
10-301/601: Introduction 
to Machine Learning
Lecture 14 – Societal  
Impacts of ML
Matt Gormley & Henry Chai

2/26/25



Front Matter

� Announcements

� HW4 released 2/17, due 2/26 (today!) at 11:59 PM 

� HW5 released 2/26 (today!), due 3/16 at 11:59 PM

� You are not expected to work on HW5 over fall 

break! 

� Exam viewings are Tue, Wed, Thu this week
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Recall: 
Gradient 
Descent

� Iterative method for minimizing functions

� Requires the gradient to exist everywhere
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Non-convexity

� Gradient descent is not guaranteed to find a global 
minimum on non-convex surfaces
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Stochastic
Gradient 
Descent for 
Neural 
Networks

52/26/25

� Input: 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 𝜂%&'
(

1. Initialize all weights 𝑊 (
# , … ,𝑊 (

)  to small, random         

numbers and set 𝑡 = 0𝐺*#
+ = 0 ∗𝑊 + 	∀	𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample a data point from 𝒟, 𝒙 ! , 𝑦 !

b. Compute the pointwise gradient,

𝐺 + = ∇, ! ℓ ! 𝑊 -
# , … ,𝑊 -

) ∀	𝑙4
."#

/

c. Update 𝑊 + : 𝑊-0#
+ ← 𝑊-

+ − 𝜂%&'
( 𝐺 + 	∀	𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝑊-
# , … ,𝑊-

)



Mini-batch
Stochastic
Gradient 
Descent for 
Neural 
Networks
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� Input: 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 𝜂1/
( , 𝐵

1. Initialize all weights 𝑊 (
# , … ,𝑊 (

)  to small, random         

numbers and set 𝑡 = 0 𝐺*#
+ = 0 ∗𝑊 + 	∀	𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 . , 𝑦 .
."#
/

b. Compute the gradient w.r.t. the sampled batch,

𝐺 + =
1
𝐵
4
."#

/

∇, ! ℓ . 𝑊 -
# , … ,𝑊 -

) 	∀	𝑙

c. Update 𝑊 + : 𝑊-0#
+ ← 𝑊-

+ − 𝜂1/
( 𝐺 + 	∀	𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝑊-
# , … ,𝑊-

)



Mini-batch
Stochastic
Gradient 
Descent with 
Momentum for 
Neural 
Networks
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� Input: 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

, 𝜂1/
( , 𝐵, decay parameter 𝛽

1. Initialize all weights 𝑊 (
# , … ,𝑊 (

)  to small, random         

numbers and set 𝑡 = 0, 𝐺*#
+ = 0⊙𝑊 + 	∀	𝑙 = 1,… , 𝐿

2. While TERMINATION CRITERION is not satisfied

a. Randomly sample 𝐵 data points from 𝒟, 𝒙 . , 𝑦 .
."#
/

b. Compute the gradient w.r.t. the sampled batch,

𝐺-
+ =

1
𝐵
4
."#

/

∇, ! ℓ . 𝑊 -
# , … ,𝑊 -

) ∀	𝑙

c. Update 𝑊 + : 𝑊-0#
+ ← 𝑊-

+ − 𝜂1/
( 𝛽𝐺-*#

+ + 𝐺-
+ ∀	𝑙

d. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝑊-
# , … ,𝑊-

)
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Mini-batch 
Stochastic 
Gradient 
Descent with 
Momentum for 
Neural 
Networks
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Mini-batch 
Stochastic 
Gradient 
Descent with 
Momentum for 
Neural 
Networks
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Mini-batch 
Stochastic 
Gradient 
Descent with 
Momentum for 
Neural 
Networks



Random 
Restarts

� Run mini-batch gradient descent (with momentum & 

adaptive gradients) multiple times, each time starting 
with a different, random initialization for the weights.

� Compute the training error of each run at termination 

and return the set of weights that achieves the lowest 
training error.
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Random 
Restarts

1

2 3
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Random 
Restarts

1

2 3



Terminating 
Gradient 
Descent

� For non-convex surfaces, the gradient’s magnitude is 
often not a good metric for proximity to a minimum

2/26/25 17



Terminating 
Gradient 
Descent
“Early”
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� For non-convex surfaces, the gradient’s magnitude is 
often not a good metric for proximity to a minimum

� Combine multiple termination criteria e.g. only stop if 
enough iterations have passed and the improvement in 
error is small

� Alternatively, terminate early by using a validation data 
set: if the validation error starts to increase, just stop!

