10-301/601: Introduction to Machine Learning Lecture 9 – Logistic Regression

Hoda Heidari, Henry Chai & Matt Gormley 2/14/24

Front Matter

- Announcements:
 - Exam 1 on 2/19 from 7 PM 9 PM
 - Exam 1 practice problems released on the course website, under Coursework

Q & A:

Man, I've really been struggling with the homeworks in this class, especially the programming...

- ... where can I turn for help?
- First off, I'm really sorry to hear that...
- ... but I'm glad you're asking the right questions: we would love to help you!
 - Your TAs would love to help you in OH!
 - Your instructors would love to help you!
 - We all would love to help you on Piazza!
 - Your peers would (probably) love to help you too (stay tuned for more on this as well)!
- We would not love it if you violated academic integrity by breaking our <u>collaboration policy</u>

http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html

Recall: Collaboration Policy

- Collaboration on homework assignments is encouraged but must be documented
- You must always write your own code/answers
 - You may not re-use code/previous versions of the homework, whether your own or otherwise
 - You may not use generative AI tools to create any content for any assessment, including (but not limited to) code
- Our suggested approach to collaborating:
 - 1. Collectively sketch pseudocode on an impermanent surface, then
 - 2. Disperse, erase all notes and start from scratch

Probabilistic Learning

- Previously:
 - (Unknown) Target function, $c^*: \mathcal{X} \to \mathcal{Y}$
 - Classifier, $h: \mathcal{X} \to \mathcal{Y}$
 - Goal: find a classifier, h, that best approximates c^*
- Now:
 - (Unknown) Target distribution, $y \sim p^*(Y|x)$
 - Distribution, p(Y|x)
 - Goal: find a distribution, p, that best approximates p^*

P(AnB) =P(A)P(B) (if A J B we independent) Likelihood

- Given N independent, identically distribution (iid) samples $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$ of a random variable X
 - If X is discrete with probability mass function (pmf) $p(X|\theta)$, then the *likelihood* of \mathcal{D} is

$$L(\theta) = \prod_{n=1}^{N} p(x^{(n)}|\theta)$$

• If X is continuous with probability density function (pdf) $f(X|\theta)$, then the *likelihood* of \mathcal{D} is

$$L(\theta) = \prod_{n=1}^{N} f(x^{(n)}|\theta)$$

Log-Likelihood

- Given N independent, identically distribution (iid) samples $\mathcal{D} = \{x^{(1)}, \dots, x^{(N)}\}$ of a random variable X
 - If X is discrete with probability mass function (pmf) $p(X|\theta)$, then the log-likelihood of \mathcal{D} is

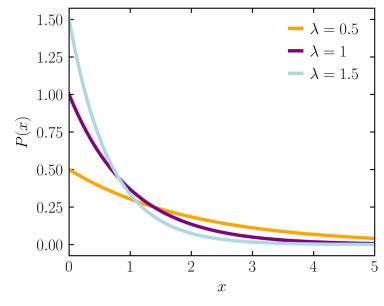
$$\ell(\theta) = \log \prod_{n=1}^{N} p(x^{(n)}|\theta) = \sum_{n=1}^{N} \log p(x^{(n)}|\theta)$$

• If X is continuous with probability density function (pdf) $f(X|\theta)$, then the log-likelihood of \mathcal{D} is

$$\ell(\theta) = \log \prod_{n=1}^{N} f(x^{(n)}|\theta) = \sum_{n=1}^{N} \log f(x^{(n)}|\theta)$$

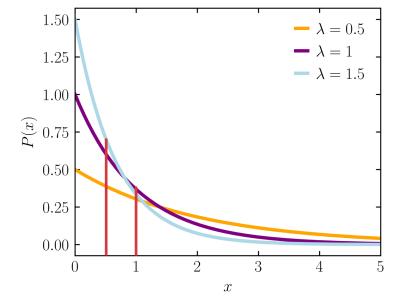
Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution



Maximum Likelihood Estimation (MLE)

