
HOMEWORK 7: DEEP LEARNING
10-301/10-601 Introduction to Machine Learning (Spring 2024)

http://www.cs.cmu.edu/˜mgormley/courses/10601/
OUT: Thusrday, March 28th

DUE: Monday, April 8th
TAs: Sebastian, Bhargav, Rohan, Kevin, Varsha, Haohui, Neural the Narwhal

Summary In this assignment you will implement an RNN and performance evaluation. You will begin
by going through some conceptual questions about CNNs, RNNs, and transformers for intuition for deep
learning models and then use that intuition to build your own models.

START HERE: Instructions
• Collaboration Policy: Please read the collaboration policy here: http://www.cs.cmu.edu/
˜mgormley/courses/10601/syllabus.html

• Late Submission Policy: See the late submission policy here: http://www.cs.cmu.edu/

˜mgormley/courses/10601/syllabus.html

• Submitting your work: You will use Gradescope to submit answers to all questions and code. Please
follow instructions at the end of this PDF to correctly submit all your code to Gradescope.

– Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, please use the provided template. Submissions can be handwritten onto the template, but
should be labeled and clearly legible. If your writing is not legible, you will not be awarded
marks. Alternatively, submissions can be written in LATEX. Each derivation/proof should be
completed in the boxes provided. You are responsible for ensuring that your submission contains
exactly the same number of pages and the same alignment as our PDF template. If you do not
follow the template, your assignment may not be graded correctly by our AI assisted grader and
there will be a 2% penalty (e.g., if the homework is out of 100 points, 2 points will be deducted
from your final score).

– Programming: You will submit your code for programming questions on the homework to
Gradescope. After uploading your code, our grading scripts will autograde your assignment by
running your program on a virtual machine (VM). You are only permitted to use the Python Stan-
dard Library modules and numpy. Ensure that the version number of your programming lan-
guage environment (i.e. Python 3.9.12) and versions of permitted libraries (i.e. numpy 1.23.0)
match those used on Gradescope. You have 10 free Gradescope programming submissions, after
which you will begin to lose points from your total programming score. We recommend debug-
ging your implementation on your local machine (or the Linux servers) and making sure your
code is running correctly first before submitting your code to Gradescope.

• Materials: The data and reference output that you will need in order to complete this assignment is
posted along with the writeup and template on the course website.

1

http://www.cs.cmu.edu/~mgormley/courses/10601/
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
https://gradescope.com
https://docs.python.org/3/library/
https://docs.python.org/3/library/

Instructions for Specific Problem Types
For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

Matt Gormley

⃝ Marie Curie

⃝ Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in the new answer:

Select One: Who taught this course?

Henry Chai

⃝ Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are instructors for this course?

■ Matt Gormley

■ Henry Chai

■ Hoda Heidari

2 I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and bubble in the new
answer(s):

Select all that apply: Which are the instructors for this course?

■ Matt Gormley

■ Henry Chai

■ Hoda Heidari

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully included in the
given space. You may cross out answers or parts of answers, but the final answer must still be within the
given space.

Fill in the blank: What is the course number?

10-601 10-��SS6301

Page 2

Written Questions (48 points)
1 LATEX Bonus Point and Template Alignment (1 points)

1. (1 point) Select one: Did you use LATEX for the entire written portion of this homework?

⃝ Yes

⃝ No

2. (0 points) Select one: I have ensured that my final submission is aligned with the original template
given to me in the handout file and that I haven’t deleted or resized any items or made any other modi-
fications which will result in a misaligned template. I understand that incorrectly responding yes to this
question will result in a penalty equivalent to 2% of the points on this assignment.
Note: Failing to answer this question will not exempt you from the 2% misalignment penalty.

⃝ Yes

2 Convolutional Neural Network (14 points)
1. In this problem, consider a convolutional layer from a standard implementation of a CNN as described

in lecture, without any bias term.

(a) (1 point) Let an imageX (6×6) be convolved with a filter F (3×3) using no padding and a stride
of 1 to produce an output Y (4× 4). What is value of j in the output Y ?

Your Answer

(b) (1 point) Suppose you instead had an input feature map (or image) of size 6× 4 (height × width)
and a filter of size 2 × 2, using no padding and a stride of 2, what would be the resulting output
size? Write your answer in the format: height × width.

