
HOMEWORK 8
REINFORCEMENT LEARNING *

10-301/10-601 INTRODUCTION TO MACHINE LEARNING(SPRING 2024)
https://www.cs.cmu.edu/˜mgormley/courses/10601/

OUT: Monday, April 8
DUE: Friday, April 19

TAs: Emaan, Monica, Shivi, Max, Markov, Neural

Summary In this assignment, you will implement a reinforcement learning algorithm for solving the
classic mountain-car environment. As a warmup, the first section will lead you through an on-paper example
of how value iteration and Q-learning work. Then, in Section 7, you will implement Q-learning with function
approximation to solve the mountain car environment.

START HERE: Instructions
• Collaboration Policy: Please read the collaboration policy here: http://www.cs.cmu.edu/
˜mgormley/courses/10601/syllabus.html

• Late Submission Policy: See the late submission policy here: http://www.cs.cmu.edu/

˜mgormley/courses/10601/syllabus.html

• Submitting your work: You will use Gradescope to submit answers to all questions and code. Please
follow instructions at the end of this PDF to correctly submit all your code to Gradescope.

– Written: For written problems such as short answer, multiple choice, derivations, proofs, or
plots, please use the provided template. Submissions can be handwritten onto the template, but
should be labeled and clearly legible. If your writing is not legible, you will not be awarded
marks. Alternatively, submissions can be written in LATEX. Each derivation/proof should be
completed in the boxes provided. You are responsible for ensuring that your submission contains
exactly the same number of pages and the same alignment as our PDF template. If you do not
follow the template, your assignment may not be graded correctly by our AI assisted grader and
there will be a 2% penalty (e.g., if the homework is out of 100 points, 2 points will be deducted
from your final score).

– Programming: You will submit your code for programming questions on the homework to
Gradescope. After uploading your code, our grading scripts will autograde your assignment by
running your program on a virtual machine (VM). You are only permitted to use the Python Stan-
dard Library modules and numpy. Ensure that the version number of your programming lan-
guage environment (i.e. Python 3.9.12) and versions of permitted libraries (i.e. numpy 1.23.0)
match those used on Gradescope. You have 10 free Gradescope programming submissions, after

*Compiled on Monday 8th April, 2024 at 13:30

1

https://www.cs.cmu.edu/~mgormley/courses/10601/
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html
https://gradescope.com
https://docs.python.org/3/library/
https://docs.python.org/3/library/


Homework 8: Reinforcement Learning 10-301/10-601

which you will begin to lose points from your total programming score. We recommend debug-
ging your implementation on your local machine (or the Linux servers) and making sure your
code is running correctly first before submitting your code to Gradescope.

• Materials: The data and reference output that you will need in order to complete this assignment is
posted along with the writeup and template on the course website.

2 of 23



Homework 8: Reinforcement Learning 10-301/10-601

Instructions for Specific Problem Types
For “Select One” questions, please fill in the appropriate bubble completely:

Select One: Who taught this course?

Matt Gormley

⃝ Marie Curie

⃝ Noam Chomsky

If you need to change your answer, you may cross out the previous answer and bubble in the new answer:

Select One: Who taught this course?

Henry Chai

⃝ Marie Curie

��@@ Noam Chomsky

For “Select all that apply” questions, please fill in all appropriate squares completely:

Select all that apply: Which are instructors for this course?

■ Matt Gormley

■ Henry Chai

■ Hoda Heidari

2 I don’t know

Again, if you need to change your answer, you may cross out the previous answer(s) and bubble in the new
answer(s):

Select all that apply: Which are the instructors for this course?

■ Matt Gormley

■ Henry Chai

■ Hoda Heidari

��@@■ I don’t know

For questions where you must fill in a blank, please make sure your final answer is fully included in the
given space. You may cross out answers or parts of answers, but the final answer must still be within the
given space.

Fill in the blank: What is the course number?

10-601 10-��SS6301

3 of 23



Homework 8: Reinforcement Learning 10-301/10-601

Written Questions (39 points)
1 LATEX Bonus Point and Template Alignment (1 points)

1. (1 point) Select one: Did you use LATEX for the entire written portion of this homework?