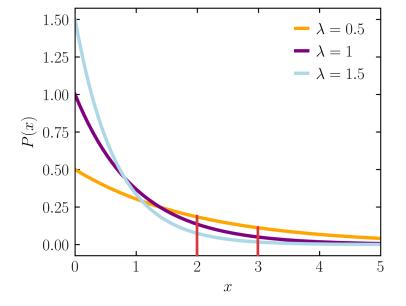
- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution



$$\begin{cases} x^{(1)} = 0.5, \\ x^{(2)} = 1 \end{cases}$$

Maximum Likelihood Estimation (MLE)

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized
- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution



$$\begin{cases} x^{(1)} = 2, \\ x^{(2)} = 3 \end{cases}$$

Exponential Distribution MLE

The pdf of the exponential distribution is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

• Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the likelihood is

$$L(\lambda) = \prod_{n=1}^{N} f(x^{(n)}|\lambda) = \prod_{n=1}^{N} \lambda e^{-\lambda x^{(n)}}$$

Exponential Distribution MLE

The pdf of the exponential distribution is

$$f(x|\lambda) = \lambda e^{-\lambda x}$$

• Given N iid samples $\{x^{(1)}, ..., x^{(N)}\}$, the log-likelihood is

$$\ell(\lambda) = \sum_{n=1}^{N} \log f(x^{(n)}|\lambda) = \sum_{n=1}^{N} \log \lambda e^{-\lambda x^{(n)}}$$

$$= \sum_{n=1}^{N} \log \lambda + \left(-\frac{\lambda}{\lambda}x^{(n)}\right)$$

$$=$$

Building a Probabilistic Classifier

- Define a decision rule
 - Given a test data point x', predict its label \hat{y} using the posterior distribution P(Y = y | x')
 - Common choice: $\hat{y} = \underset{y}{\operatorname{argmax}} P(Y = y | x')$
- Idea: model P(Y|x) as some parametric function of x

Modelling the Posterior

• Suppose we have binary labels $y \in \{0,1\}$ and D-dimensional inputs $\mathbf{x} = [1, x_1, \dots, x_D]^T \in \mathbb{R}^{D+1}$

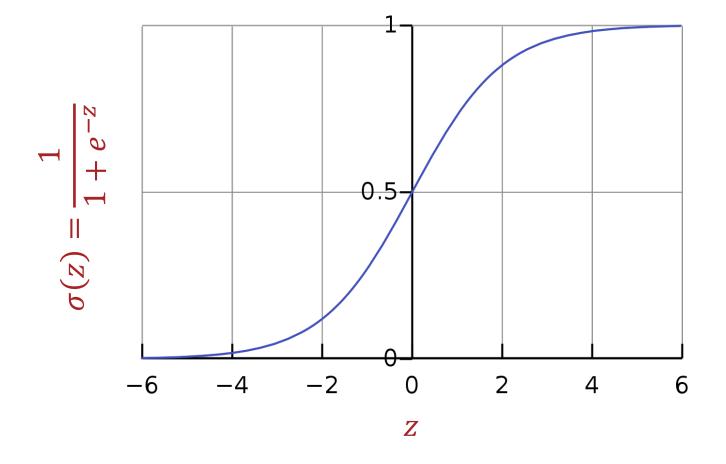
• Assume 1 Prepended to x

$$P(Y=1|X,\Theta) = \sigma(\Theta^Tx) = \frac{1}{1+\exp(-\Theta^Tx)} = \frac{\exp(\Theta^Tx)}{\exp(\Theta^Tx)+1}$$