Your Answer

Page 3

2. Parameter sharing is a very important concept for CNN because it drastically reduces the complexity of
the learning problem and consequently that of the model required to tackle it. The following questions
will deal with parameter sharing. Assume that there is no bias term in our convolutional layer.

(a) (1 point) Select all that apply: Which of the following are parameters of a convolutional layer?

2 Stride size

2 Padding size

2 Input size

2 Filter size

2 Weights in the filter

2 None of the above

(b) (1 point) Select all that apply: Which of the following are hyperparameters of a convolutional
layer?

2 Stride size

2 Padding size

2 Input size

2 Filter size

2 Weights in the filter

2 None of the above

(c) (1 point) Suppose for the convolutional layer, we are given grayscale images of size 22× 22. Us-
ing one single 4 × 4 filter with a stride of 2, no padding and a single output channel, what is the
number of parameters you are learning in this layer?

Your Answer

(d) (1 point) Now suppose we do not do parameter sharing. That is, each output pixel of this layer is
computed by a separate 4 × 4 filter. Again we use a stride of 2, no padding and a single output
channel. What is the number of parameters you are learning in this layer?

Your Answer

Page 4

(e) (1 point) Now suppose you are given a 40× 40 colored image, which consists of 3 channels, each
representing the intensity of one primary color (so your input is a 40× 40× 3 tensor). Once again,
you attempt to produce an output map without parameter sharing, using a unique 4 × 4 filter per
output pixel, with a stride of 2, no padding and a single output channel (so the number of channels
in the filter are the same as the number of channels in the input image). What is the number of
parameters you are learning in this layer?

Your Answer

(f) (1 point) In one concise sentence, describe a reason why parameter sharing is a good idea for a
convolutional layer applied to image data, besides the reduction in number of learned parameters.

Your Answer

3. Neural the Narwhal was expecting to implement a CNN for Homework 5, but he is disappointed that he
only got to write a simple fully-connected neural network.

(a) (2 points) Neural decides to implement a CNN himself and comes up with the following naive
implementation:

image X has shape (H_in, W_in), and filter F has shape (K, K)
the output Y has shape (H_out, W_out)
Y = np.zeros((H_out, W_out))
for r in range(H_out):

for c in range(W_out):
for i in range(K):

for j in range(K):
Y[r, c] += X[blank] * F[i, j]

What should be in the blank above so that the output Y is correct? Assume that H out and W out
are pre-computed correctly, the filter has a stride of 1 and there’s no padding.

Your Answer

Page 5

(b) (2 points) Neural now wants to implement the backpropagation part of the network but is stuck.
He decides to go to office hours to ask for help. One TA tells him that a CNN can actually be
implemented using matrix multiplication. He receives the following 1D convolution example:

Suppose you have an input vector x = [x1, x2, x3, x4, x5]
T and a 1D convolution filter

w = [w1, w2, w3]
T . Then if the output is y = [y1, y2, y3]

T , y1 = w1x1 + w2x2 + w3x3,
y2 = · · · , y3 = · · · . If you look at this closely, this is equivalent to

y1y2
y3

 = A


x1
x2
x3
x4
x5


where the matrix A is given as · · ·

What is matrix A for this x, y and w? Write only the final answer. Your work will not be graded.

Your Answer

(c) (2 points) Neural wonders why the TA told him about matrix multiplication when he wanted to
write the backpropagation part. Then he notices that the gradient is extremely simple with this
version of CNN. Explain in one concise sentence (or one short mathematical expression) how you
can compute ∂y

∂x once you obtain A for some arbitrary input x, filter w, and the corresponding 1D
convolution output y (so A is obtained following the same procedure as in part (b), but x, y and w
can be different from the example). Write only the final answer. Your work will not be graded.

