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Front Matter

10/23/24

* Announcements

* HW5 released 10/9, due 10/27 at 11:59 PM
* HW6 released 10/27, due 11/2 at 11:59 PM

* Discussion post series on Piazza about Societal

Impacts of ML

 “All (substantive) contributions from students in
these Piazza posts will be automatically
endorsed and count towards the Piazza extra

credit portion of your grade”


https://piazza.com/class/lzr0hlf6ktr1hw/post/523

* For a finite hypothesis set H and arbitrary distribution
p*, given a training dataset Ss.t. [S| =M, allh € H

have

What happens

R(h) < R(h) + V ﬁ (ln(l?—[l) +In (g))

with probability at least 1 — 6.

when ?
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P{A U B} < P{A} + P{B)

The Union

Bound...
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P{A U B} < P{A} + P{B)

P{A U B} = P{A} + P{B} — P{A N B)

The Union

Bound is Bad!
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Intuition

If two hypotheses h{, h, € H are
very similar, then the events

* “h, correctly classifies all M
training data points”

* “h, correctly classifies all M
training data points”

will overlap a lot!
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Labellings
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* Given some finite set of data points § = (x(l), ...,x(M))

and some hypothesis h € H, applying h to each point in

S results in a labelling

‘ (h(x(l)), . h(x(M))) is a vector of M +1’s and -1’s

- Given § = (xV, ..., x(™), each hypothesis in 7

induces a labelling but not necessarily a unique labelling

* The set of labellings induced by Hon S is
#(S) ={(n(x®), ., n(x™)) | n € 7]



Example: Labellings

H = {h1; h2) h3}
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Example: Labellings

H = {h1; h2) h3}

(h1 (x®D), by (x@), by (), by (x(4)))
=(—1,+1,—-1,+1)
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Example: Labellings

H = {h1; h2) h3}

(hz (x®), hy (x@), by (x®), (x(4)))
=(—1,+1,—-1,+1)
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Example: Labellings

H = {h1; h2) h3}

(h3 (x®D), s (x@), hy (x®), s (x(4)))
= (+1,+1,-1,-1)
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Example: Labellings
:7-[ = {hl'hZJhB}

H(S)
={(+1,+1,—-1,—-1),(—-1,+1,—-1,+1)}

|H ()] =2
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Example: Labellings
H = {hl)hZJhB}

H(S) =
{(+1,+1,—-1,-1)}

|H S =1
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VC-Dimension
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- H(S) is the set of all labellings induced by Hon S

- If |S| = M, then |H(S)| < 2M
- H shatters S if |7 (S)| = 2M

* The VC-dimension of H, VC(H), is the size of the largest

set S that can be shattered by H.

* If H can shatter arbitrarily large finite sets, then
dyc(H) = oo

* To prove that VC(H) = d, you need to show

1. 3 some set of d data points that H can shatter and
2. A asetofd+ 1data points that H can shatter

15



VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?

16



- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point? \/
* Can H shatter some set of 2 points?

VC-Dimension:

Example 5 ‘,J

&
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?'\/
* Can H shatter some set of 3 points?
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?

* Can H shatter so t of 2 points?
*Can H sha@ of 3 points?
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?

* Can H shatter some set of 3 points?
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?

* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points? \/

|~7‘[(S1)| =6 |~7{(52)| =38
=25-2
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

°
°
o o o ®
° °
51 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

O
°
O O ® o
O °
51 52
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
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* Can H shatter some set of 4 points?

o
°
O O ® o
o °
51 52
All points on the At least one point
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
°
O O ® o
o °
|7'[(51)| =14 Ay
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
O
® o ® ®
o .
|7'[(51)| =14 Ay
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
o
® o ® ®
o o
|7'[(51)| =14 Ay
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

* Whatis VC(H)?
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points? )(

o
o
® ® ® ®
o o
|F (S| = 14 |F(S,)] = 14
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R? and H = all 2-dimensional linear separators

VC(H) =3
* Can H shatter some set of 1 point?
* Can H shatter some set of 2 points?
* Can H shatter some set of 3 points?
* Can H shatter some set of 4 points?

o
o
® ® ® ®
o o
|F (S| = 14 |F(S,)] = 14
All points on the At least one point

convex hull inside the convex hull
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VC-Dimension:

Example
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- x € R4 and H = all d-dimensional linear separators

*VC(H)=d+1
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VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive intervals

33



- x € Rand H = all 1-dimensional positive intervals

Poll Question 1:

Whatis VC(H)? | |

A.
B.
C. 1.5 (TOXIC)
»)
3

10/23/24 34



VC-Dimension:

Example
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- x € Rand H = all 1-dimensional positive intervals