� Early stopping asks like regularization by limiting 
how much of the hypothesis set is explored



Backpropagation 
Learning 
Objectives

You should be able to…

� Differentiate between a neural network diagram and a computation graph

� Construct a computation graph for a function as specified by an algorithm

� Carry out the backpropagation on an arbitrary computation graph

� Construct a computation graph for a neural network, identifying all the given 
and intermediate quantities that are relevant

� Instantiate the backpropagation algorithm for a neural network

� Instantiate an optimization method (e.g. SGD) and a regularizer (e.g. L2) 
when the parameters of a model are comprised of several matrices 
corresponding to different layers of a neural network

� Apply the empirical risk minimization framework to learn a neural network

� Use the finite difference method to evaluate the gradient of a function

� Identify when the gradient of a function can be computed at all and when it 
can be computed efficiently

� Employ basic matrix calculus to compute vector/matrix/tensor derivatives.
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Societal Impacts of ML
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Machine 
Learning in 
Societal 
Applications

� What are some criteria we might want our machine 

learning models to satisfy in contexts with human subjects?

� Fair or Unbiased w/ Respect to Protected Groups

� Transparent

� Interpretable

� Robust to Adversarial Attack

� Private

� Environmentally Friendly

	 ⋮

2/26/25 26



Machine 
Learning in 
Societal 
Applications

� What are some criteria we might want our machine 

learning models to satisfy in contexts with human subjects?

� Fair or Unbiased w/ Respect to Protected Groups

� Transparent

� Interpretable

� Robust to Adversarial Attack

� Private

� Environmentally Friendly

	 ⋮

2/26/25 27



2/26/25 28Source: http://content.time.com/time/business/article/0,8599,1954643,00.html

http://content.time.com/time/business/article/0,8599,1954643,00.html
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“A Chinese woman [surname Yan] was 
offered two refunds from Apple for her 
new iPhone X… [it] was unable to tell her 
and her other Chinese colleague apart.”

“Thinking that a faulty camera was to 
blame, the store operator gave [Yan] a 
refund, which she used to purchase 
another iPhone X. But the new phone 
turned out to have the same problem, 
prompting the store worker to offer her 
another refund … It is unclear whether she 
purchased a third phone”

Source: https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263

https://www.newsweek.com/iphone-x-racist-apple-refunds-device-cant-tell-chinese-people-apart-woman-751263


302/26/25 Source: https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender

“As facial recognition systems become more 
common, Amazon has emerged as a 
frontrunner in the field, courting customers 
around the US, including police 
departments and Immigration and Customs 
Enforcement (ICE).”

https://www.theverge.com/2019/1/25/18197137/amazon-rekognition-facial-recognition-bias-race-gender
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Source: https://pulitzercenter.org/stories/twisted-eye-sky-over-buenos-aires Source: https://www.washingtonpost.com/business/interactive/2025/police-artificial-

intelligence-facial-recognition/ 
Source: https://www.facebook.com/FOX2Now/posts/chris-gatlin-spent-17-months-in-jail-
for-a-crime-that-an-artificial-intelligence/1171091654607463/ 

https://pulitzercenter.org/stories/twisted-eye-sky-over-buenos-aires
https://www.washingtonpost.com/business/interactive/2025/police-artificial-intelligence-facial-recognition/
https://www.washingtonpost.com/business/interactive/2025/police-artificial-intelligence-facial-recognition/
https://www.facebook.com/FOX2Now/posts/chris-gatlin-spent-17-months-in-jail-for-a-crime-that-an-artificial-intelligence/1171091654607463/
https://www.facebook.com/FOX2Now/posts/chris-gatlin-spent-17-months-in-jail-for-a-crime-that-an-artificial-intelligence/1171091654607463/


Word 
embeddings 
and analogies

� https://lamyiowce.github.io/word2viz/

322/26/25

https://lamyiowce.github.io/word2viz/


Bias in LLMs 
(Kotek et al., 
2023)

2/26/25 33Source: https://arxiv.org/pdf/2308.14921v1.pdf 

https://arxiv.org/pdf/2308.14921v1.pdf


Bias in LLMs 
(Kotek et al., 
2023)