⃝ Yes

⃝ No

2. (0 points) Select one: I have ensured that my final submission is aligned with the original template
given to me in the handout file and that I haven’t deleted or resized any items or made any other modi-
fications which will result in a misaligned template. I understand that incorrectly responding yes to this
question will result in a penalty equivalent to 2% of the points on this assignment.
Note: Failing to answer this question will not exempt you from the 2% misalignment penalty.

⃝ Yes

2 Value Iteration (12 points)
While attending an ML conference, you meet scientists at NASA who ask you to develop a reinforce-
ment learning agent capable of carrying out a space-flight from Earth to the Sun. You model this
problem as a Markov decision process (MDP). The figure below depicts the state space.

Earth

Sun

Metis

SD SE

SA SB SC

-65

+50

+25

Here are the details:

1. Each grid cell is a state SA, SB, ..., SE corresponding to a position in the solar system. The start
state is SA (Earth). The terminal states include both the SE (Sun) and SC (Metis).

2. The action space includes movement up/down/left/right. Transitions are non-deterministic.
With probability 80% the agent transitions to the intended state. With probability 10% the agent
slips left of the intended direction. With probability 10% the agent slips right of the intended
direction. For example, if the agent is in state SB and takes action left, it moves to state SA

with 80% probability, it moves to state SB (left of the intended direction is off the board, so the
agent remains where it was) with 10% probability, and it moves to state SE (right of the intended
direction) with 10% probability.

3. It is not possible to move to the blocked state (shaded grey) since it contains another planet. If the
agent’s action moves them off the board or to the blocked state, it remains in the same state.

4. Non-zero rewards are depicted with arrows. Flying into the Sun from below gives positive re-
ward R(SB,a, SE) = +50 ∀a ∈ {up,down,left,right}, since it is more fuel-efficient
than flying into the sun from the left (the agent can use the gravitational field of the planet

4 of 23



Homework 8: Reinforcement Learning 10-301/10-601

in the blocked state and Metis). However, approaching the Sun from below has risks, as fly-
ing too close to Metis is inadvisable and gives negative reward R(SB,a, SC) = −65 ∀a ∈
{up,down,left,right}. Note that flying into the Sun from the left still achieves the goal
and gives positive reward R(SD,a, SE) = +25 ∀a ∈ {up,down,left,right}. All other
rewards are zero.

Below, let V ∗(s) denote the value function for state s using the optimal policy π∗(s).

2.1 Synchronous Value Iteration
1. (3 points) Report the value of each state (including terminal states) after a single round of synchronous

value iteration in the table below. Initialize the value table V 0(s) = 0, ∀s ∈ {SA . . . SE} and assume
γ = 0.9. Visit each state in reverse alphabetical order. Ignore the blocked states. Round your answers
only to the first decimal place. Do not round intermediate values when calculating your answers.

SD SE

SA SB SC

2.2 Asynchronous Value Iteration
1. (3 points) Starting over, report the value of each state for a single round of asynchronous value iteration

in the table below. Initialize the value table V (s) = 0, ∀s ∈ {SA . . . SE} and assume γ = 0.9. Visit
each state in reverse alphabetical order. Ignore the blocked states. Round your answers only to the
first decimal place. Do not round any intermediate values, including state values, when calculating
your answers.

SD SE

SA SB SC

5 of 23



Homework 8: Reinforcement Learning 10-301/10-601

2. (3 points) Below, we give you the value of each state one round before the convergence of asyn-
chronous value iteration.1 What is the final value of each state, V ∗(s)? Be sure to use asynchronous
value iteration, and visit each state in reverse alphabetical order. Ignore the blocked states. Round
your answers only to the first decimal place. Do not round any intermediate values, including state
values, when calculating your answers.

SD SE

SA SB SC

30 36 0

25 0

Your solution:

SD SE

SA SB SC

3. (3 points) What is the policy, π∗(s), that corresponds to V ∗(s)? Write one of up, down, left, or
right for each state. If multiple actions are acceptable, choose the one that comes alphabetically first.
For terminal states, write terminal. Ignore the blocked states.