Your Answer

Page 6

3 Recurrent Neural Network (15 points)
1. Consider the following simple RNN architecture:

ŷ1 ŷ2 ŷ3

h0 h1 h2 h3

x1 x2 x3

where we have inputs xt, hidden states ht, and outputs ŷt for each timestep t. The dimensions of these
and the weights of the model are given below. On the right, we show the computation, performed by
the RNN to obtain the outputs ŷt and subsequently the loss J for a single input x1:3.

xt ∈ R3 Whx ∈ R4×3

ht ∈ R4 Why ∈ R2×4

yt, ŷt ∈ R2 Whh ∈ R4×4

zt = Whhht−1 +Whxxt

ht = ψ(zt)

ot = Whyht

ŷt = soft(ot)

Jt = −
2∑

i=1

yt,i log(ŷt,i)

J =
3∑

t=1

Jt

Above yt is a one-hot vector representing the label for the tth timestep, soft is the softmax activation,
ψ is the identity activation (i.e. no activation), J is the cross entropy loss computed by the function
CE(). Note here that we assume that we have no intercept term.

Page 7

(a) (4 points) You will now construct the unrolled computational graph for the given model. Use input
sequence x, label y, and the RNN equations presented above to complete the graph by filling in the
solution boxes for the corresponding blanks.

J =
∑3

t=1 Jt

Why

y2 y3

y1 J1 = CE(ŷ1,y1) part (c) J3 = CE(ŷ3,y3)

ŷ1 = soft(o1) ŷ2 = soft(o2) ŷ3 = soft(o3)

part (a) o2 = Lin(Why,h2) o3 = Lin(Why,h3)

h1 = ψ(z1) part (b) h3 = ψ(z3)

h0 z1 = Lin(Whh,Whx,h0,x1) z2 = Lin(Whh,Whx,h1,x2) part (d)

x1 x2 x3

Whx Whh

(a) (b)

(c) (d)

(b) Now you will derive the steps of the backpropagation algorithm that lead to the computation of
dJ

dWhh
. For all parts of this question, please write your answer in terms of Whh, Why, y, ŷ, h,

and any additional terms specified in the question (note: this does not mean that every term listed
shows up in every answer, but rather that you should simplify terms into these as much as possible
when you can).

Page 8

i. (2 points) What is gJt =
∂J
∂Jt

? Write your solution in the first box, and show your work in the
second.

∂J
∂Jt

Work

ii. (2 points) What is got =
∂J
∂ot

for an arbitrary t ∈ [1, 3]? Write your solution in the first box,
and show your work in the second. Write your answer in terms of ŷt, yt, and gJt . (Hint: Think
about how you can write Jt in terms of ot, then use the chain rule. You may want to use a
result from homework 5 to help here.)

∂J
∂ot

Work

Page 9

iii. (2 points) What is ghi
= ∂J

∂hi
for an arbitrary i ∈ [1, 3]? Write your solution in terms of got ,

Whh, Why in the first box, and show your work in the second. (Hint: Find ∂ot
∂hi

, then use the
chain rule. Also, for a given i, think about which ot’s hi affects)

∂J
∂hi

Work

iv. (3 points) What is gWhh
= ∂J

∂Whh
? Write your solution in terms of ghi

and h in the first box,
and show your work in the second. (Hint: Whh is in every timestep, so you need to consider
that in the derivative.)

∂J
∂Whh

Work

Page 10

2. (2 points) Select all that apply: Which of the following are true about RNN and RNN-LM?

2 An RNN cannot process sequential data, whereas an RNN-LM is designed for sequential data
processing such as in natural language processing.

2 An RNN-LM is only exclusively used as an encoder, which can process sequential data and
encode it into a fixed-size state vector.

2 An RNN-LM includes additional layers and structures specifically designed to predict the
next token in a sequence, making it more suited for tasks like text generation than a standard
RNN.

2 The RNN-LM is trained to maximize the probability of a sequence of tokens, given a previous
sequence, which is not a typical training objective of a standard RNN.

2 None of the above.

Page 11

4 Transformers and AutoDiff (5 points)

1. (1 point) Select one: This is a code snippet from lecture 18 slide 16. In the context of the method
apply fwd() inside the Module class, what is the primary role of the tape.push(self) com-
mand that pushes the module onto the tape?

It records the current module onto the stack along with its parameters and tensors to ensure
that the output tensor is saved for the backward pass.

It pushes the current computation’s gradient onto the stack for immediate use in the forward
pass.

