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Any proper introduction to machine learning will rely heavily on linear alge-
bra, calculus, probability, statistics, geometry, and computer science. Con-
sistent notation eases the adoption of these subfields. Here, we summarize
the notation of this course.

1 Scalars, Vectors, Matrices

We write scalars as either lowercase letters x, y, z, α, β, γ or uppercase Latin
letters N,M, T . The latter are typically used to indicate a count (e.g. num-
ber of examples, features, timesteps) and are often accompanied by a corre-
sponding index n,m, t (e.g. current example, feature, timestep). Vectors
are bold lowercase letters x = [x1, x2, . . . , xM ]T and are typically assumed to
be column vectors—hence the transposed row vector in this example. When
handwritten, a vector is indicated by an over-arrow ~x = [x1, x2, . . . , xM ]T .
Matrices are bold uppercase letters:

U =


U11 U12 . . . U1m

U21 U22
... . . . ...
Un1 . . . Unm


As in the examples above, subscripts are used as indices into structured
objects such as vectors or matrices.

2 Sets

We represent sets by caligraphic uppercase letters X ,Y ,D. We often index
a set by labels in parenthesized superscripts S = {s(1), s(2), . . . , s(S)}, where
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S = |S|. We denote the same set as S = {s(s)}Ss=1. This shorthand is
convenient when defining a set of training examples:

D = {(x(1), y(1)), (x(2), y(2)), . . . , (x(N), y(N))}

is equivalent to D = {(x(n), y(n))}Nn=1.

3 Functions and Derivatives

Suppose we have a function f(x). We write its partial derivative with
respect to x as ∂f(x)

∂x
or df(x)

dx
.1 We also denote its first derivative as f ′(x), its

second derivative as f ′′(x), and so on. For a multivariate function f(x) =
f(x1, . . . , xM), we write its gradient with respect to x as ∇xf(x) and may
omit the subscript, i.e. ∇f(x), when it is clear from context—it might not
be for a gradient such as ∇yg(x,y).

We describe the type of a function as f : X → Y if its domain is X and
its range is Y . For example, the function f(x1, x2, x3) = (x1x2)

2 + x3− 7 has
type f : R3 → R.

4 Random Variables

Random variables are also uppercase Latin letters X, Y, Z, but their use
is typically apparent from context. When a random variable Xi and a scalar
xi are upper/lower-case versions of each other, we typically mean that the
scalar is a value taken by the random variable.

When possible, we reserve Greek letters for parameters θ,φ or hyperpa-
rameters α, β, γ.

For a random variable X, we write X ∼ Gaussian(µ, σ2) to indicate that
X follows a 1D Gaussian distribution with mean µ and variance σ2. We

1Note that a more careful notation system would always use ∂f(x)
∂x for partial deriva-

tives, since df(x)
dx is typically reserved for total derivatives. However, only partial deriva-

tives make an appearance herein.
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write x ∼ Gaussian(µ, σ2) to say that x is a value sampled from the same
distribution.

A conditional probability distribution over random variable X given Y
and Z is written P (X|Y, Z) and its probability mass function (pmf) or
probability density function (pdf) is p(x|y, z). If the probability distri-
bution has parameters α, β, we can write its pmf/pdf in at least three equiv-
alent ways: (1) Statisticians prefer p(x|y, z;α, β) to clearly demarcate the
parameters. (2) Graphical models experts prefer p(x|y, z, α, β) since said pa-
rameters are really just additional random variables. (3) Typographers save
ink by writing pα,β(x|y, z). To refer to this pmf/pdf as a function over possi-
ble values of a we would elide it as in pα,β(·|y, z). Using our ∼ notation from
above, we could then write that X follows the distribution X ∼ pα,β(·|y, z)
and x is a sample from it x ∼ pα,β(·|y, z).

The expectation of a random variable X is E[X]. When dealing with ran-
dom quantities for which the generating distribution might not be clear we
can denote it in the expectation. For example, Ex∼pα,β(·|y,z)[f(x, y, z)] is the
expectation of f(x, y, z) for some function f where x is sampled from the
distribution pα,β(·|y, z) and y and z are constant for the evaluation of this
expectation.

5 Notation Cheat Sheet

The table below lists additional common conventions we follow:

Notation Description

N number of training examples
M number of feature types
K number of classes

n or i current training example
m current feature type
k current class
Z set of integers
R set of reals

RM set of real-valued vectors of length M
{0, 1}M set of binary vectors of length M
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x feature vector (input) where x = [x1, x2, . . . , xM ]T ;
typically x ∈ RM or x ∈ {0, 1}M

y label / regressand (output); for classification y ∈
{1, 2, . . . , K}; for binary classification y ∈ {0, 1}
or y ∈ {+1,−1}; for regression, y ∈ R

x(i) the ith feature vector in the training data
y(i) the ith true output in the training data
x
(i)
m the mth feature of the ith feature vector

(x(i), y(i)) the ith training example (feature vector, true out-
put)

D set of training examples; for supervised learning
D = {(x(n), y(n))}Nn=1; for unsupervised learning
D = {x(n)}Nn=1

X design matrix; the ith row contains to the features
of the ith training example x(i); i.e the ith row
contains x(i)1 , . . . , x

(i)
M

X1, . . . , XM random variables corresponding to feature vector
x; (note: we generally avoid defining a vector-
valued random variable X = [X1, X2, . . . , XM ]T so
that X is not overloaded with the design matrix)

Y random variable corresponding to predicted class
y

P (Y = y|X = x) probability of random variable Y taking value y
given that random variable X takes value x

p(y|x) shorthand for P (Y = y|X = x)
θ model parameters
w model parameters (but less frequently used here)

`(θ) log-likelihood of the data; depending on context,
this might alternatively be the log- conditional
likelihood or log- marginal likelihood

J(θ) objective function
J (i)(θ) example i’s contribution to the objective function;

typically J(θ) = 1
N

∑N
i=1 J

(i)(θ)
∇J(θ) gradient of the objective function with respect to

model parameters θ
∇J (i)(θ) gradient of J (i)(θ) with respect to model parame-

ters θ
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λ stepsize in numerical optimization
θTx or xTθ or θ · x dot product of model parameters and features

hθ(x) decision function / decision rule / hypothesis
H hypothesis space; we say that h ∈ H
ŷ prediction of a decision function, e.g. ŷ = hθ(x)

`(ŷ, y) loss function
p∗(x, y) unknown data generating distribution of labeled

examples
p∗(x) unknown data generating distribution of feature

vectors only
c∗(x) true unknown hypothesis (i.e. oracle labeling func-

tion), e.g. y = c∗(x)

z Values of unknown variables (latent)
Z1, . . . , ZC random variables (latent) corresponding to z

y predicted structure (output) for structured predic-
tion

Y1, . . . , YC random variables corresponding to predicted struc-
ture y
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