RECITATION 6 LEARNING THEORY

10-301/10-601: Introduction to Machine Learning 03/15/2024

1 Learning Theory

1.1 PAC Learning

Some Important Definitions

- 1. Basic notation:
 - Probability distribution (unknown): $X \sim p^*$
 - True function (unknown): $c^*: X \to Y$
 - Hypothesis space \mathcal{H} and hypothesis $h \in \mathcal{H} : X \to Y$
- 2. True Error (expected risk)

$$R(h) = P_{x \sim p^*(x)}(c^*(x) \neq h(x))$$

3. Train Error (empirical risk)

$$\hat{R}(h) = P_{x \sim \mathcal{D}}(c^*(x) \neq h(x))$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(c^*(x^{(i)}) \neq h(x^{(i)}))$$

$$= \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}(y^{(i)} \neq h(x^{(i)}))$$

The **PAC criterion** is that we produce a high accuracy hypothesis with high probability. More formally,

$$P(\forall h \in \mathcal{H}, \underline{\hspace{1cm}} \leq \underline{\hspace{1cm}}) \geq \underline{\hspace{1cm}}$$

Sample Complexity is the minimum number of training examples N such that the PAC criterion is satisfied for a given ϵ and δ

Sample Complexity for 4 Cases: See Figure 1. Note that

- Realizable means $c^* \in \mathcal{H}$
- Agnostic means c^* may or may not be in \mathcal{H}

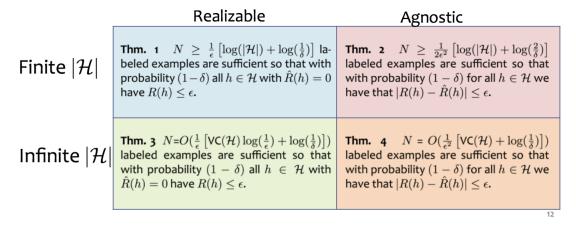


Figure 1: Sample Complexity for 4 Cases

The VC dimension of a hypothesis space \mathcal{H} , denoted VC(\mathcal{H}) or $d_{VC}(\mathcal{H})$, is the maximum number of points such that there exists at least one arrangement of these points and a hypothesis $h \in \mathcal{H}$ that is consistent with any labelling of this arrangement of points.

To show that $VC(\mathcal{H}) = n$:

•

. .

Questions

- 1. For the following examples, write whether or not there exists a dataset with the given properties that can be shattered by a linear classifier.
 - 2 points in 1D
 - 3 points in 1D
 - 3 points in 2D
 - 4 points in 2D

How many points can a linear boundary (with bias) classify exactly for d-Dimensions?

- 2. Consider a rectangle classifier (i.e. the classifier is uniquely defined 3 points $x_1, x_2, x_3 \in \mathbb{R}^2$ that specify 3 out of the four corners), where all points within the rectangle must equal 1 and all points outside must equal -1
 - (a) Which of the configurations of 4 points in figure 2 can a rectangle shatter?

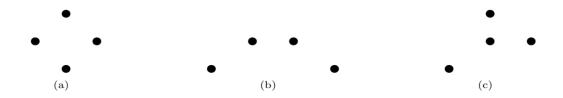


Figure 2

(b) What about the configurations of 5 points in figure 3?

Figure 3

3. In the below table, state in which case the sample complexity of the hypothesis falls under.

Problem	Hypothesis Space	Realizable/	Finite/ Infi-
		Agnostic	nite
A binary classification	Set of all linear classifiers		
problem, where the data			
points are linearly separa-			
ble			
Predict whether it will	A decision tree with max		
rain or not based on	depth 2, where each node		
the following dataset:	can only split on one fea-		
Temp Humid Wind Rain?	ture, and the features can-		
High Yes Yes Yes	not be repeated along a		
Low Yes No No	branch		
Low No Yes Yes			
High No No Yes			
Classifying a set of real-	Set of all linear classifiers		
valued points where the un-			
derlying data distribution is			
unknown			
A binary classification	K-nearest neighbour classi-		
problem on a given set of	fier with Euclidean distance		
data points, where the data	as distance metric		
is not linearly separable			