It duplicates the module to allow for parallel computations in subsequent layers of the neural
network.

It activates the module for the forward pass, making it the only active computation in the
network.

Page 12

2. (2 points) True or False: We can replace a stack with a queue in Module-based AutoDiff. Explain
your reasoning in no more than 2 sentences in the box below.

True

False

Your Answer

3. Consider a Transformer model employing a multi-headed self-attention mechanism. Suppose the input
consists of a sequence of T tokens, each token represented by a dmodel-dimensional embedding vector.
This model utilizes H attention heads. During the attention process, each head generates keys, queries,
and values from the input embeddings. The dimensionality of the key and query vectors is dk for each
head, and the attention function produces an output vector of dimension dv for each token and head.

(a) (1 point) Which of the following represents the dimension of the key tensor for a single attention
head?

T × dv

H × dk × dmodel

T × dk

T × dmodel × dk

(b) (1 point) Which of the following represents the dimension of the output tensor of the multi-headed
attention before any final linear transformation?

T ×H × dk

T ×H × dv

T × dmodel

H × dk × dv

Page 13

5 Empirical Questions (13 points)
The following questions should be completed as you work through the programming component of
this assignment. Please ensure that all plots are computer-generated. For all the questions be-
low, unless otherwise specified, set embedding dim and hidden dim to be 128. Run on the
en.{train/val} 40.twocol.oov files in the handout.

1. (4 points) Create a single plot for this question after running for 15 epochs. The y-axis should show
the F1 score (as a decimal) and the x-axis should show the number of epochs. The graph should have 4
total lines showing the train and validation F1 scores of two settings: using ReLU activation and using
Tanh activation.

Your Answer

2. (4 points) Create a single plot for this question after running for 5 epochs. The y-axis should show the
F1 score (as a decimal) and the x-axis should show the number of epochs. The graph should have 6
total lines showing the train and validation F1 scores of three settings: equal embedding and hidden
dimensions of 64, 128 and 512.

Your Answer

Page 14

3. (5 points) In a maximum of 5 sentences, explain the results of the above experiments. In particular, do
the training and validation F1 curves look the same, or different? How do the hyperparameters affect
performance?

Your Answer

Page 15

6 Collaboration Questions
After you have completed all other components of this assignment, report your answers to these questions
regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details.

Your Answer

Page 16

http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html

7 Programming (55 points)
In this section, you will implement a Recurrent Neural Network using only PyTorch primitives. You will
write a custom DataLoader to read in the text data. You will even implement a custom activation layer
functions without using built-in PyTorch functions like nn.

7.1 The Task
Named entity recognition (NER) is the task of classifying named entities, typically proper nouns, into pre-
defined categories, such as person, location, or organization. Consider the example sequence below, where
each word is appended with a tab and then its tag:

‘‘ O
Rhinestone B-ORG
Cowboy I-ORG
’’ O
(O
Larry B-PER
Weiss I-PER
) O
- O
3:15 O

Rhinestone and Cowboy are labeled as an organization (ORG), while Larry and Weiss is labeled as a
person (PER). Words that are not named entities are assigned the O tag. The B- prefix indicates that a word
is the beginning of an entity, while the I- prefix indicates that the word is inside the entity.

7.2 The Dataset
CoNLL 2003 is a dataset comprised of various Reuters news stories between 1996 and 1997. It is designed
for English and German Named Entity Recognition (NER) and Token Classification tasks. The CoNLL
dataset provides labelled entity data in English with approximately 15K training examples, 3.5K validation
examples, and 3.6K test examples. The German dataset contains 12.7K training examples, 3K validation
samples, and 3.2K test examples. In this assignment we will strictly be using the English dataset.

7.3 File Formats
The contents and formatting of each of the files in the handout folder is explained below.

1. en.train.twocol.oov This file contains labeled text data that you will use in training your model.
Specifically, the text contains one word per line that has already been preprocessed, cleaned and
tokenized. Words that are Out of Vocabulary (OOV) in the original dataset are replaced with the
special token *OOV*. Every sequence has the following format:

<Word0>\t<Tag0>\n<Word1>\t<Tag1>\n ... <WordN>\t<TagN>\n

where every <WordK>\t<TagK> unit token is separated by a newline. Between each sequence is
an empty line. If we have two, three-word sequences in our data set, the data will look like so:

<Word0>\t<Tag0>\n
<Word1>\t<Tag1>\n
<Word2>\t<Tag2>\n
\n
<Word0>\t<Tag0>\n
<Word1>\t<Tag1>\n

Page 17

https://paperswithcode.com/dataset/conll-2003

<Word2>\t<Tag2>\n
\n

Note: Word 2 of the second sequence does end with two newlines because it is the end of the data set.