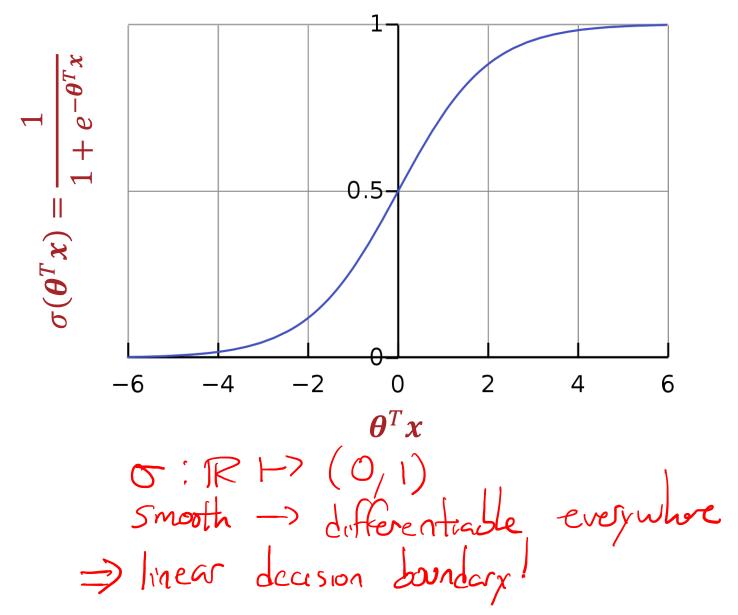
Implies
$$1.P(Y=0|_{X},\Theta)=1-P(Y=1|_{X},\Theta)=\frac{1}{\exp(\Theta^{T}x)+1}$$

2.
$$\frac{P(Y=1|x,\theta)}{P(Y=0|x,\theta)} = \exp(\Theta^T x) \Rightarrow \log_{x} \operatorname{odds} \text{ are in my inputs, } x$$

Logistic Function



Why use the Logistic Function?



$$\hat{y} = \begin{cases} 1 & \text{if } P(Y=1|x,\Theta) \ge \frac{1}{Z} \\ 0 & \text{otherwise} \end{cases}$$

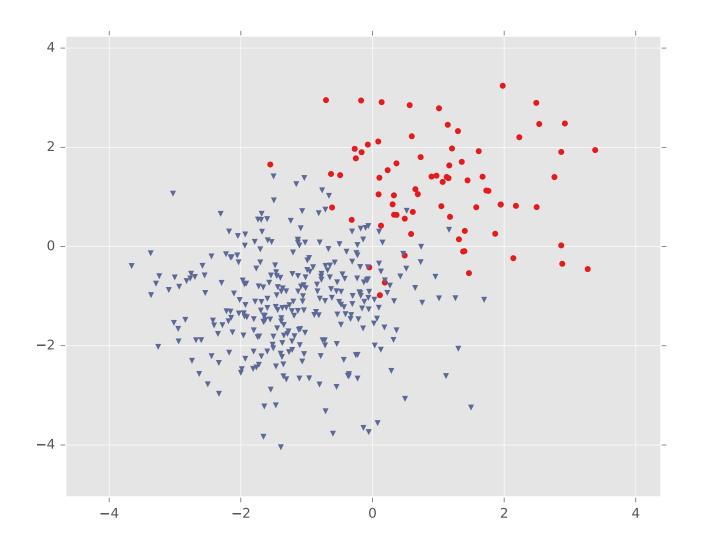
$$P(Y=1|x,\Theta) = o(OT_X) = \frac{1}{Z}$$

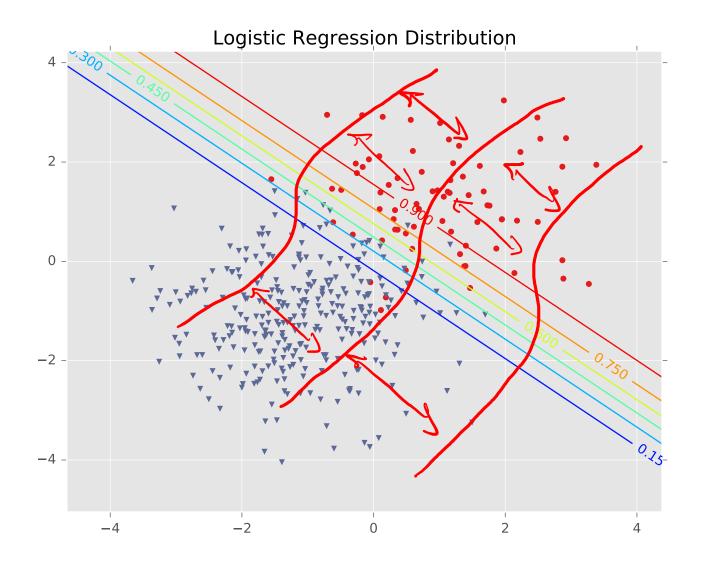
$$\Rightarrow \frac{1}{1+\exp(-OT_X)} = \frac{1}{Z}$$

