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Front Matter
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 Announcements

 Exam 1 on 9/30 (today!) from 6:30 PM - 8:30 PM

 Make sure you check the seating chart (on Piazza) 

so that you know where you’re going tonight!

 Homework 4 released 9/30 (today!), due 10/9 

at 11:59 PM 

https://piazza.com/class/lzr0hlf6ktr1hw/post/308


Biological 
Neural 
Network

39/30/24 Source: https://science-art.com/image/?id=2971&m=168&pagename=neural_network_3d#.W_wrzJNKhUM 

https://science-art.com/image/?id=2971&m=168&pagename=neural_network_3d


ℎ1

ℎ2
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 Linear model for classification

 ℎ 𝒙 = sign 𝒘𝑇𝒙

 Predictions are +1 or −1 

Perceptrons



Combining Perceptrons

ℎ2

ℎ1
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ℎ1

ℎ2



ℎ 𝒙 = ቐ
+1 if ℎ1 𝒙 = +1 and ℎ2 𝒙 = −1 or ℎ1 𝒙 = −1 and ℎ2 𝒙 = +1

−1 otherwise

79/30/24

ℎ2

ℎ1ℎ1

ℎ2
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ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙  

ℎ2

ℎ1ℎ1

ℎ2



Boolean 
Algebra

 Boolean variables are either +1 (“true”) or −1 (“false”)

 Basic Boolean operations:

 Negation: ¬𝑧 = −1 ∗ 𝑧

 And: 𝐴𝑁𝐷 𝑧1, 𝑧2 = ቐ
+1 if both 𝑧1 and 𝑧2 equal + 1

−1 otherwise

 Or: 𝑂𝑅 𝑧1, 𝑧2 = ቐ
+1 if either 𝑧1 or 𝑧2 equals + 1

−1 otherwise

99/30/24



Boolean 
Algebra

109/30/24

 Boolean variables are either +1 (”true”) or −1 (“false”)

 Basic Boolean operations

 Negation: ¬𝑧 = −1 ∗ 𝑧

 And: 𝐴𝑁𝐷 𝑧1, 𝑧2 = sign 𝑧1 + 𝑧2 − 1.5

 Or: 𝑂𝑅 𝑧1, 𝑧2 = sign 𝑧1 + 𝑧2 + 1.5



Boolean 
Algebra
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 Boolean variables are either +1 (”true”) or −1 (“false”)

 Basic Boolean operations

 Negation: ¬𝑧 = −1 ∗ 𝑧

 And: 𝐴𝑁𝐷 𝑧1, 𝑧2 = sign [−1.5, 1, 1]
1
𝑧1

𝑧2

 Or: 𝑂𝑅 𝑧1, 𝑧2 = sign [1.5, 1, 1]
1
𝑧1

𝑧2



Building a 
Network

ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙
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Building a 
Network

ℎ1 𝒙

¬ℎ2 𝒙

1

−1.5

1

1
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ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙



Building a 
Network

ℎ1 𝒙

ℎ2 𝒙

1

−1.5

1

−1
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ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙



Building a 
Network

ℎ1 𝒙

ℎ2 𝒙

1

−1.5

1

−1
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ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙

ℎ1 𝒙

ℎ2 𝒙

1

−1.5

−1

1



Building a 
Network

ℎ1 𝒙

ℎ2 𝒙

1

−1.5

1

−1
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ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙

ℎ1 𝒙

ℎ2 𝒙

1

−1.5

−1

1



Building a 
Network

ℎ1 𝒙

ℎ2 𝒙

1

−1.5

1

−1
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ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙

ℎ1 𝒙

ℎ2 𝒙

1

−1

1

−1.5



Building a 
Network

ℎ1 𝒙

ℎ2 𝒙

−1.5

1

−1
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ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙

ℎ1 𝒙

ℎ2 𝒙

1

−1

1

−1.5

1.5

1

1

1

ℎ 𝒙

ℎ𝑖 𝒙 = sign 𝒘𝑖
𝑇𝒙 = sign 

𝑑=0

𝐷

𝑤𝑖,𝑑 𝑥𝑑

𝑥1

𝑥𝐷

1

⋮

𝑤1,0

𝑤1,𝐷

𝑤2,𝐷

𝑤2,1

𝑤2,0

𝑤1,1



Building a 
Network

ℎ1 𝒙

ℎ2 𝒙

−1.5

1

−1
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ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙

ℎ1 𝒙

ℎ2 𝒙

1

−1

1

−1.5

1.5

1

1

1

ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮

𝑤1,0

𝑤1,𝐷

𝑤2,𝐷

𝑤2,1

𝑤2,0

𝑤1,1

𝑔 Ԧ𝑥 = sign sign −sign 𝒘1
𝑇𝒙 + sign 𝒘2

𝑇𝒙 − 1.5 + 1.5

ℎ 𝒙 = sign sign sign 𝒘1
𝑇𝒙 − sign 𝒘2

𝑇𝒙 − 1.5 + 



Building a 
Network

ℎ1 𝒙

ℎ2 𝒙

−1.5

1

−1
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ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙

ℎ1 𝒙

ℎ2 𝒙

1

−1

1

−1.5

1.5

1

1

1

ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮

𝑤1,0

𝑤1,𝐷

𝑤2,𝐷

𝑤2,1

𝑤2,0

𝑤1,1

𝑔 Ԧ𝑥 = sign sign −sign 𝒘1
𝑇𝒙 + sign 𝒘2

𝑇𝒙 − 1.5 + 1.5

ℎ 𝒙 = sign sign sign 𝒘1
𝑇𝒙 − sign 𝒘2

𝑇𝒙 − 1.5 + 



Building a 
Network

ℎ1 𝒙

ℎ2 𝒙

−1.5

1

−1

219/30/24

ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙

ℎ1 𝒙

ℎ2 𝒙

1

−1

1

−1.5

1.5

1

1

1

ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮

𝑤1,0

𝑤1,𝐷

𝑤2,𝐷

𝑤2,1

𝑤2,0

𝑤1,1

𝑔 Ԧ𝑥 = sign sign −sign 𝒘1
𝑇𝒙 + sign 𝒘2

𝑇𝒙 − 1.5 + 1.5

ℎ 𝒙 = sign sign sign 𝒘1
𝑇𝒙 − sign 𝒘2

𝑇𝒙 − 1.5 + 



Building a 
Network

ℎ1 𝒙

ℎ2 𝒙

−1.5

1

−1

229/30/24

ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙

ℎ1 𝒙

ℎ2 𝒙

1

−1

1

−1.5

1.5

1

1

1

ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮

𝑤1,0

𝑤1,𝐷

𝑤2,𝐷

𝑤2,1

𝑤2,0

𝑤1,1

𝑔 Ԧ𝑥 = sign sign −sign 𝒘1
𝑇𝒙 + sign 𝒘2

𝑇𝒙 − 1.5 + 1.5

ℎ 𝒙 = sign sign sign 𝒘1
𝑇𝒙 − sign 𝒘2

𝑇𝒙 − 1.5 + 



Building a 
Network

ℎ1 𝒙

ℎ2 𝒙

−1.5

1

−1

239/30/24

ℎ 𝒙 = 𝑂𝑅 𝐴𝑁𝐷 ℎ1 𝒙 , ¬ℎ2 𝒙 , 𝐴𝑁𝐷 ¬ℎ1 𝒙 , ℎ2 𝒙

ℎ1 𝒙

ℎ2 𝒙

1

−1

1

−1.5

1.5

1

1

1

ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮

𝑤1,0

𝑤1,𝐷

𝑤2,𝐷

𝑤2,1

𝑤2,0

𝑤1,1

𝑔 Ԧ𝑥 = sign sign −sign 𝒘1
𝑇𝒙 + sign 𝒘2

𝑇𝒙 − 1.5 + 1.5

ℎ 𝒙 = sign sign sign 𝒘1
𝑇𝒙 − sign 𝒘2

𝑇𝒙 − 1.5 + 



Multi-Layer 
Perceptron 
(MLP)