2. en.val.twocol.oov: This file contains labeled validation data that you will use to evaluate your model.
This file has the same format as train.txt.

7.4 Required Reading: PyTorch Tutorial
Before proceeding any further, you must complete the PyTorch Tutorial. Please read the full collection
of the Introduction to PyTorch, i.e. Learn the Basics ∥ Quickstart ∥ Tensors ∥ Datasets & DataLoaders ∥
Transforms ∥ Build Model ∥ Autograd ∥ Optimization ∥ Save & Load Model.

https://pytorch.org/tutorials/beginner/basics/intro.html

7.5 Custom Dataset and DataLoader
One essential step when using PyTorch for any problem is to create a custom Dataset class for your model’s
DataLoader. A DataLoader is a class that PyTorch uses to supply your model with the data it needs for
training. Typically, your model doesn’t update parameters using the entire dataset at once, it uses batches
of the data (though for this model we will be using a batch size of 1). The DataLoader is responsible for
creating these batches under the hood, for the training functions you write later on to use. Each DataLoader
relies on a custom Dataset class you must write.

Writing a custom Dataset class is one of the most essential steps you must perform when working on a deep
learning problem. This class is what PyTorch uses to load your dataset into memory, in a format that will
work well for your neural network. Neural networks require each data point to have numerical features,
so if your data is categorical, or you are working with text data, you must convert these into numbers in
your Dataset class. Each dataset is unique in terms of the types of preprocessing that are required, which is
why you must typically write your own custom Dataset class for your problem. For more information on
Datasets and DataLoaders, and to see an example of these two in action, please see the following link.

You always want to make sure the training and test data are separate. To do this, it is sometimes common to
see a custom TestDataset class as well. In our case, this will not be necessary, and we will simply be creating
a separate Dataset object for the training and test data. Using separate objects ensures that the DataLoader
doesn’t using testing data to train the model, and vice versa.

In PyTorch, all custom Dataset classes inherit from the torch.utils.data.Dataset parent class and
you must implement the following three inherited methods. These functions are what the DataLoader will
call when it is creating the batches of data that the model will train on or evaluate.

1. init (self, ...)
This is the initialization function. This is where you pass in important information to the Dataset as
arguments, like the name of the file or directory where the data you will to process is stored. For our
text dataset, which is pretty small, we will use this function to load the input text file (train.txt or
validation.txt) into memory by creating data structures that can be easily indexed into. This is also
where we recommend converting text into numerical data.

2. len (self)
You must return the length, or size of dataset. In other words, how many examples are there in total.

3. getitem (self, index)
This function is used to get a single item from the dataset. You pass in the index of this item/datapoint
as an argument, and the expected output is two torch.Tensors: one for the inputs/x values, and

Page 18

https://pytorch.org/tutorials/beginner/basics/intro.html
https://pytorch.org/tutorials/beginner/basics/data_tutorial.html

one for the true outputs/y values. In our case, we are dealing with sequences, so your function should
return one torch.Tensor containing a sequences of words (as ints), and another torch.Tensor
containing the corresponding sequence of tags (as ints). You will likely be working with lists or numpy
arrays, so we recommend using the torch.tensor() method to perform conversions.

Custom TextDataset: For our problem, we are asking you to create a custom Dataset class called a Text-
Dataset to process the text files en.train.twocol.oov and en.val.twocol.oov. As mentioned above, the input
text files consist of several sequences of (word, tag) pairs. Within each pair, the word and tag are separated
by a \t character. Within each sequence, the (word, tag) pairs are separated by \n characters. Within the
overall text file, the different sequences are separated by an additional \n character. You must process these
text files so that, as mentioned above, when the getitem function is called to retrieve item i, it returns the
ith sequences of words (converted to ints) and the ith sequences of tags (also converted to ints).