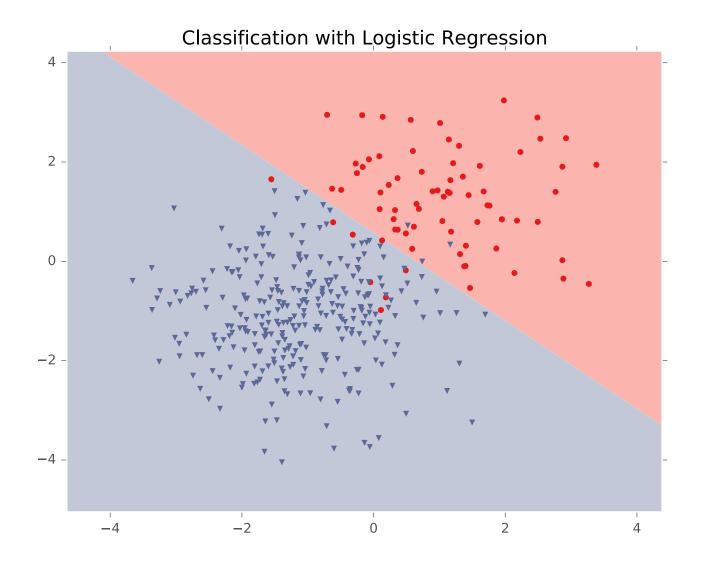
$$\Rightarrow 2 = 1+\exp(-OT_X)$$

$$\Rightarrow \log(1) = -OT_X$$

$$\Rightarrow OT_X = 0$$
by as farm propertied







= bloga + dlogc Setting the **Parameters** via Minimum Negative Conditional (log-)Likelihood **Estimation** (MCLE)

• Find θ that minimizes

Minimizing the Negative Conditional (log-)Likelihood

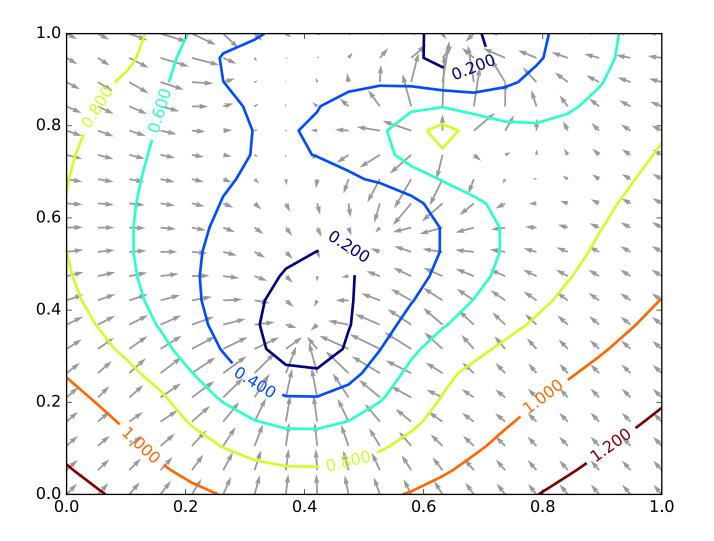
$$J(\theta) = -\frac{1}{N} \sum_{n=1}^{N} y^{(n)} \theta^{T} x^{(n)} - \log \left(1 + \exp(\theta^{T} x^{(n)})\right)$$

$$\nabla_{\theta} J(\theta) = -\frac{1}{N} \sum_{n=1}^{N} \nabla_{\theta} \left(\gamma^{(n)} \theta^{T} x^{(n)} - \log \left(1 + \exp(\theta^{T} x^{(n)})\right) \right)$$

$$= -\frac{1}{N} \sum_{n=1}^{N} \left(\gamma^{(n)} x^{(n)} - \frac{\exp(\theta^{T} x^{(n)})}{1 + \exp(\theta^{T} x^{(n)})} x^{(n)} \right)$$

$$= \frac{1}{N} \sum_{n=1}^{N} \chi^{(n)} \left(\gamma^{(n)} x^{(n)} - \frac{\exp(\theta^{T} x^{(n)})}{1 + \exp(\theta^{T} x^{(n)})} x^{(n)} \right)$$