SD SE

SA SB SC

1This is actually one round before the policy convergence, not the value convergence. The values we provide are the values
after the second iteration, rounded to the nearest whole number for ease of calculation.

6 of 23



Homework 8: Reinforcement Learning 10-301/10-601

3 Q-Learning (9 points)
Let’s consider an environment that is similar to the grid world we saw before, but has more states:

Earth

Sun

Metis

SI SJ SK SL

SE SF SG SH

SA SB SC SD

This time, however, suppose we don’t know the reward function or the transition probability between
states. Some rules for this setup are:

1. Each grid cell is a state SA, SB, . . . , SL corresponding to a position in the solar system.

2. The action space of the agent is: {up,down,left,right}.

3. If the agent hits the edge of the board, it remains in the same state. It is not possible to move into
blocked states, which are shaded grey, since they contain other planets.

4. The start state is SC (Earth). The terminal states include both the SL (Sun) and SE (asteroid
Metis).

5. Use the discount factor γ = 0.9 and learning rate α = 0.1.

We will go through three iterations of Q-learning in this section. Initialize Q(s, a) as below:

a \ s SA SB SC SD SE SF SG SH SI SJ SK SL

Up 0.4 0.1 0.1 0.7 0.0 0.9 0.7 0.8 0.0 0.1 0.8 0.8
Down 1.0 0.8 0.2 0.5 0.1 0.2 0.7 0.2 1.0 0.9 0.1 0.3
Left 0.9 0.4 0.3 0.4 0.9 0.6 0.5 0.1 0.2 0.3 0.9 0.1

Right 0.3 0.8 0.3 0.2 0.0 0.2 0.2 0.3 0.9 0.4 0.2 0.3

1. (1 point) Select all that apply: If the agent were to act greedily, what action would it take at this time
from state SC?

2 up

2 down

2 left

2 right

7 of 23



Homework 8: Reinforcement Learning 10-301/10-601

2. (1 point) Beginning at state SC , you take the action right and receive a reward of 0. You are now in
state SD. What is the new value for Q(SC ,right), assuming the update for deterministic transitions?
If needed, round your answer to the fourth decimal place.

Q(SC ,right)

3. (1 point) What is the new value for Q(SC ,right), using the temporal difference error update? If
needed, round your answer to the fourth decimal place.

Q(SC ,right)

4. (1 point) Select all that apply: Assume your run has brought you to state SH with no updates to the
Q-function in the process. If the agent were to act greedily, what action would it take at this time?

2 up

2 down

2 left

2 right

5. (1 point) Beginning at state SH , you take the action up, receive a reward of +25, and the run terminates.
What is the new value for Q(SH ,up), assuming the update for deterministic transitions? If needed,
round your answer to the fourth decimal place.

Q(SH ,up)

6. (1 point) What is the new value for Q(SH ,up), using the temporal difference error update? If needed,
round your answer to the fourth decimal place.

Q(SH ,up)

8 of 23



Homework 8: Reinforcement Learning 10-301/10-601

7. (1 point) Select all that apply: You start from state SC again since the previous run terminated. As-
sume you manage to make it to state SF with no updates to the Q-function. If the agent were to act
greedily, what action would it take at this time?

2 up

2 down

2 left

2 right

8. (1 point) Beginning at state SF , you take the action left, receive a reward of -50, and the run termi-
nates. What is the new value for Q(SF ,left), assuming the update for deterministic transitions? If
needed, round your answer to the fourth decimal place.

Q(SF ,left)

9. (1 point) What is the new value for Q(SF ,left), using the temporal difference error update? If
needed, round your answer to the fourth decimal place.