For example, if the DataLoader calls getitem function for the fifth item, and this is the corresponding fifth
sequence in the dataset:

<Word5>\t<Tag0>\n
<Word17>\t<Tag0>\n
<Word8>\t<Tag4>\n
<Word2>\t<Tag2>\n
<Word10>\t<Tag1>\n
\n

The TextDataset is expected to return the following Tensors:

torch.Tensor([5, 17, 8, 2, 10]), torch.Tensor([0, 0, 4, 2, 1])

Note: The left Tensor is for input data (words) and the right Tensor is for output data (tags).

Here are the important steps/TODOs to complete this TextDataset:

1. First, you must make sure to parse the text file to remove the white space characters like \t and
\n. Functions like strip() and split() may be useful to you here. Using these functions
correctly will make it easy to separate sequences from each other (hint: each sequence ends in the
same combination of characters). This should be done in the init method.

2. Once you have determined how to remove the white space and separate sequences from each other,
you must now process each individual sequence. You want to convert these sequences of (word, tag)
pairs into two separate sequences of numbers: one sequence of numeric words and one sequence of
numeric tags. To convert words or tags to numbers, one easy strategy is to treat each unique word or
tag as an integer. You must therefore create a mapping of unique words to integers while parsing the
text file, for both the words and tags. You should use these mappings to then convert the sequences
of words and tags into sequences of ints, and store them in easily indexed data structures, like a
numpy array or list. We recommend storing the words and tags in separate data structures, to make
the getitem method easier. This should also be done in the init method.

3. One important consideration is that you need to make sure that the training TextDataset object and
test TextDataset object use the same mappings. (You don’t want your test TextDataset object to map
the same word to a different int, since your model will then predict the wrong tag). To do this, we
suggest initializing empty dictionaries outside the TextDataset class, and passing these dictionaries
into the init function as additional arguments. The training TextDataset object will receive empty
dictionaries and will fill them in while using them. Once filled in, the dictionaries will then be passed

Page 19

https://pytorch.org/docs/stable/generated/torch.tensor.html

to the test TextDataset object, which will just directly use the non-empty dictionaries it has received,
without editing them.

(Hint: Because our datasets used an OOV token, as mentioned above, you don’t need to worry about
new words appearing in the test data that you’ve never seen in training. But in general it’s good to
check for this case.)

4. Additionally, make sure to create a dictionary of indices to tags. This will be important when eval-
uating the F1 score of your predictions. The evaluate function we provide needs to be given a list
of ground truth tags and predicted tags. It cannot just use the ints outputted by your model, since it
doesn’t what tag each int corresponds to. Therefore, when creating your dictionary of tags to indices,
simultaneously create an inverse mapping of indices to tags. You can do this by once again passing
an empty dictionary into the init function and then filling it up as you parse the training data.

5. You must make sure to return the length of the dataset (the total number of sequences) in the len
function. Either you can calculate this within the len function itself, or store it as a variable in the
init function and return it here.

6. Finally, you must implement the getitem method. In this method, you should grab the ith se-
quences of words (converted to ints) and the ith sequences of tags (also converted to ints) and return
them as torch.Tensor objects. Again, the torch.tensor() method will be useful here for convert-
ing to your final format.

Once the TextDataset is complete, you can create separate objects for the training and test data, and feed
these TextDatasets into DataLoaders. Again, see the following link for an example. To ensure that all data is
iterated in the same order and your results match the expected ones, we require using the shuffle=False
option for the DataLoaders. Make sure to keep in mind that we are asking you to use a batch size of 1 for
this problem, as batching with variable length sequences adds complexity.

7.6 Model Definition
In this assignment, you will create a sequence tagging model, that uses an RNN as the sequence model,
with an embedding layer before the sequence layer. The RNN model you create should be able to support
ReLU and Tanh activation functions. The RNN will be built as a composition of linear layers and activa-
tions, of which you will write your own functions, and leverage pytorch’s autograd capabilities to perform
backpropagation. For this assignment, you are not allowed to use nn.RNN, nn.Linear, nn.ReLU, nor
nn.Tanh. We have given function stubs for each part, and will describe them in more detail below.