2/26/25 34Source: https://arxiv.org/pdf/2308.14921v1.pdf 

https://arxiv.org/pdf/2308.14921v1.pdf


2/26/25 35Source: https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


Different Types 
of Errors

2/26/25 36

Predicted Label

+1 −1

Tr
ue

 L
ab

el +1 True positive (TP) False negative (FN) Total positives 
(P) = TP + FN

−1 False positive (FP) True negative (TN) Total negatives 
(N) = FP + TN

Predicted positives 
(PP) = TP + FP

Predicted negatives 
(PN) = FN + TN

Predicted Label

+1 −1

Tr
ue

 L
ab

el +1 True positive (TP) False negative (FN) Total positives 
(P) = TP + FN

−1 False positive (FP) True negative (TN) Total negatives 
(N) = FP + TN

Predicted Label

+1 −1

Tr
ue

 L
ab

el +1 True positive (TP) False negative (FN)

−1 False positive (FP) True negative (TN)



Different Types 
of Performance 
Metrics

� Thus far, for binary classification tasks, we have largely only 

been concerned with error rate i.e., minimizing the 0-1 loss

� Error rate can be problematic in settings with…

� Imbalanced labels

� Asymmetric costs for different types of errors

� Some common alternatives are

� False positive rate (FPR) = FP / N = FP / (FP + TN)

� False negative rate (FNR) = FN / P = FN / (TP + FN)

� Positive predictive value (PPV) = TP / PP = TP / (TP + FP)

� Negative predictive value (NPV) = TN / PN = TN / (FN + TN)2/26/25 37



2/26/25 38Source: https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm 

This is one possible definition of unfairness. 

We’ll explore a few others and see how they relate to one another. 

https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm


2/26/25 39Source: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4533047 

“However, when it came to race, judges appeared to misapply the AI guidance. Ho found judges 
generally sentenced Black and White defendants equally harshly based on their risk scores alone. 
But when the AI recommended probation for low-risk offenders, judges disproportionately 
declined to offer alternatives to incarceration for Black defendants.

As a result, similar Black offenders ended up with significantly fewer alternative punishments and 
longer average jail terms than their White counterparts — missing out on probation by 6% and 
receiving jail terms averaging a month longer.”

Source: https://news.tulane.edu/pr/ai-sentencing-cut-jail-time-low-risk-offenders-study-finds-racial-bias-persisted 

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4533047
https://news.tulane.edu/pr/ai-sentencing-cut-jail-time-low-risk-offenders-study-finds-racial-bias-persisted


Running 
Example

40

� Suppose you’re an admissions officer for some program 
at CMU, deciding which applicants to admit

� 𝑋 are the non-protected features of an applicant (e.g., 
standardized test scores, GPA, etc…) 

� 𝐴 is a protected feature (e.g. gender), usually 
categorical, i.e., 𝐴 ∈ {𝑎#, … , 𝑎2}

� ℎ 𝑋, 𝐴 ∈ +1,−1  is your model’s prediction, usually 
corresponding to some decision or action (e.g., +1 =
	admit to CMU) 

� 𝑌 ∈ +1,−1  is the true, underlying target variable, 
usually some latent or hidden state (e.g.,  +1 =	this 
applicant would be “successful” at CMU) 
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Attempt 1: 
Fairness 
through 
Unawareness

� Idea: build a model that only uses the non-protected 

features, 𝑋

� Achieves some notion of “individual fairness” 

� “Similar” individuals will receive “similar” predictions

� Two individuals who are identical except for their 
protected feature 𝐴 would receive the same predictions

� Problem: the non-protected features 𝑋 might be affected 
by/dependent on 𝐴

� In general, 𝑋 and 𝐴 are not independent
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Poll Question 1:

True or False – If a 
model is trained on only 

𝑋 and not 𝐴, it’s 
predictions will not be 

correlated with 𝐴 i.e., 
the predictions and 𝐴 

are independent

� Idea: build a model that only uses the non-protected 

features, 𝑋

� Achieves some notion of “individual fairness” 

� “Similar” individuals will receive “similar” predictions

� Two individuals who are identical except for their 
protected feature 𝐴 would receive the same predictions

� Problem: the non-protected features 𝑋 might be affected 
by/dependent on 𝐴

� In general, 𝑋 and 𝐴 are not independent

2/26/25 42

A. True    B. False   C. TOXIC



Attempt 1: 
Fairness 
through 
Unawareness

� Idea: build a model that only uses the non-protected 

features, 𝑋

� Achieves some notion of “individual fairness” 

� “Similar” individuals will receive “similar” predictions

� Two individuals who are identical except for their 
protected feature 𝐴 would receive the same predictions

� Problem: the non-protected features 𝑋 might be affected 
by/dependent on 𝐴

� In general, 𝑋 and 𝐴 are not independent
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“While it [the algorithm] didn't directly 
consider ethnicity, its emphasis on medical 
costs as bellwethers for health led to the 
code routinely underestimating the needs 
of black patients. A sicker black person 
would receive the same risk score as a 
healthier white person simply because of 
how much they could spend.”