Recall: Gradient Descent



Gradient Descent

- Input: training dataset $\mathcal{D} = \left\{ \left(x^{(i)}, y^{(i)} \right) \right\}_{i=1}^N$ and step size γ
- 1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
 - a. Compute the gradient:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)} (P(Y = 1 | \boldsymbol{x}^{(i)}, \boldsymbol{\theta}^{(t)}) - \boldsymbol{y}^{(i)})$$

- b. Update $\boldsymbol{\theta}$: $\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}^{(t)})$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\boldsymbol{\theta}^{(t)}$

Poll Question 1:

What is the computational cost of one iteration of gradient descent for logistic regression?

- A. O(1) (TOXIC)
- B. O(N) C. O(D)

- Input: training dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$ and step size γ
- Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set t=0
- While TERMINATION CRITERION is not satisfied
 - a. Compute the gradient:

$$\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)} (P(Y = 1 | \boldsymbol{x}^{(i)}, \boldsymbol{\theta}^{(t)}) - \boldsymbol{y}^{(i)})$$
b. Update $\boldsymbol{\theta} : \boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \gamma \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}^{(t)})$

- c. Increment $t: t \leftarrow t+1$
- Output: $\boldsymbol{\theta}^{(t)}$

Gradient Descent

- Input: training dataset $\mathcal{D} = \left\{ \left(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)} \right) \right\}_{i=1}^N$ and step size γ
- 1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set t=0
- While TERMINATION CRITERION is not satisfied
 - a. Compute the gradient:

$$O(ND) \left\{ \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}^{(t)}) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{x}^{(i)} \left(P(Y = 1 | \boldsymbol{x}^{(i)}, \boldsymbol{\theta}^{(t)}) - \boldsymbol{y}^{(i)} \right) \right\}$$

- b. Update $\boldsymbol{\theta}$: $\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}^{(t)})$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\boldsymbol{\theta}^{(t)}$

Stochastic Gradient Descent (SGD)

- Input: training dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$ and step size γ
- 1. Initialize $\theta^{(0)}$ to all zeros and set t=0
- While TERMINATION CRITERION is not satisfied
 - a. Randomly sample a data point from \mathcal{D} , $(x^{(i)}, y^{(i)})$
 - b. Compute the pointwise gradient:

$$\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta}^{(t)}) = \boldsymbol{x}^{(i)}(P(Y=1|\boldsymbol{x}^{(i)},\boldsymbol{\theta}^{(t)}) - \boldsymbol{y}^{(i)})$$

- c. Update $\boldsymbol{\theta}$: $\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma \nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta}^{(t)})$
- d. Increment $t: t \leftarrow t + 1$
- Output: $\boldsymbol{\theta}^{(t)}$

• If the example is sampled uniformly at random, the expected value of the pointwise gradient is the same as the full gradient!

Stochastic Gradient Descent (SGD)

• In practice, the data set is randomly shuffled then looped through so that each data point is used equally often