Q(SF ,left)

9 of 23



Homework 8: Reinforcement Learning 10-301/10-601

4 Deep Q-Learning (7 points)
In this question we will motivate learning a parametric form for solving Markov Decision Processes
by looking at Breakout, a game on the Atari 2600. The Atari 2600 is a gaming system released in the
1980s, but nevertheless is a popular target for reinforcement learning papers and benchmarks. The Atari
2600 has a resolution of 160× 192 pixels. In the case of Breakout, we try to move the paddle to hit the
ball in order to break as many tiles above as possible. We have the following actions:

• Move the paddle left

• Move the paddle right

• Do nothing

(a) Atari Breakout (b) Black and white Breakout

Figure 1: Atari Breakout. 1a is what Breakout looks like. We have the paddle in the bottom of the screen
aiming to hit the ball in order to break the tiles at the top of the screen. 1b is our transformation of Atari
Breakout into black and white pixels for the purpose of some of the following problems.

1. (1 point) Suppose we are dealing with the black and white version of Breakout2 as in Figure 1b. Fur-
thermore, suppose we are representing the state of the game as just a vector of pixel values without
considering if a certain pixel is always black or white. Since we are dealing with the black and white
version of the game, these pixel values can either be 0 or 1.

What is the size of the state space? Express your answer in terms of exponents if needed.

Answer

2. (1 point) In the same setting as the previous part, suppose we wish to apply Q-learning to this prob-
lem. What is the size of the Q-value table we will need? Express your answer in terms of exponents if
needed.

Answer

2Play a “Google”-Doodle version here

10 of 23

https://elgoog.im/breakout/


Homework 8: Reinforcement Learning 10-301/10-601

3. (1 point) Now assume we are dealing with the colored version of Breakout as in Figure 1a. Now each
pixel is a tuple of real valued numbers between 0 and 1. For example, black is represented as (0, 0, 0)
and white is (1, 1, 1).

Is it possible to represent all our Q-values with a table holding one value for every (state, action) pair?

Answer

Suppose rather than storing many separate Q-values for similar states, we want to share information
between states. Instead of individual entries in a table, we can learn parameters w that parameterize
some approximation q(s, a;w) of the true Q-values.

Let us define qπ(s, a) as the true action value function of the current policy π. Assume qπ(s, a) is given
to us by some oracle. Also define q(s, a;w) as the action value predicted by the function approximator
parameterized by w. Clearly we want to have q(s, a;w) be close to qπ(s, a) for all (s, a) pairs we see.
This is just our standard regression setting. That is, our objective function is just the Mean Squared
Error:

J(w) =
1

2

1

N

∑
s∈S,a∈A

(qπ(s, a)− q(s, a;w))2 . (1)

Because we want to update for each example stochastically3, we get the following update rule:

w← w − α (q(s, a;w)− qπ(s, a))∇wq(s, a;w). (2)

However, more often than not we will not have access to the oracle that gives us our target qπ(s, a). So
how do we get the target to regress q(s, a;w) on? One way is to bootstrap an estimate of the action
value under a greedy policy using the function approximator itself. That is to say

qπ(s, a) ≈ r + γmax
a′

q(s′, a′;w) (3)

where r is the reward observed from taking action a at state s, γ is the discount factor and s′ is the
state resulting from taking action a at state s. This target is often called the Temporal Difference (TD)
target, and gives rise to the following update for the parameters of our function approximator in lieu of
a tabular update:

w← w − α

(
q(s, a;w)−

(
r + γmax

a′
q(s′, a′;w)

)
︸ ︷︷ ︸

TD Target︸ ︷︷ ︸
TD Error

)
∇wq(s, a;w). (4)

3This is not really stochastic, you will be asked in a bit why.

11 of 23



Homework 8: Reinforcement Learning 10-301/10-601

4. (2 points) Consider the setting where we can represent our state by some vector s, and for each action,
we learn a linear approximation from states to Q-values. That is:

q(s, a;w) = wT
a s (5)

Again, assume we are in the black and white setting of Breakout as in Figure 1b. Show that tabular
Q-learning is just a special case of Q-learning with a linear function approximator by describing a
construction of s. (Hint: Engineer features such that Eq. (5) encodes a table lookup)

Answer

5. (2 points) Stochastic Gradient Descent works because we can assume that the samples we receive are
independent and identically distributed. Is that the case here? If not, why and what are some ways you
think you could combat this issue?