Source: https://science.sciencemag.org/content/366/6464/447

https://science.sciencemag.org/content/366/6464/447


Three 
Definitions of 
Fairness

46

� Independence: ℎ �⃗�, 𝑎 ⊥ 𝑎
� Probability of being accepted is the same for all genders 

hidden text!

� Separation: ℎ �⃗�, 𝑎 ⊥ 𝑎 ∣ 𝑦 
� All “good” applicants are accepted with the same 

probability, regardless of gender

� Same for all “bad” applicants

� Sufficiency: 𝑦 ⊥ 𝑎 ∣ ℎ �⃗�, 𝑎
� For the purposes of predicting 𝑦, the information 

contained in ℎ �⃗�, 𝑎  is “sufficient”, 𝑎 becomes irrelevant
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Three 
Definitions of 
Fairness

47

� Independence (selection rate parity): ℎ 𝑋, 𝐴 ⊥ 𝐴
Probability of being accepted is the same for all genders 
hidden text!

� Separation: ℎ �⃗�, 𝑎 ⊥ 𝑎 ∣ 𝑦 
All “good” applicants are accepted with the same 
probability, regardless of gender

Same for all “bad” applicants

� Sufficiency: 𝑦 ⊥ 𝑎 ∣ ℎ �⃗�, 𝑎
For the purposes of predicting 𝑦, the information 
contained in ℎ �⃗�, 𝑎  is “sufficient”, 𝑎 becomes irrelevant
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Independence

� Proportion of accepted applicants is the same for all genders

𝑃 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎3 = 𝑃 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎4 	∀	𝑎3, 𝑎4

or more generally,

𝑃 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎3 ≈ 𝑃 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎4 	∀	𝑎3, 𝑎4

5 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎3
5 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎4

≥ 1 − 𝜖	∀	𝑎3, 𝑎4 for some 𝜖

Problem: permits laziness, i.e., a classifier that always predicts 

+ 1 will achieve independence

Even worse, a malicious decision maker can perpetuate 

bias by admitting 𝐶% of applicants from gender 𝑎3 
diligently (e.g., according to a model) and admitting 𝐶% 
of applicants from all other genders at random
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Achieving
Fairness

1. Pre-processing data

2. Additional constraints during training

3. Post-processing predictions

492/26/25

Premise for 1 and 2: 
If your definition of fairness is 
satisfied in your training data, 
then most models will preserve 
that relationship.



Achieving
Independence

� Massaging the dataset: strategically flip labels so that 

𝑌 ⊥ 𝐴 in the training data

2/26/25 50

𝑋 𝐴 𝑌 Score 𝑌′

⋯

+1 +1 0.98 +1
+1 +1 0.89 +1
+1 +1 0.61 −1
+1 −1 0.30 −1
−1 +1 0.96 +1
−1 −1 0.42 +1
−1 −1 0.31 −1
−1 −1 0.02 −1

𝑋 𝐴 𝑌 Score

⋯

+1 +1 0.98
+1 +1 0.89
+1 +1 0.61
+1 −1 0.30
−1 +1 0.96
−1 −1 0.42
−1 −1 0.31
−1 −1 0.02



Achieving
Independence

� Reweighting the dataset: weight the training data points 

so that under the implied distribution, 𝑌 ⊥ 𝐴 

2/26/25 51

𝑋 𝐴 𝑌 Score Ω

⋯

+1 +1 0.98 1/12
+1 +1 0.89 1/12
+1 +1 0.61 1/12
+1 −1 0.30 1/4
−1 +1 0.96 1/4
−1 −1 0.42 1/12
−1 −1 0.31 1/12
−1 −1 0.02 1/12



Independence

� Proportion of accepted applicants is the same for all genders

𝑃 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎3 = 𝑃 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎4 	∀	𝑎3, 𝑎4

or more generally,

𝑃 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎3 ≈ 𝑃 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎4 	∀	𝑎3, 𝑎4

5 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎3
5 ℎ 𝑋, 𝐴 = +1 𝐴 = 𝑎4

≥ 1 − 𝜖	∀	𝑎3, 𝑎4 for some 𝜖

� Problem: permits laziness, i.e., a classifier that always 

predicts +1 will achieve independence

� Even worse, a malicious decision maker can perpetuate 

bias by admitting 𝐶% of applicants from gender 𝑎3 
diligently (e.g., according to a model) and admitting 𝐶% 
of applicants from all other genders at random
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Three 
Definitions of 
Fairness

53

� Independence (selection rate parity): ℎ 𝑋, 𝐴 ⊥ 𝐴
� Proportion of accepted applicants is the same for all 

genders hidden text!