7.6.1 Activation Functions

You need to implement two activations: ReLU and Tanh. Each activation has two functions, which include
TanhFunction, Tanh and ReLUFunction, ReLU. Using Tanh as an example, the TanhFunction
class will extend pytorch’s autograd functionality while the Tanh class acts as a wrapper for TanhFunction.
The function specifications in the handout should guide you through the steps, but it is very similar to
LinearFunction in that you will have to implement forward and backward for the activation func-
tion classes. In the activation module’s Tanh function, use .apply() on the input for the forward
method. NOTE: it is ok to use torch.tanh in the tanhFunction, but do not use torch.nn.Tanh. A
backwards implementation is not necessary for this module function (Make sure you understand why). For
additional discussion on the topic of extending PyTorch in this way, see here.

7.6.2 Testing your Functions

In order to verify the correctness of the backward method of the three functions you implemented, you
should use torch.autograd.gradcheck. See here for more information. More specifically, you can

Page 20

https://pytorch.org/tutorials/beginner/basics/data_tutorial.html
https://pytorch.org/docs/stable/notes/extending.html
https://pytorch.org/docs/stable/generated/torch.autograd.gradcheck.gradcheck.html

use this function to test the correctness of LienarFunction, ReLUFunction, and TanhFunction. We strongly
recommend testing all three of your functions before moving on to the next steps, because your bugs and
errors will propagate and make debugging much harder. For office hours, we ask that you show us that you
have tried using gradcheck to ensure these three functions work.

7.6.3 RNN

Now you will implement an RNN, using the existing linear layer and activation functions that you have
created earlier. See below for implementation details.

The init method sets all the parameters for the model. This includes the embedding dim, hyperparam-
eters, Linear layers, and activations.

The forward pass takes in embeddings of size embedding dim, and passes it through the RNN in order,
returning a list of hidden states. The number of states should be equal to the length of the sequence. The first
hidden state should be initialized to be all zeros and be updated with every word in the sequence. Again,
make sure to keep in mind that the batch size is 1.

7.6.4 Tagging Model

Now we will put together all the parts to create a model. The tagging model will extend pytorch’s module
class. The init method has 5 parameters.

1. vocab size: Integer representing the number of unique words in the dictionary

2. tagset size: Integer representing the number of unique outputs in the tag space

3. embedding dim: Integer representing the size of the sentence embeddings (hyperparameter)

4. hidden dim: Integer representing the size of the hidden state dimensions in the RNN (hyperparam-
eter)

5. activation: String representing the activation function to be used in the RNN (hyperparameter)

The init method should initialize the embedding layer (Hint: Use nn.Embedding), the RNN class,
as well as a final Linear layer for use on the outputs of the RNN. The forward method should return a
distribution of the tag space for each element in the sentence. Please pay close attention to the shapes
of the inputs and outputs as you do this.

7.7 Training and Evaluation
Now that you have created a working model, it’s time to train and evaluate it! For this section, you will write
three functions: train one epoch(), predict and evaluate(), and train() (and optionally
calculate metrics()).

calculate metrics(): This is an optional function you can choose to fill in that helps modularize the
evaluation. Use your map of ints to tags, in addition to the evaluate function, to calculate the F1 score for
your predictions. Please take a look at the documentation for the evaluate function in metrics.py to see what
parameters it expects and what it will output. You only need to output the F1 score, but if you would like to
keep track of precision and recall, you are welcome to. If you are unfamiliar with these terms, these are just
different metrics to assess how well your model is doing, specifically when you don’t have an equal balance
of outputs in your data.

train one epoch(): Performs the necessary calls to model, optimizer, and loss function to train the
model for one epoch, but does not return anything.

Page 21

predict and evaluate(): Returns the loss, accuracy, f1 score, and predictions for the corresponding
epoch. Please either call calculate metrics() here or use the evaluate function here in addition to
your map of indices to tags to calculate the F1 score.

train(): Returns the train loss/accuracy and f1 score for each epoch. It should also return the final
epoch’s predictions on the training and test sets.