Answer

12 of 23



Homework 8: Reinforcement Learning 10-301/10-601

5 Empirical Questions (10 points)
The following parts should be completed after you work through the programming portion of this as-
signment (Section 7).

1. (4 points) Run Q-learning on the mountain car environment using both tile and raw features.

For the raw features: run for 2500 episodes with max iterations of 200, ϵ set to 0.05, γ set to 0.999, and
a learning rate of 0.001.

For the tile features: run for 400 episodes with max iterations of 200, ϵ set to 0.05, γ set to 0.99, and a
learning rate of 0.00005.

For each set of features, plot the return (sum of all rewards in an episode) per episode on a line graph.
On the same graph, also plot the rolling mean over a 25 episode window. Comment on the difference
between the plots.

Plot of Raw

13 of 23



Homework 8: Reinforcement Learning 10-301/10-601

Plot of Tile

Comment

14 of 23



Homework 8: Reinforcement Learning 10-301/10-601

(a) (b)

Figure 2: Estimated optimal value function visualizations for both types of features

2. (2 points) For both raw and tile features, we have run Q-learning with some good parameters and
created visualizations of the value functions after many episodes. For each plot in Figure 2, write down
which features (raw or tile) were likely used for deep Q-learning. Explain your reasoning. In addition,
interpret each of these plots in the context of the mountain car environment.

Answer

3. (2 points) We see that Figure 2b seems to look like a linear function of the position and velocity. Can
the value function depicted in this plot ever be nonlinear (linear here strictly refers to a function that can
be expressed in the form of y = Ax+ b)? Briefly justify your answer in 2 sentences or less.

Hint: How do we calculate the value of a state given the Q-values?

Answer

15 of 23



Homework 8: Reinforcement Learning 10-301/10-601

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
Position

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Ve
lo

cit
y

Policy

0

1

2

Ac
tio

n

(a)

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
Position

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Ve
lo

cit
y

Policy

0

1

2

Ac
tio

n

(b)

Figure 3: Estimated optimal policy visualizations for both types of features

4. (2 points) In a similar fashion to the previous question, we have created visualizations of the potential
policies learned. For each plot in Figure 3, write down which features (raw or tile) were likely used for
deep Q-learning. Explain your reasoning.

Answer

16 of 23



Homework 8: Reinforcement Learning 10-301/10-601

6 Collaboration Questions
After you have completed all other components of this assignment, report your answers to these questions
regarding the collaboration policy. Details of the policy can be found here.

1. Did you receive any help whatsoever from anyone in solving this assignment? If so, include full
details.

2. Did you give any help whatsoever to anyone in solving this assignment? If so, include full details.

3. Did you find or come across code that implements any part of this assignment? If so, include full
details.

Your Answer

17 of 23

http://www.cs.cmu.edu/~mgormley/courses/10601/syllabus.html


Homework 8: Reinforcement Learning 10-301/10-601

7 Programming [68 Points]
Your goal in this assignment is to implement Q-learning with linear function approximation to solve the
mountain car environment. You will implement all of the functions needed to initialize, train, evaluate,
and obtain the optimal policies and action values with Q-learning. In this assignment we will provide the
environment for you. The program you write will be automatically graded using the Gradescope system.

7.1 Specification of Grid World
In this assignment, you are provided with code that fully defines the GridWorld environment. In GridWorld,
you navigate a 3x4 grid to reach specified goal states, navigating around obstacles and possibly encounter-
ing rewards or penalties along the way. Your objective is to find the optimal path to the goal state while
maximizing your total reward.

The GridWorld environment is represented by a grid of cells, where each cell corresponds to a different
state in the environment. The agent can move in four directions: up, down, left, and right. Certain cells are
designated as blocked, and the agent cannot move through these. There are also special terminal states that
end the episode when reached.

The state of the environment is represented by the agent’s current position on the grid, defined by its row
and column indices. Actions that the agent can take at any state are defined as 0, 1, 2, 3, corresponding to
the actions: (0) move up, (1) move down, (2) move left, and (3) move right.