1

249/30/24

1

ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮ ⋮ ⋮

⋯



𝑓

𝑓

𝑓

259/30/24

𝑓

1

𝑓 ℎ 𝒙
𝑥1

𝑥𝐷

1

⋯

⋮ ⋮ ⋮

1

(Fully-
Connected) Feed 
Forward Neural 
Network



Activation 
Functions

9/30/24 26Source: https://en.wikipedia.org/wiki/Activation_function 

https://en.wikipedia.org/wiki/Activation_function


𝑓

𝑓

𝑓

279/30/24

𝑓

1

𝑓 ℎ 𝒙
𝑥1

𝑥𝐷

1

⋯

⋮ ⋮ ⋮

1

Poll Question 1

True or False: Linear and 
logistic regression models 
can be expressed as 
neural networks.

A. Only true for linear 
regression
B. Only true for logistic 
regression
C. TOXIC
D. True for both
E. False for both



289/30/24

𝐼 ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮

Linear  
Regression as a 
Neural Network



299/30/24

𝜎 ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮

Logistic 
Regression as a 
Neural Network



𝑓

𝑓

𝑓

309/30/24

𝑓

1

𝑓 ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮ ⋮ ⋮

⋯

Input layer: 

𝑙 = 0

Hidden layers: 

𝑙 ∈ 1, … , 𝐿 − 1

Output layer: 

𝑙 = 𝐿

Layer 𝑙 has dimension 𝐷(𝑙) → Layer 𝑙 has 𝐷(𝑙) + 1 nodes, 

counting the bias node  

𝐷(1) 𝐷(𝐿−1)𝐷(0)

1

(Fully-
Connected) Feed 
Forward Neural 
Network



𝑓

𝑓

𝑓
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𝑓

1

𝑓 ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮ ⋮ ⋮

⋯

𝐷(1) 𝐷(𝐿−1)𝐷(0)

The weights between layer 𝑙 − 1 and layer 𝑙 are a matrix: 

𝑊 𝑙 ∈ ℝ𝐷 𝑙  × 𝐷 𝑙−1 +1  

𝑤𝑗,𝑖
𝑙

 is the weight between node 𝑖 in layer 𝑙 − 1 and 

node 𝑗 in layer 𝑙

1

(Fully-
Connected) Feed 
Forward Neural 
Network



𝑓

𝑓

𝑓
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𝑓

1

𝑓 ℎ 𝒙
𝑥1

𝑥𝐷

1

⋮ ⋮ ⋮

⋯

𝐷(1) 𝐷(𝐿−1)𝐷(0)

The weights between layer 𝑙 − 1 and layer 𝑙 are a matrix: 

𝑊 𝑙 ∈ ℝ𝐷 𝑙  × 𝐷 𝑙−1 +1  

𝑤𝑗,𝑖
𝑙

 is the weight between node 𝑖 in layer 𝑙 − 1 and 

node 𝑗 in layer 𝑙

1

So what are all 
these layers 
doing for us 
anyway?



Neural 
Network 
Decision 
Boundaries: 
Example 1

9/30/24 33Figure courtesy of Matt Gormley



Neural 
Network 
Decision 
Boundaries: 
Example 1
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Decision 
Boundaries: 
Example 1

9/30/24 35Figure courtesy of Matt Gormley



Neural 
Network 
Decision 
Boundaries: 
Example 1
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Neural 
Network 
Decision 
Boundaries: 
Example 1
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Neural 
Network 
Decision 
Boundaries: 
Example 1
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Neural 
Network 
Decision 
Boundaries: 
Example 1
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Neural 
Network 
Decision 
Boundaries: 
Example 2

9/30/24 40Figure courtesy of Matt Gormley



Neural 
Network 
Decision 
Boundaries: 
Example 2

9/30/24 41Figure courtesy of Matt Gormley



Neural 
Network 
Decision 
Boundaries: 
Example 2
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Neural 
Network 
Decision 
Boundaries: 
Example 2
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Neural 
Network 
Decision 
Boundaries: 
Example 2
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Neural 
Network 
Decision 
Boundaries: 
Example 2
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Neural 
Network 
Decision 
Boundaries: 
Example 2
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Neural 
Network 
Decision 
Boundaries: 
Example 2