� Permits laziness/is susceptible to adversarial decisions

� Separation: ℎ �⃗�, 𝑎 ⊥ 𝑎 ∣ 𝑦 
All “good” applicants are accepted with the same 
probability, regardless of gender

Same for all “bad” applicants

� Sufficiency: 𝑦 ⊥ 𝑎 ∣ ℎ �⃗�, 𝑎
For the purposes of predicting 𝑦, the information 
contained in ℎ �⃗�, 𝑎  is “sufficient”, 𝑎 becomes irrelevant
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Three 
Definitions of 
Fairness

54

� Independence (selection rate parity): ℎ 𝑋, 𝐴 ⊥ 𝐴
� Proportion of accepted applicants is the same for all 

genders

� Permits laziness/is susceptible to adversarial decisions

� Separation (equality of FPR and FNR): ℎ 𝑋, 𝐴 ⊥ 𝐴	|	𝑌
All “good” applicants are accepted with the same 
probability, regardless of gender

Same for all “bad” applicants

� Sufficiency: 𝑦 ⊥ 𝑎 ∣ ℎ �⃗�, 𝑎
For the purposes of predicting 𝑦, the information 
contained in ℎ �⃗�, 𝑎  is “sufficient”, 𝑎 becomes irrelevant
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Separation

� Predictions and protected features can be correlated to the 
extent justified by the (latent) target variable

	 _	𝑃 ℎ 𝑋, 𝐴 = +1 𝑌 = +1, 𝐴 = 𝑎3
= 𝑃 ℎ 𝑋, 𝐴 = +1 𝑌 = +1, 𝐴 = 𝑎4 	&	
	 _	𝑃 ℎ 𝑋, 𝐴 = +1 𝑌 = −1, 𝐴 = 𝑎3 	
= 𝑃 ℎ 𝑋, 𝐴 = +1 𝑌 = −1, 𝐴 = 𝑎4 	∀	𝑎3, 𝑎4

or equivalently, the model’s true positive rate (TPR), 
𝑃 ℎ 𝑋, 𝐴 = +1 𝑌 = +1 , and false positive rate (FPR), 
𝑃 ℎ 𝑋, 𝐴 = +1 𝑌 = −1	 , must be equal across groups

� Natural relaxations care about only one of these two 

Problem: our only access to the target variable is through 
historical data so separation can perpetuate existing biases. 
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Achieving 
Separation

2/26/25 56

• ROC curve plots the

TPR = 1 - FNR against 
the FPR at different 
prediction thresholds, 𝜏:

ℎ 𝑋, 𝐴 = 𝟙(SCORE	 ≥ 𝜏)	
• Can achieve separation 

by using different 
thresholds for different 

groups, corresponding 
to where their ROC 
curves intersect



Separation

� Predictions and protected features can be correlated to the 
extent justified by the (latent) target variable training data

	 _	𝑃 ℎ 𝑋, 𝐴 = −1 𝑌 = +1, 𝐴 = 𝑎3
= 𝑃 ℎ 𝑋, 𝐴 = −1 𝑌 = +1, 𝐴 = 𝑎4 	&	
	 _	𝑃 ℎ 𝑋, 𝐴 = +1 𝑌 = −1, 𝐴 = 𝑎3 	
= 𝑃 ℎ 𝑋, 𝐴 = +1 𝑌 = −1, 𝐴 = 𝑎4 	∀	𝑎3, 𝑎4

or equivalently, the model’s true positive rate (FNR), 
𝑃 ℎ 𝑋, 𝐴 = −1 𝑌 = +1 , and false positive rate (FPR), 
𝑃 ℎ 𝑋, 𝐴 = +1 𝑌 = −1	 , must be equal across groups

� Natural relaxations care about only one of these two 

� Problem: our only access to the target variable is through 
historical data so separation can perpetuate existing bias. 
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Three 
Definitions of 
Fairness

