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* Announcements:

* Exam 1 on 2/19 from 7 PM -9 PM

Front Matter

- Exam 1 practice problems released on the

course website, under Coursework
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http://www.cs.cmu.edu/~mgormley/courses/10601/coursework.html

Q&A:

Man, I've really
been struggling
with the
homeworks in
this class,
especially the
programming...
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* ... where can | turn for help?
* First off, I'm really sorry to hear that...

- ... but I'm glad you’re asking the right questions: we

would love to help you!

* Your TAs would love to help you in OH!
* Your instructors would love to help you!
- We all would love to help you on Piazza!

* Your peers would (probably) love to help you too

(stay tuned for more on this as well)!

- We would not love it if you violated academic integrity

by breaking our collaboration policy



http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html

http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html|

* Collaboration on homework assignments is encouraged but

must be documented

* You must always write your own code/answers

* You may not re-use code/previous versions of the
Recall: y /p

homework, whether your own or otherwise

Collaboration
Policy

* You may not use generative Al tools to create any content

for any assessment, including (but not limited to) code

* Our suggested approach to collaborating:

1. Collectively sketch pseudocode on an impermanent

surface, then

2/14/24 2. Disperse, erase all notes and start from scratch


http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html

* Previously:

* (Unknown) Target function, c*: X - Y
* Classifier, h : X = Y
Probabilistic * Goal: find a classifier, h, that best approximates c*

Learning * Now:
* (Unknown) Target distribution, y ~ p*(Y|x)
* Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p”*
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Likelihood
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* Given N independent, identically distribution (iid)

samples D = {x(l), o x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X]0), then the likelihood of D is

N
L@ = | [pGx |§)
n=1

* If X is continuous with probability density function
(pdf) f(X]60), then the likelihood of D is

N
Lo = | [rxmie)
n=1



Log-Likelihood
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* Given N independent, identically distribution (iid)

samples D = {x(l), o x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|0), then the log-likelihood of D is

N N
2(0) = logl_[p(x(”)|9) = z logp(x(”)|9)
n=1 n=1

* If X is continuous with probability density function
(pdf) f(X]60), then the log-likelihood of D is

N N
2©) =log| [f(x™16) = ) 1ogf(x™]6)
n=1 n=1



Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution

Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
1.50 | ' ' ' '
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distribution < {x = 0.5,
0.50 x(z) _ 1}
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Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution

Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution

* The pdf of the exponential distribution is

fFlxlA) = Ae™™
* Given N iid samples {x(l), ...,x(N)}, the likelihood is
N N
: L(2) = Hf (x™12) = Hae-ﬁx”‘)
Exponential 12 12

Distribution
MLE
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Exponential

Distribution
MLE
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* The pdf of the exponential distribution is

f(x|A) = e

* Given N iid samples {x(l) x(N)} the log-likelihood is

@) = Z log f (x™14) = Z log Ae A"

n=1 m L——J'_—_J
N n
= [Oj} ;\7 (F:\X( >>
A= —
= Ny "Z)xwm )
2> _ N N e
O T ;x” ) p) §XA~%
5% _\ ) SN _ S 0 )T n
>9>’L“’>’\Z 2L



* Define a decision rule

- Given a test data point x’, predict its label ¥ using

Building a i or distribution P(Y = y[)
T the posterior distribution = y|x
Probabilistic " g
Classifier * Common choice: y = argmax P(Y = y|x’)
y

* |dea: model P(Y|x) as some parametric function of x
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Modelling the

Posterior
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* Suppose we have binary labels y € {0,1} and

D-dimensional inputs x = [1, x4, ..., xp]! € RP*1

- Assume  TTTmmeee- 1 prepended to x
N b exp(®)
P(1=1)%©) = o(6%) = ———5r 6
I«\@\lfﬁ 27

| P(Y= O]x/©>”l~F(Yl\7<,9> ewg))r

F(\{- X e> E)([’(QT> > oéés T
P(Y-0lx 6) l\m . oy

\‘r\fu'\'S, X
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Logistic
Function

P

2/14/24 Source: https://en.wikipedia.org/wiki/Logistic_function#/media/File:Logistic-curve.svg



https://en.wikipedia.org/wiki/Logistic_function
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https://en.wikipedia.org/wiki/Logistic_function

Logistic
Regression
Decision
Boundary
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Logistic
Regression
Decision
Boundary
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Figure courtesy of Matt Gormley



Logistic Regression Distribution

Logistic ,
Regression
Decision
Boundary

2/14/24 Figure courtesy of Matt Gormley



Classification with Logistic Regression

_ogistic
Regression
Decision

Boundary

2/14/24 Figure courtesy of Matt Gormley



’ (ﬁb&4 3 * Find 0 that minimizes

£(0) = —logP(y(l), ...,y(N)|x(1), ...,x(N),B) = —log P(y(")|x(”), 0)