Terminal

Terminal

SI SJ SK SL

SE SF SG SH

SA SB SC SD

+100

+50

-100

7.2 Specification of Mountain Car
You will be given code that fully defines the Mountain Car environment. In Mountain Car, you control a
car that starts at the bottom of a valley. Your goal is to reach the flag at the top right, as seen in Figure 4.
However, your car is under-powered and cannot climb up the hill by itself. Instead you must learn to
leverage gravity and momentum to make your way to the flag. It would also be good to get to this flag as
fast as possible.

18 of 23



Homework 8: Reinforcement Learning 10-301/10-601

Figure 4: What the Mountain Car environment looks like. The car starts at some point in the valley. The
goal is to get to the top right flag.

The state of the environment is represented by two variables, position and velocity. position can
be between [−1.2, 0.6] (inclusive) and velocity can be between [−0.07, 0.07] (inclusive). These are just
measurements along the x-axis.

The actions that you may take at any state are {0, 1, 2}, where each number corresponds to an action: (0)
pushing the car left, (1) doing nothing, and (2) pushing the car right.

7.3 Q-learning with Linear Approximations
The Q-learning algorithm is a model-free reinforcement learning algorithm, where we assume we don’t have
access to the model of the environment the agent is interacting with. We also don’t build a complete model
of the environment during the learning process. A learning agent interacts with the environment solely based
on calls to step and reset methods of the environment. Then the Q-learning algorithm updates the q-values
based on the values returned by these methods. Analogously, in the approximation setting the algorithm will
instead update the parameters of q-value approximator.

Let the learning rate be α and discount factor be γ. Recall that we have the information after one interaction
with the environment, (s, a, r, s′). The tabular update rule based on this information is:

Q(s, a) = (1− α)Q(s, a) + α

(
r + γmax

a′
Q(s′, a′)

)
.

Instead, for the function approximation setting we use the following update rule derived from the Function
Approximation Section (Section 4). Note that we have made the bias term explicit here, where before it was
implicitly folded into w:

w← w − α

(
q(s, a;w)− (r + γmax

a′
q(s′, a′;w)

)
∇wq(s, a;w),

where
q(s, a;w) = wT

a s+ ba.

The epsilon-greedy action selection method selects the optimal action with probability 1−ϵ and selects
uniformly at random from one of the 3 actions (0, 1, 2) with probability ϵ. The reason that we use an
epsilon-greedy action selection is we would like the agent to do explorations by stochastically selecting
random actions with small probability. For the purpose of testing, we will test two cases: ϵ = 0 and

19 of 23



Homework 8: Reinforcement Learning 10-301/10-601

0 < ϵ < 1. When ϵ = 0 (no exploration), the program becomes deterministic and your output have to match
our reference output accurately. In this case, pick the action represented by the smallest number if there
is a draw in the greedy action selection process. For example, if we are at state s and Q(s, 0) = Q(s, 2),
then take action 0. When 0 < ϵ < 1, your output will need to fall in a certain range within the reference
determined by running exhaustive experiments on the input parameters.

7.4 Feature Engineering
Linear approximations are great in their ease of use and implementations. However, there sometimes is a
downside; they’re linear. This can pose a problem when we think the value function itself is nonlinear with
respect to the state. For example, we may want the value function to be symmetric about 0 velocity. To
combat this issue we could throw a more complex approximator at this problem, like a neural network. But
we want to maintain simplicity in this assignment, so instead we will look at a nonlinear transformation of
the “raw” state.

Position

Velocity

−1.2 −0.84−0.48−0.12 0.24 0.6
−0.07

−0.04

−0.01

0.01

0.04

0.07

•
•

(a) A discretization of the state space of Mountain Car

Position

Velocity

−1.2 −0.84−0.48−0.12 0.24 0.6
−0.07

−0.04

−0.01

0.01

0.04

0.07

•
•

(b) A tiling of the state space of Mountain Car

Figure 5: State representations for the states of Mountain Car

For the Mountain Car environment, we know that position and velocity are both bounded. What we
can do is draw a grid over the possible position-velocity combinations as seen in Figure 5a. We then
enumerate the grid from bottom left to top right, row by row. Then we map all states that fall into a grid
square with the corresponding one-hot encoding of the grid number. For efficiency reasons we will just use
the index that is non-zero. For example the green point would be mapped to {6} and the orange point to
{12}. This is called a discretization of the state space.