58

� Independence (selection rate parity): ℎ 𝑋, 𝐴 ⊥ 𝐴
� Proportion of accepted applicants is the same for all 

genders

� Permits laziness/is susceptible to adversarial decisions

� Separation (equality of FPR and FNR): ℎ 𝑋, 𝐴 ⊥ 𝐴	|	𝑌
� All “good” applicants are accepted with the same 

probability, regardless of gender

� Perpetuates existing biases in the training data

� Sufficiency: 𝑦 ⊥ 𝑎 ∣ ℎ �⃗�, 𝑎
For the purposes of predicting 𝑦, the information 
contained in ℎ �⃗�, 𝑎  is “sufficient”, 𝑎 becomes irrelevant
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� Independence (selection rate parity): ℎ 𝑋, 𝐴 ⊥ 𝐴
� Proportion of accepted applicants is the same for all 

genders

� Permits laziness/is susceptible to adversarial decisions

� Separation (equality of FPR and FNR): ℎ 𝑋, 𝐴 ⊥ 𝐴	|	𝑌
� All “good” applicants are accepted with the same 

probability, regardless of gender

� Perpetuates existing biases in the training data

� Sufficiency (equality of PPV and NPV): 𝑌 ⊥ 𝐴	|	ℎ 𝑋, 𝐴
For the purposes of predicting 𝑦, the information 
contained in ℎ �⃗�, 𝑎  is “sufficient”, 𝑎 becomes irrelevant
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Sufficiency

� Knowing the prediction is sufficient for decorrelating the 

(latent) target variable and the protected feature
	 _	𝑃 𝑌 = +1 ℎ 𝑋, 𝐴 = +1, 𝐴 = 𝑎3
= 𝑃 𝑌 = +1 ℎ 𝑋, 𝐴 = +1, 𝐴 = 𝑎4 	&	
	 _	𝑃 𝑌 = +1 ℎ 𝑋, 𝐴 = −1, 𝐴 = 𝑎3 	

= 𝑃 𝑌 = +1 ℎ 𝑋, 𝐴 = −1, 𝐴 = 𝑎4 	∀	𝑎3, 𝑎4

If a model uses some score to make predictions, then that 

score is calibrated across groups if 
𝑃 𝑌 = +1 SCORE, 𝐴 = 𝑎3 = SCORE	∀	𝑎3

A model being calibrated across groups implies sufficiency

� In general, most off-the-shelf ML models can achieve 

sufficiency without intervention 
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� Independence (selection rate parity): ℎ 𝑋, 𝐴 ⊥ 𝐴
� Proportion of accepted applicants is the same for all 

genders

� Permits laziness/is susceptible to adversarial decisions

� Separation (equality of FPR and FNR): ℎ 𝑋, 𝐴 ⊥ 𝐴	|	𝑌
� All “good”/”bad” applicants are accepted with the same 

probability, regardless of gender

� Perpetuates existing biases in the training data

� Sufficiency (equality of PPV and NPV): 𝑌 ⊥ 𝐴	|	ℎ 𝑋, 𝐴
� For the purposes of predicting 𝑌, the information 

contained in ℎ 𝑋, 𝐴  is “sufficient”, 𝐴 becomes irrelevant
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� Independence (selection rate parity): ℎ 𝑋, 𝐴 ⊥ 𝐴
� Proportion of accepted applicants is the same for all 

genders

� Permits laziness/is susceptible to adversarial decisions

� Separation (equality of FPR and FNR): ℎ 𝑋, 𝐴 ⊥ 𝐴	|	𝑌
� All “good”/”bad” applicants are accepted with the same 

probability, regardless of gender

� Perpetuates existing biases in the training data

� Sufficiency (equality of PPV and NPV): 𝑌 ⊥ 𝐴	|	ℎ 𝑋, 𝐴
� For the purposes of predicting 𝑌, the information 

contained in ℎ 𝑋, 𝐴  is “sufficient”, 𝐴 becomes irrelevant
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Key Takeaways

� High-profile cases of algorithmic bias are increasingly 

common as machine learning is applied more broadly in a 
variety of contexts

� Various definitions of fairness

� Selection rate parity (Independence): ℎ 𝑋, 𝐴 ⊥ 𝐴

� Equality of FPR and FNR (Separation): ℎ 𝑋, 𝐴 ⊥ 𝐴	|	𝑌

� Equality of PPV and NPV (Sufficiency): 𝑌 ⊥ 𝐴	|	ℎ 𝑋, 𝐴

� In all but the simplest of cases, any two of these 

three are mutually exclusive
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