If you’re unsure how to start, we highly recommend taking a look at this tutorial from the PyTorch official
documentation. We also recommend taking a look at PyTorch’s reshape() method, view()method,
squeeze() method, and tolist() method to help you out when dealing with the tensors your model
outputs.

7.8 Command Line Arguments
The autograder runs and evaluates the output from the files generated, using the following command:

$ python3 rnn.py [args...]

Where [args...] is a placeholder for command-line arguments: <train input> <test input>
<train out> <test out> <metrics out>.

Additional hyper-parameters for the model utilize ”double dashes”. You should experiment with these
arguments to improve the performance of the model in the empirical section. <--activation>
<--embedding dim> <--hidden dim> <--num epochs>

These arguments are described below:

1. <train input>: string path to the training input .txt file (see Section 7.2)

2. <test input>: string path to the testing input .txt file (see Section 7.2)

3. <train out> string path to output .txt file to which the prediction on the training data should be
written

4. <test out> string path to output .txt file to which the prediction on the training data should be
written

5. <metrics out> string path of the output .txt file to which metrics such as train and validation F1
score should be written

6. <--activation> string specifying activation layer to use in the model, either ”tanh” or ”relu”
(hyper-parameter)

7. <--embedding dim> positive integer specifying the size of the sentence embedding vector (hyper-
parameter)

8. <--hidden dim> positive integer specifying the number of hidden units to use in the model’s
hidden layer (hyper-parameter)

Below is an example command to run using Tanh activation.

python rnn.py data_conll03/en.train_10.twocol.oov \
data_conll03/en.val_10.twocol.oov \
train_out.txt val_out.txt metrics_out.txt \
--activation="relu" --embedding_dim=50 --hidden_dim=50 \
--num_epochs=10 \

Page 22

https://pytorch.org/tutorials/beginner/introyt/trainingyt.html
https://pytorch.org/docs/stable/generated/torch.reshape.html
https://pytorch.org/docs/stable/generated/torch.Tensor.view.html
https://pytorch.org/docs/stable/generated/torch.squeeze.html
https://pytorch.org/docs/stable/generated/torch.Tensor.tolist.html

7.9 Output: Labels File
Your program should write two output .txt files containing the tag predictions of your model on train-
ing data (<train out>) and validation data (<validation out>). Each should contain the predicted
labels for each example printed on a new line. Use \n to create a new line.

Your labels should exactly match those of a reference implementation – this will be checked by the auto-
grader by running your program and evaluating your output file against the reference solution. An example
of the labels is given below.

5
1
0
5
5
3
4

7.10 Output: Metrics File
Generate a file where you report the accuracy and F1 score for train and test validation on the final epoch.
Round the values to 6 decimal places. Make sure to follow the newline format shown here.

Below is example of approximate metrics run on the 10% data for 10 epochs. We used the ReLU acti-
vation, embedding dim and hidden dim at 50.

accuracy(train): 0.98588
accuracy(test): 0.883971
f1(train): 0.909717
f1(test): 0.524194

7.11 Gradescope Submission
You should submit your rnn.py and metrics.py. Any other files will be deleted. Please do not use
other file names. This will cause problems for the autograder to correctly detect and run your code. Please
go through the appendix at the end for information on starter-code.

Some additional tips: Make sure to read the autograder output carefully. The autograder for Gradescope
prints out some additional information about the tests that it ran. For this programming assignment we’ve
specially designed some buggy implementations that you might implement and will try our best to detect
those and give you some more useful feedback in Gradescope’s autograder. Make wise use of autograder’s
output for debugging your code.

Note: For this assignment, you have 10 submissions to Gradescope before the deadline, but only your last
submission will be graded.

Page 23

	LaTeX Bonus Point and Template Alignment
	Convolutional Neural Network
	Recurrent Neural Network
	Transformers and AutoDiff
	Empirical Questions
	Collaboration Questions
	Programming (55 points)
	The Task
	The Dataset
	File Formats
	Required Reading: PyTorch Tutorial
	Custom Dataset and DataLoader
	Model Definition
	Activation Functions
	Testing your Functions
	RNN
	Tagging Model

	Training and Evaluation
	Command Line Arguments
	Output: Labels File
	Output: Metrics File
	Gradescope Submission

