol{ heta}$
- 2. Repeat:

 \rightarrow

- a. Evaluate gradient $\nabla J(\boldsymbol{\theta})$
- b. Step opposite gradient

Χ

3. Return θ that gives smallest $J(\theta)$

Linear Regression by Gradient Desc.

Χ

Why
Gradient
Descent for
Linear
Regression?

,30,000

, 15.000

0.8

 $J(\theta_1, \theta_2)$

25.2

8.7

1.5

0.2

, 20.000

1.0

• A function $f: \mathbb{R}^D \to \mathbb{R}$ is convex if $\forall \ \pmb{x}^{(1)} \in \mathbb{R}^D, \pmb{x}^{(2)} \in \mathbb{R}^D \text{ and } 0 \le c \le 1$ $f\left(c\pmb{x}^{(1)} + (1-c)\pmb{x}^{(2)}\right) \le cf\left(\pmb{x}^{(1)}\right) + (1-c)f\left(\pmb{x}^{(2)}\right)$

• A function $f: \mathbb{R}^D \to \mathbb{R}$ is strictly convex if $\forall x^{(1)} \in \mathbb{R}^D, x^{(2)} \in \mathbb{R}^D$ and 0 < c < 1 $f(cx^{(1)} + (1-c)x^{(2)}) < cf(x^{(1)}) + (1-c)f(x^{(2)})$

Given a function $f: \mathbb{R}^D \to \mathbb{R}$

• x^* is a global minimum iff $f(x^*) \le f(x) \ \forall \ x \in \mathbb{R}^D$

• x^* is a local minimum iff $\exists \epsilon \text{ s.t. } f(x^*) \leq f(x) \forall$ $x \text{ s.t. } ||x - x^*||_2 < \epsilon$

Convex functions:
Each local minimum is a global minimum!

Non-convex functions:

A local minimum may or may not be a global minimum...

9/25/23 **28**

Strictly convex functions:
There exists a unique global minimum!

Non-convex functions:

A local minimum may or may not be a global minimum...

9/25/23 **29**

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

9/25/23

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

9/25/23 **31**

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

9/25/23

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

9/25/23

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

9/25/23 **3**

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

9/25/23

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

9/25/23

Gradient Descent & Convexity

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

Why
Gradient
Descent for
Linear
Regression?

t	$ heta_1$	$ heta_2$	$J(\theta_1,\theta_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

The mean squared error is convex (but not always strictly convex)

 χ

0.59

0.43

0.2

Okay, fine but couldn't we do something simpler?

	$y = c^{-}(x)$ (unknown)	$h(x; \boldsymbol{\theta}^{(4)})$
7		$h(x; \boldsymbol{\theta}^{(3)})$
y		$-h(x;\boldsymbol{\theta}^{(2)})$
	\boldsymbol{x}	$- h(x; \boldsymbol{\theta}^{(1)})$

t	$ heta_1$	θ_2	$J(\theta_1,\theta_2)$
1	0.01	0.02	25.2
2	0.30	0.12	8.7
3	0.51	0.30	1.5
4	0.59	0.43	0.2

0.6

0.8

1.0

0.4

9/25/23

, 15.000 20.000

Closed Form Optimization

• Idea: find the *critical points* of the objective function, specifically the ones where $\nabla J(\theta) = \mathbf{0}$ (the vector of all zeros), and check if any of them are local minima

• Notation: given training data $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$

is the *design matrix*

$$\mathbf{y} = \begin{bmatrix} y^{(1)}, \dots, y^{(N)} \end{bmatrix}^T \in \mathbb{R}^N$$
 is the target vector

Minimizing the Mean Squared Error

Hessian J must be PSD.

MSE:
$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{2} (y^{(i)} - \theta^T x^{(i)})^2 = \frac{1}{2N} \sum_{i=1}^{N} (y^{(i)} - \theta^T x^{(i)})^2$$

$$= \frac{1}{2N} \left(\overrightarrow{X} \overrightarrow{\theta} - \overrightarrow{Y} \right)^T \left(\overrightarrow{X} \overrightarrow{\theta} - \overrightarrow{Y} \right)$$

$$\nabla_{\theta} J(\theta) = \frac{1}{2N} \left(2 (\overrightarrow{X} \times \overrightarrow{\theta} - \overrightarrow{X} \times \overrightarrow{y}) \right) = 0$$

$$\overrightarrow{X} \overrightarrow{X} \overrightarrow{\theta} = \overrightarrow{X} \overrightarrow{Y} \overrightarrow{Y}$$

$$(\overrightarrow{X} \overrightarrow{X})^{-1} \overrightarrow{X} \cancel{X} \overrightarrow{\theta} = (\overrightarrow{X} \overrightarrow{X} \cancel{X})^{-1} \overrightarrow{X} \cancel{Y}$$

$$(\overrightarrow{X} \overrightarrow{X})^{-1} \overrightarrow{X} \cancel{X} \overrightarrow{\theta} = (\overrightarrow{X} \overrightarrow{X} \cancel{X})^{-1} \overrightarrow{X} \cancel{Y}$$

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

Closed Form Optimization

t	$ heta_1$	θ_2	$J(\theta_1,\theta_2)$
1	0.59	0.43	0.2

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

1. Is X^TX invertible?

Closed Form Solution

2. If so, how computationally expensive is inverting X^TX ?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Poll Question 3

 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

A. -1 (TOXIC)

B. 0

C. 1

D. 2

E. ∞

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \mathbf{y}$$

1. Is X^TX invertible?

Closed Form Solution

2. If so, how computationally expensive is inverting X^TX ?

Closed Form Solution

$$\widehat{\boldsymbol{\theta}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

- 1. Is X^TX invertible?
 - When $N \gg D + 1$, $X^T X$ is (almost always) full rank and therefore, invertible!
 - If X^TX is not invertible (occurs when one of the features is a linear combination of the others), then there are infinitely many solutions
- 2. If so, how computationally expensive is inverting X^TX ?
 - $X^TX \in \mathbb{R}^{D+1 \times D+1}$ so inverting X^TX takes $O(D^3)$ time...
 - Computing X^TX takes $O(ND^2)$ time
 - Can use gradient descent to (potentially) speed things up when N and D are large!

Linear Regression Learning Objectives

You should be able to...

- Design k-NN Regression and Decision Tree Regression
- Implement learning for Linear Regression using gradient descent or closed form optimization
- Choose a Linear Regression optimization technique that is appropriate for a particular dataset by analyzing the tradeoff of computational complexity vs. convergence speed
- Identify situations where least squares regression has exactly one solution or infinitely many solutions