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Decision Trees and Beyond

. Decision Tree Classification with Continuous Attributes

Given the dataset D; = {x® y®1N where x) € R?,y® € {Yellow, Purple, Green} as
shown in Fig. 1, we wish to learn a decision tree for classifying such points. Provided
with a possible tree structure in Fig. 1, what values of «, § and leaf node predictions
could we use to perfectly classify the points? Now, draw the associated decision bound-
aries on the scatter plot.
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Figure 1: Classification of 2D points, with Decision Tree to fill in
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2. Decision Tree Regression with Continuous Attributes
Now instead if we had dataset Dy = {x ¢y} where x(V € R? y® € R as shown in
Fig. 2, we wish to learn a decision tree for regression on such points. Using the same
tree structure and values of «, 3 as before, what values should each leaf node predict to
minimize the training Mean Squared Error (MSE) of our regression? Assume each leaf
node just predicts a constant.
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Figure 2: Regression on 2D points, with Decision Tree to fill in
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3. Choosing a Tree: What might happen if we increased the max-depth of the tree?
When predicting on unseen data, would we prefer the depth-2 tree above or a very deep
tree?
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2 kNN

2.1 A Classification Example

Using the figure below, what would you categorize the green circle as with k = 37 k = 57
k=47

Figure 3: An example of k-NN on a small dataset; image source from Wikipedia

2.2 kNN for Regression

You want to predict a continuous variable Y with a continuous variable X. Having just
learned k-NN, you are super eager to try it out for regression. Given the data below, draw
the regression lines (what k-NN would predict Y to be for every X value if it was trained for
the given data) for k-NN regression with & = 1, weighted k = 2, and unweighted k = 2. For
weighted k& = 2, take the weighted average of the two nearest points. For unweighted k£ = 2,

take the unweighted average of the two nearest points. (Note: the points are equidistant along
the x-axis)


https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm##/media/File:KnnClassification.svg
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(b) weighted k = 2

(c) unweighted k = 2
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2.3 kNN Decision Boundary and Cross Validation
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Draw the decision boundaries for the above training dataset given using kNN algorithm con-
sidering k=1.

Suppose we use 3-fold Cross Validation for this kNN, with k=1. The folds are [(1,1),(3,0)],
[(2,4),(6,6)], and [(4,5),(5,2)] What is the cross-validation error?
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3 Perceptron

3.1 Perceptron Mistake Bound Guarantee

If a dataset has margin « and all points inside a ball of radius R, then the perceptron makes
less than or equal to (R/~)? mistakes.

Figure 5: Perceptron Mistake Bound Setup

3.2 Definitions
Margin:

e The margin of example z wrt a linear separator w is the (absolute) distance from z to
the plane w - x = 0.

e The margin -, of a set of examples S wrt a linear separator w is the smallest margin
over points x € S.

e The margin « of a set of examples .S is the maximum =y, over all linear separators w.

Linear Separability: For a binary classification problem, a set of examples S is linearly
separable if there exists a linear decision boundary that can separate the points.

Update Rule: When the k-th mistake is made on data point x(¥, the parameter update is

oU+D) — g(k) | (i) (0)

We say the (batch) perceptron algorithm has converged when it stops making mistakes on the
training data.
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3.3 Perceptron Mistake Bound: Example
Given dataset D = {(z@, y@)}N, suppose:
1. Finite size inputs: ||| < R
2. Linearly separable data: 30* and v > 0 s.t. ||0*]| = 1 and y(0* - ) > ~, Vi
Then, the number of mistakes & made by the perceptron algorithm on D is bounded by (R/~)%.

The following table shows a dataset of linearly separable datapoints.

[ 2 7]
1 -1 1
0o 2 -1
4 0 1

Assuming that the linear separator with the largest margin is given by:

67 {wl} =0, where 6 = [_1}

T2 1

Calculate the theoretical mistake bound for the perceptron.
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3.4 Theorem: Block, Novikoff
Given dataset D = {(z@, y@)}N, suppose:
1. Finite size inputs: ||| < R
2. Linearly separable data: 30* and v > 0 s.t. ||0*]| = 1 and y(0* - ) > ~, Vi
Then, the number of mistakes & made by the perceptron algorithm on D is bounded by (R/~)%.

Proof:
Part 1: For some A, Ak < ||0(k+1)||

"+ . 9* = (W) + 42 . 9% Perceptron algorithm update
=0 . 0" +yD (. 2 ))
> 0% . 9" + ~, by assumption
— 0%**Y . 9* > k~, by induction on k since 81 =0

— [|0%D|| > k~, since ||w|| x |[u]| > w - u and ||| = 1

Part 2: For some B, ||0%Y|| < BVEk
10112 = |0W) + 42| |2 Perceptron algorithm update
= 691 + (9Pl + 250 (0 - 219)
< [|0M1% + (yD)?[|2D| %, since k™ mistake = yP(OF . 2D) <0
= ||0W |2 + R?, since (y)?||zD|?> = ||=z?||> < R?, by assumption and (y)% = 1
— ||@%*V]|? < kR?, by induction on k since (§@)% =0
= [|0%V] < VER

Part 3: Combine the bounds
ky < [16%Y]] < VER

= k< (R/7)’
e Perceptron will not converge.

e However, we can achieve a similar bound on the number of mistakes made in one pass
(Freund, Schapire)

Main Takeaway:
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4 Linear Regression

4.1 Defining the Objective Function
1. What does an objective function J(#) do?

2. What are some examples?

3. What are some desirable properties of this function?
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4.2 Solving Linear Regression using Gradient Descent

O @ 3B @ L6

21 1.0 20 30 40 5.0
2 20 50 -6.0 -8.0 -11.0
y 20 40 70 80 110

Now, we want to implement the gradient descent method.

Assuming that v = 0.1 and 6 has been initialized to [0,0,0]”, perform one iteration
of gradient descent:

1. What is the gradient of the objective function J(#) with respect to 6: V,J(6)?

2. How do we carry out the update rule?

3. How could we pick which value of v to use if we weren’t given the step size?
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5 Summary

5.1 Decision Tree

Pros Cons Inductive bias When to use
e Hasy to e Tree may grow very e Prefer the e Most cases.
understand and large and tend to smallest tree Random forests are
interpret overfit. consistent w/ widely used in
e Very fast for e Greedy behaviour the training industry.
inference may be sub-optimal data (i.e. 0 error
rate)
5.2 kNN
Pros Cons Inductive bias When to use
e No training of e Slow for large e Similar (i.e. e Small dataset
parameters datasets nearby) points e Small
e Can apply to e Must select good k should have dimensionality

multi-class
problems and
use different
metrics

e Imbalanced data
and outliers can
lead to misleading
results

similar labels
e All label

dimensions are

created equal

e Data is clean (no
missing data)

e Inductive bias is
strong for dataset

5.3 Linear regression

understand and
works for online
learning.

e Provable
guarantees on
mistakes made
for linearly
separable data.

finding best
(maximum-margin)
hyperplane.

e Qutput is sensitive
to noise in the
training data.

classes are
separable in the
feature space by
a line.

Pros Cons Inductive bias When to use
e Fasy to e Sensitive to noise e The true e Most cases (can be
understand and (other than relationship extended by adding
train zero-mean between the non-linear feature
e Closed form Gaussian noise) inputs and transformations)
solution output is linear.
5.4 Perceptron
Pros Cons Inductive bias When to use
e FEasy to e No guarantees on e The binary e Not used much

anymore, but
variants (kernel
perceptron,
structured
perceptron) may
have more success.
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