The downside to the above approach is that although observing the green point will let us learn parameters
that generalize to other points in the shaded blue region, we will not be able to generalize to the orange
point even though it is nearby. We can instead draw two grids over the state space, each offset slightly from
each other as in Figure 5b. Now we can map the green point to two indices, one for each grid, and get
{6, 39} (note the index for orange grid starts from the end of blue index, i.e. 25). Now the green point
has parameters that generalize to points that map to {6} (the blue shaded region) in the first discretization
and parameters that generalize to points that map to {39} (the red shaded region) in the second. We can
generalize this to multiple grids, which is what we do in practice. This is called a tiling or a coarse-coding
of the state space.

20 of 23



Homework 8: Reinforcement Learning 10-301/10-601

7.5 Implementation Details
Here we describe the API to interact with the Mountain Car environment available to you.

• init (mode, debug): Initializes the environment to the a mode specified by the value of
mode. This can be a string of either “raw” or “tile”.

“raw” mode tells the environment to give you the state representation of raw features encoded as a
vector [position,velocity]T .

In “tile” mode you are given a binary vector where the i-th index is 1 if the i-th tile is active in the
tiling. All other tile indices are assumed to map to 0. For example the state representation of the
example in Figure 5b would become [0, 0, ..., 0, 1, 0, ..., 0, 1, 0, ..., 0]T , where indices 6 and 39 are 1.

The dimension of the state space of the “raw” mode is 2. The dimension of the state space of the
“tile” mode is 2048. These values can be accessed from the environment through the state space
property.

debug is an optional argument for debugging. See Section 7.6 for more details.

• reset(): Reset the environment to starting conditions. Returns the initial state.

• step(action): Take a step in the environment with the given action. action must be an in-
teger in the range [0,env.action space), where env is the environment instance. For the
Mountain Car environment, env.action space is 3, since the valid actions are 0, 1, and 2.
step(action) returns a tuple of (state,reward,done) which is the next state, the reward ob-
served, and a boolean indicating if you reached the goal or not, ending the episode. The state will
be either a raw or tile representation, as defined above, depending on how you initialized Mountain
Car. If you observe done = True then you should reset the environment and end the episode.
Failure to do so will result in undefined behavior.

• render(): Visualize the environment (not graded). Requires the installation of pyglet4. We
highly recommend you to use this only after you implement everything. Do not use this as a tool for
debugging—this should rather be used as a tool for understanding Q-learning better. It is computa-
tionally intensive to render graphics, so only call the function once every 100 or 1000 episodes. This
will be a no-op in Gradescope.

You should now implement your Q-learning algorithm with linear approximations in q learning.py.
The program will assume access to a given environment file(s) which contains the Mountain Car environ-
ment which we have given you. Initialize the parameters of the linear model with all 0 (and don’t forget
to include a bias!) and use the epsilon-greedy strategy for action selection.

Additionally, to avoid numerical precision errors, please ensure that your Q-values throughout your
program are rounded to 5 decimal places. This is already handled for you in the starter code by the
@round output(5) decorator5 above the Q(W, state, action) function; the body of this function
is left for you to complete. If you choose not to use the starter code, make sure that your code still does this
rounding:

Qvalue = <some code to calculate Q-values>
Qvalue = np.round(Qvalue, 5)

4You can install it by typing pip install pyglet in your shell.
5You don’t need to know how decorators work for this class, but you can read more about them here if you’re interested.

21 of 23

https://realpython.com/primer-on-python-decorators/


Homework 8: Reinforcement Learning 10-301/10-601

Your program should write a output file containing the total rewards (the returns) for every episode after
running Q-learning algorithm. There should be one return per line.