A A
n=1

Setting the (n) (1-y ™)
Parameters 2 = log T (‘F(Y“H )‘BYJ (?C\{COWU‘?@» / >
via Minimum N .
Negative > = *-Z >/C") [ PLY=1xB) + 0,’% ") oy Trolde,
Conditional N - (Y] o 6) ,

log-)Likelihood o = 1R \_olx"e
CARDR - -1, 0L ) 1ol

N P(\f’" O |»" 6)

Z[;J(}/Cﬂ) @T (n) + ’oj (QKP(® (n'))+ >)
i ZQM SR Loy exp(E% ) l))

(MCLE)




2

J(08) = __z y(n)eTx(n) log (1 + eXp(ng(n)))
n=1 c\) .
\ C) T (n 1)
Minimizing the VeTCe = - Kf%%()’ Veylx (D _ 103 (\Jrexf(@/_i()/
Negative e~ — —
\ ST (M)
Conditional - - ”Z(yc“*x“‘)_. (&%) Xm)
(log-)Likelihood " |+€xﬁ(ew-x(ny>
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. o~~~ N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

Gradient

N
1 . . .
Descent Vo (6©) == > xO(P(r = 1]x®,60) - y©)
=1

b. Update 8: (D) « 9 — yv,1(9®)

c. Incrementt:t<t+1

- Qutput: 8

2/14/24



A. 0(1) (TOXIC B. O(N C.0(D D. O(ND
(1) ( ) (N) (D) (ND)

Poll Question 1: * Input: training dataset D = {(x(i),y(i))}livzl and step size y
1. Initialize 8 to all zeros and set t = 0
What is the | | o
: 2.  While TERMINATION CRITERION is not satisfied
computational Compute the eradient. D
a. Compute the gradient:
cost of one P ; N
|terajc|on of 7o) (6©) = zx@)(lg(y — 1]x®, 9®) — y®)
gradient N o)
descent for b. Update 8: 8¢+ — 9® — v,1(8®)

logistic
regression’?

c. Incrementt:t<t+1

- Qutput: 8
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. o~~~ N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

Gradient

N
1w . |
Descent 0 (ND){ Vo (6©) == > xO(P(r = 1]x®,60) - y©)
=1

b. Update 8: (D) « 9 — yv,1(9®)

c. Incrementt:t<t+1

- Qutput: 8
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. N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied
Stochastic a. Randomly sample a data point from D, (x(i),y(i))

Gradient b. Compute the pointwise gradient:
Descent (SG D) Vo/ D(60) = xD(P(y = 1|x®, 9®) — y©D)

c. Update 8: 0+D 9O _ yvej(i)(g(t))

d. Incrementt:t < t+1

- Qutput: 80
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* If the example is sampled uniformly at random, the expected

value of the pointwise gradient is the same as the full gradient!

Stochastic
Gradient

Descent (SGD)

* In practice, the data set is randomly shuffled then looped

through so that each data point is used equally often
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. N
* Input: training dataset D = {(x(‘),y(‘))}izl and step size y
1. Initialize 8 to all zeros and set t = 0

2. While TERMINATION CRITERION is not satisfied

Stochastic 7 a. Fori € shuffle({1, ..., N})

Gradient I.  Compute the pointwise gradient:

Descent (SGD) Vol V(09) = xO(P(¥ = 1[x®,00) — y©)
i. Update 8: 0¢+D « 9 — v, D (g®)

iii. Incrementt:t<t+1

- Qutput: 80
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Stochastic
Gradient

Descent vs.
Gradient
Descent

Gradient Descent Stochastic Gradient Descent
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* An epoch is a single pass through the entire training dataset

- Gradient descent updates the parameters once per epoch

- SGD updates the parameters N times per epoch

Stochastic * Theoretical comparison:

Gradient * Define convergence to be when ](H(t)) —J(0") <€
Descent vs.
Gradient

Convergence | per Step
Descent Gradient descent 0(log 1/6) O(ND)

SGD o(1/e) 0(D)

\/_/

(with high probability under certain assumptions)

2/14/24



Stochastic
Gradient

Descent vs.

Gradient
Descent
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* An epoch is a single pass through the entire training dataset

- Gradient descent updates the parameters once per epoch

- SGD updates the parameters N times per epoch

A

Gradient Empirically, SGD
Descent reduces the negative
conditional log-
likelihood much

faster than gradient
SGD

Negative conditional
log-likelihood

descent

epochs



Optimization
for ML

Learning
Objectives
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You should be able to...

* Apply gradient descent to optimize a function

* Apply stochastic gradient descent (SGD) to optimize a
function

- Apply knowledge of zero derivatives to identify a
closed-form solution (if one exists) to an optimization
problem

- Distinguish between convex, concave, and nonconvex
functions

* Obtain the gradient (and Hessian) of a (twice)
differentiable function



You should be able to...
* Apply the principle of maximum likelihood estimation
(MLE) to learn the parameters of a probabilistic

model
Logistic * Given a discriminative probabilistic model, derive the
Regression conditional log-likelihood, its gradient, and the

corresponding Bayes Classifier
* Explain the practical reasons why we work with the

Learning

Objectives log of the likelihood

* Implement logistic regression for binary (and
multiclass) classification

* Prove that the decision boundary of binary logistic
regression is linear
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