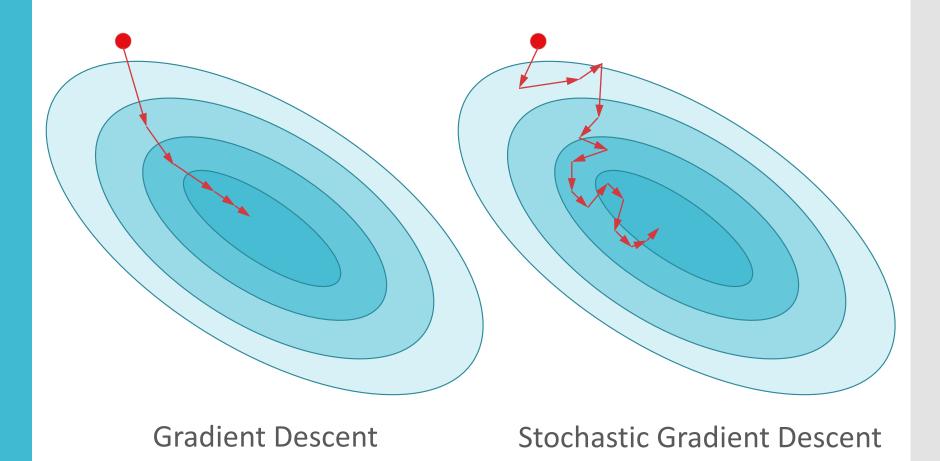
Stochastic Gradient Descent (SGD)

- Input: training dataset $\mathcal{D} = \left\{ \left(x^{(i)}, y^{(i)} \right) \right\}_{i=1}^N$ and step size γ
- 1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
- \nearrow a. For $i \in \text{shuffle}(\{1, ..., N\})$
 - i. Compute the pointwise gradient:

$$\nabla_{\boldsymbol{\theta}} J^{(i)}(\boldsymbol{\theta}^{(t)}) = \boldsymbol{x}^{(i)}(P(Y=1|\boldsymbol{x}^{(i)},\boldsymbol{\theta}^{(t)}) - \boldsymbol{y}^{(i)})$$

- ii. Update $\boldsymbol{\theta}$: $\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma \nabla_{\boldsymbol{\theta}} J^{(i)} (\boldsymbol{\theta}^{(t)})$
- iii. Increment $t: t \leftarrow t + 1$
- Output: $\boldsymbol{\theta}^{(t)}$

Stochastic
Gradient
Descent vs.
Gradient
Descent



Stochastic Gradient Descent vs. Gradient Descent

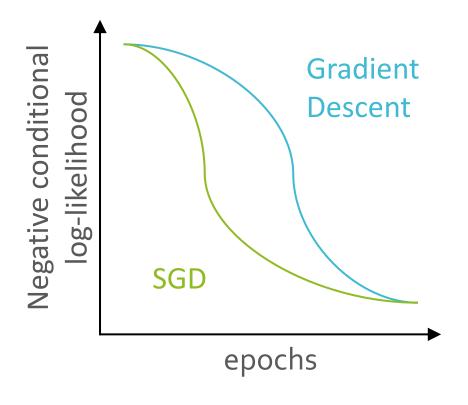
- An *epoch* is a single pass through the entire training dataset
 - Gradient descent updates the parameters once per epoch
 - SGD updates the parameters N times per epoch
- Theoretical comparison:
 - Define convergence to be when $J(\boldsymbol{\theta^{(t)}}) J(\boldsymbol{\theta^*}) < \epsilon$

Method	Steps to Convergence	Computation per Step
Gradient descent	$O(\log 1/\epsilon)$	O(ND)
SGD	$O(1/\epsilon)$	O(D)

(with high probability under certain assumptions)

Stochastic Gradient Descent vs. Gradient Descent

- An *epoch* is a single pass through the entire training dataset
 - Gradient descent updates the parameters once per epoch
 - SGD updates the parameters *N* times per epoch



Empirically, SGD reduces the negative conditional log-likelihood much faster than gradient descent

Optimization for ML Learning Objectives

You should be able to...

- Apply gradient descent to optimize a function
- Apply stochastic gradient descent (SGD) to optimize a function
- Apply knowledge of zero derivatives to identify a closed-form solution (if one exists) to an optimization problem
- Distinguish between convex, concave, and nonconvex functions
- Obtain the gradient (and Hessian) of a (twice) differentiable function

Logistic Regression Learning Objectives

You should be able to...

- Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of a probabilistic model
- Given a discriminative probabilistic model, derive the conditional log-likelihood, its gradient, and the corresponding Bayes Classifier
- Explain the practical reasons why we work with the log of the likelihood
- Implement logistic regression for binary (and multiclass) classification
- Prove that the decision boundary of binary logistic regression is linear