Your program should also write the weights of the model to a file. This output file should have the following
format:

bias_action_0 weight_action_0_1 weight_action_0_2 ...
bias_action_1 weight_action_1_1 weight_action_1_2 ...
...

Above, each line corresponds to the weights for that action. For example, the first line contains the bias and
the weights for action 0, the second line contains the bias and the weights for action 1, and so on. A space
separates the parameters in each line, and each line is terminated by a newline character "\n".

The autograder will use the following commands to call your function:

$ python q learning.py [args...]

where above [args...] is a placeholder for command-line arguments: <env> <mode> <weight out>
<returns out> <episodes> <max iterations> <epsilon> <gamma> <learning rate>.
These arguments are described in detail below:

1. <env>: the environment that you are running, either mc for Mountain Car or gw for Grid World.

2. <mode>: mode to run the environment in. Should be either raw or tile. Note that Grid World
operates only in tile mode.

3. <weight out>: path to output the weights of the linear model.

4. <returns out>: path to output the returns of the agent.

5. <episodes>: the number of episodes your program should train the agent for. One episode is a
sequence of states, actions and rewards, which ends with terminal state or ends when the maximum
episode length has been reached.

6. <max iterations>: the maximum of the length of an episode. When this is reached, we terminate
the current episode.

7. <epsilon>: the value ϵ for the epsilon-greedy strategy.

8. <gamma>: the discount factor γ.

9. <learning rate>: the learning rate α of the Q-learning algorithm.

Example command:

$ python q_learning.py mc raw mc_params1_weight.txt mc_raw_returns.txt \
4 200 0.05 0.99 0.01

7.6 Debugging Tips
To help with debugging, we have provided the option for printing each step of the Q-learning train func-
tion based on the reference output for the Grid World environment. We created this output by adding the
debug=True argument when initializing the Grid World environment. You may do the same to compare
your output against ours.

22 of 23



Homework 8: Reinforcement Learning 10-301/10-601

We recommend first checking your outputs based on a run with extremely simple parameters. Remember to
set <epsilon>=0 so the program is run without the epsilon-greedy strategy.

We have provided output on the Grid World for the following simple command:

$ python q_learning.py gw tile gw_params1_weight.txt \
gw_params1_returns.txt 1 1 0.0 1 1

Once this works, you can change the parameters to be slightly more complex (such as the ones we have
below), and check with our calculations again:

$ python q_learning.py gw tile gw_params2_weight.txt gw_params2_returns.txt \
3 5 0.0 0.9 0.01

The logs for both of the above commands should be in reference output/gw simple.log and
reference output/gw.log, respectively.

In addition, we have provided mc weight.txt and mc returns.txt in the handout, which are gener-
ated using the following parameters:

• <env>: mc

• <mode>: tile

• <episodes>: 25

• <max iterations>: 200

• <epsilon>: 0.0

• <gamma>: 0.99

• <learning rate>: 0.005

Example command:

$ python q_learning.py mc tile mc_params2_weight.txt \
mc_params2_returns.txt 25 200 0.0 0.99 0.005

For your convenience, we have provided a file check.py in the handout that will generate and compare
your reward and weight outputs to all the reference outputs provided in the reference output folder.
See the comment at the top of the file for instructions on running these checks.

For all checks:

$ python -m unittest check

For a specific example (in this case Mountain Car with tile features, the command given earlier on this page):

$ python -m unittest check.MCTile

7.7 Gradescope Submission
You should submit your q learning.py to Gradescope. Any other files uploaded will be discarded or
reverted back to the original version provided in the handout. Do not use other file names.

23 of 23


	LaTeX Bonus Point and Template Alignment
	Value Iteration
	Synchronous Value Iteration
	Asynchronous Value Iteration

	Q-Learning
	Deep Q-Learning
	Empirical Questions
	Collaboration Questions
	Programming [68 Points]
	Specification of Grid World
	Specification of Mountain Car
	Q-learning with Linear Approximations
	Feature Engineering
	Implementation Details
	Debugging Tips
	Gradescope Submission