9/30/24 47Figure courtesy of Matt Gormley
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𝑓

𝑓

𝑓

⋮

Layer 𝑙 − 1 Layer 𝑙

Every node has an incoming signal and outgoing output

𝑤𝑗,0
𝑙

𝑤𝑗,1
𝑙

𝑤
𝑗,𝐷 𝑙−1

𝑙

Node 0

Node 1

Node 𝐷 𝑙−1

Node 𝑗

𝑎𝑗
𝑙

𝑧𝑗
𝑙

Signal and 
Outputs

𝑎𝑗
𝑙

= 

𝑖 = 0

𝐷 𝑙−1

𝑤𝑗,𝑖
𝑙

𝑧𝑖
𝑙−1

and 𝑧𝑗
𝑙

= 𝑓 𝑎𝑗
𝑙

1
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𝑓

𝑓

𝑓

⋮

Layer 𝑙 − 1 Layer 𝑙

Every node has an incoming signal and outgoing output

𝑤𝑗,0
𝑙

𝑤𝑗,1
𝑙

𝑤
𝑗,𝐷 𝑙−1

𝑙

Node 0

Node 1

Node 𝐷 𝑙−1

Node 𝑗

𝑎𝑗
𝑙

𝑧𝑗
𝑙

Signal and 
Outputs

1

𝒂 𝑙 = 𝑊 𝑙 𝒛 𝑙−1  and 𝒛 𝑙 = 1, 𝑓 𝒛 𝑙 𝑇



Forward 
Propagation 
for Making 
Predictions

 Input: weights 𝑊 1 , … , 𝑊 𝐿  and a query data point 𝒙

 Initialize 𝒛 0 = 1, 𝒙 𝑇

 For 𝑙 = 1, … , 𝐿

 𝒂 𝑙 = 𝑊 𝑙 𝒛 𝑙−1

 𝒛 𝑙 = 1, 𝑓 𝒂 𝑙 𝑇

 Output: ℎ𝑊 1 ,…,𝑊 𝐿 𝒙 = 𝒛 𝐿

509/30/24



Gradient 
Descent 
for Learning

 Input: 𝒟 = 𝒙 𝑛 , 𝑦 𝑛
𝑛=1

𝑁
, 𝜂 0

 Initialize all weights 𝑊 0
1

, … , 𝑊 0
𝐿

 to small, random 

numbers and set 𝑡 = 0 (???)

 While TERMINATION CRITERION is not satisfied (???)

 For 𝑙 = 1, … , 𝐿

 Compute 𝐺 𝑙 = ∇𝑊 𝑙 ℓ𝒟 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

 (???)

 Update 𝑊 𝑙 : 𝑊 𝑡+1
𝑙

= 𝑊 𝑡
𝑙

− 𝜂0𝐺 𝑙

 Increment 𝑡: 𝑡 = 𝑡 + 1 

 Output: 𝑊 𝑡
1

, … , 𝑊 𝑡
𝐿

519/30/24



Poll Question 2

 Suppose you are training a two-

layer (one-hidden layer) neural 

network with sigmoid activations 

for binary classification.

 True or False: There is a unique set 

of parameters that maximizes the 

likelihood of the dataset above.

9/30/24 52

𝑓

𝑓

𝑦𝑥

A. TOXIC  B. True    C. False

𝑤1,1
1

𝑤1,2
1

𝑤1,1
2

𝑤2,1
2



Neural 
Network 
Learning 
Objectives

You should be able to…

1. Explain the biological motivations for a neural network 

2. Combine simpler models (e.g. linear regression, binary 
logistic regression, multinomial logistic regression) as 
components to build up feed-forward neural network 
architectures 

3. Explain the reasons why a neural network can model 
nonlinear decision boundaries for classification 

4. Compare and contrast feature engineering with 
learning features 

5. Identify (some of) the options available when designing 
the architecture of a neural network 

6. Implement a feed-forward neural network

539/30/24
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