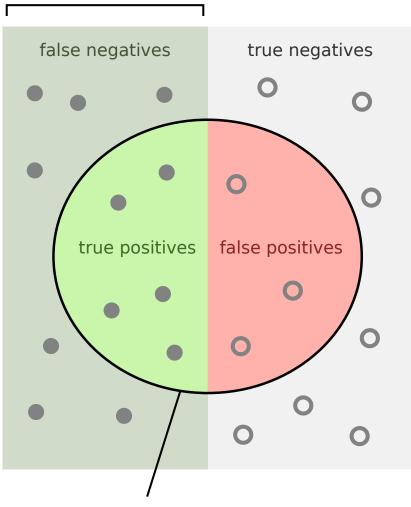
4. Let $x_1, x_2, ..., x_n$ be n random variables that represent binary literals ($x \in \{0, 1\}^n$). Let the hypothesis class \mathcal{H}_n denote the conjunctions of no more than n literals in which each variable occurs at most once. Assume that $c^* \in \mathcal{H}_n$.

Example: For n = 4, $(x_1 \land x_2 \land x_4)$, $(x_1 \land \neg x_3) \in \mathcal{H}_4$

Find the minimum number of examples required to learn $h \in \mathcal{H}_{10}$ which guarantees at least 99% accuracy with at least 98% confidence.

2 Precision and Recall

relevant elements



retrieved elements

How many retrieved items are relevant?

How many relevant items are retrieved?

The following chart is known as a *confusion matrix* and helps formalize the concepts displayed above. There are 4 categories in the chart:

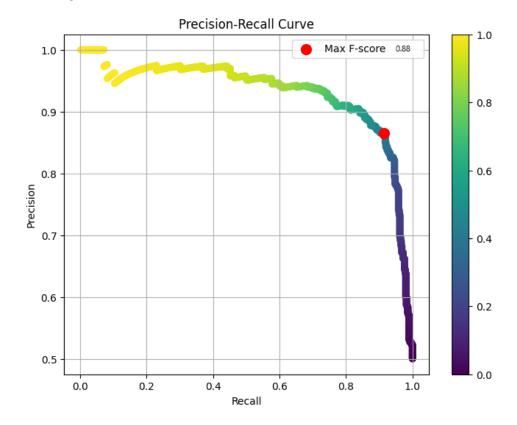
- True positives: items that are predicted positive and have actual label positive
- False positives: items that are predicted positive but have actual label negative
- True negatives: items that are predicted negative and have actual label negative
- False negatives: items that are predicted negative but have actual label positive

Actual Values

		Positive (1)	Negative (0)
Predicted Values	Positive (1)	TP	FP
Predicte	Negative (0)	FN	TN

- Type I error: occurs when we predict a false positive (erroneously predict a positive label when the true label is negative)
- Type II error: occurs when we predict a false negative (erroneously predict a negative label when the true label is positive)
- 1. What is the formula for precision in terms of the values in the confusion matrix? What about recall?
- 2. The base rate is the proportion of items that have true label positive. What is the formula for the base rate in terms of the confusion matrix?
- 3. Suppose we predict every item to be positive. What is the precision? What is the recall?
- 4. The F_1 score is defined as the harmonic mean of the precision and recall: $F_1 = \frac{2}{1/P+1/R}$. The following image shows an example curve of precision and recall for a classifier when

varying the threshold between the positive and negative classes. The point on the curve with highest F_1 score is marked.



Draw an example precision-recall curve for a "better" classifier than the one shown. Mark the point with the optimal F_1 score.

Draw an example precision-recall curve for a "worse" classifier than the one shown. Mark the point with the optimal F_1 score.