“VC(H) =2

35



Theorem 3:
Vapnik-

Chervonenkis
(VC)-Bound

10/23/24

v\r‘*“ C&G}(

* Infinite, realizable case: for any hypothesis set H and

distribution p*, if the number of labelled training data

points satisfies

M=o (% (mm log @ rlos (%»)

then with probability at least 1 — §, all h € H with
R(h) =0haveR(h) <€

36



* Infinite, realizable case: for any hypothesis set H and

distribution p*, given a training data set S s.t. |S| = M,

Statistical all b € H with B(h) = 0 have
Learning

1 M !
Theory R(h) <0 (M (VC(}[) g (VC(}()) rlos <5)>>
Corollary 3

with probability at least 1 — §.
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Theorem 4:
Vapnik-

Chervonenkis
(VC)-Bound
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* Infinite, agnostic case: for any hypothesis set H and

distribution p*, if the number of labelled training data
points satisfies

=0 (veen +1as(3)))

then with probability at least 1 — 6, all h € H have
|R(h) — ﬁ(h)| <e€
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* Infinite, agnostic case: for any hypothesis set H and

distribution p*, given a training data set S s.t. |S| = M,

Statistical ave
Learning

Theory R(h) <RM) +o0 %(VC(}[) + log (%))
Corollary 4 \
with probability at least 1 — §.
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How well does
h generalize?

: . N J
Approximation e
Generalization R < R(W) + 0 i(vcm) L (1»
Tradeoff N JM B\5

, N

How well does h
approximate c¢*?

10/23/24 40



Increases as
VC(H) increases

: . N J
Approximation e
Generalization R < R(W) + 0 i(vcm) L (1»
Tradeoff N JM B\5

, N

Decreases as
VC(H) increases

10/23/24 41



Learning
Theory

Learning
Objectives
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You should be able to...

* Identify the properties of a learning setting and
assumptions required to ensure low generalization error

* Distinguish true error, train error, test error

* Define PAC and explain what it means to be
approximately correct and what occurs with high
probability

- Apply sample complexity bounds to real-world machine
learning examples

42



Recall:
Probabilistic

Learning
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* Previously:

* (Unknown) Target function, c*: X =» Y
* Classifier, h : X = Y

* Goal: find a classifier, h, that best approximates c*

* Now:

* (Unknown) Target distribution, y ~ p*(Y|x)
* Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p*

43



Recall:
Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data

1.50 | — =05
¢ Example: the 1.25 F - =1
A=1.5
exponential 100
o ] =07t

distribution = .

0.25 -\

0.00 . . . .

0 1 2 3 4 )

€T

Source: https://en.wikipedia.org/wiki/Exponential_distributiontt/media/File:Exponential probability density.svg 44



https://en.wikipedia.org/wiki/Exponential_distribution

Bernoulli

Distribution
MLE

10/23/24

* A Bernoulli random variable takes value 1 with
probability ¢ and value O with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = ¢*(1— )™

45



* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|¢) = ™ (1 — )™~
* Given amples {x(l) x(N)} the Iog likelihood is ()

|- X

Cc.)in. ,QC¢) Z) 05(?<X(\\\§2§\> 2) ¢Km(l/‘>

Flipping
IMILE

=\

:Z 2 4 (%) (1 4

e

oy B Wl (1)
\A\M U j 5 my &(mji
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* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = p*(1 — ) ™*
* The partial derlvatlve of the log- I|keI|hood IS
Coin ((E) = jyfqb N J(f -4)

Flipping A Ml (
IMLE g%”

ooz

| ?‘Q :
10723124 = N\ nL)\) >¢ >ﬁ§ m *




Poll Question 2:

Go to
https://justflipacoin.com
and flip the coin 5 times.
What is the MLE of your
coin?

. 0/5

. 1/5

. 2/5

. 3/5

. 1/5 (TOXIC)
. 4/5

. 5/5

10/23/24

* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = ¢*(1— )™

* The partial derivative of the log-likelihood is

Ny No Ny N

b 1-¢ é 1-¢

- N;(1—¢) =Nop » N; = p(Ny + Ny)

Ny
N, + N,

5=

- where N; is the number of 1’s in {x(V, ..., x(™} and N, is

the number of 0’s

49


https://justflipacoin.com/

Maximum a
Posteriori

(MAP)
Estimation

10/23/24

* Insight: sometimes we have prior information we want

to incorporate into parameter estimation

- ldea: use Bayes rule to reason about the posterior

distribution over the parameters
* MLE finds 8 = argmax p(D|6)
6

- MAP finds 8 = argmax p(6|D)
0

= argmax p(D|8)p(6) /p(D)

= argmax p(D|0)p(6)
’ / \
likelihood prior

= argmax logp(D|0) + logp(6)
6 — _/

~—
log-posterior

50



Okay, but how

on earth do we
pick a prior?
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* Insight: sometimes we have prior information we want

to incorporate into parameter estimation

- ldea: use Bayes rule to reason about the posterior

distribution over the parameters
* MLE finds 8 = argmax p(D|6)
6

- MAP finds 8 = argmax p(6|D)
0

= argmax p(D|8)p(6) /p(D)

= argmax p(D|0)p(6)
’ / \
likelihood prior

= argmax logp(D|0) + logp(6)
6 — _/

~—
log-posterior
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* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

Coin p(x|p) = ¢*(1 —p)' >
F|ipping - Assume a Beta prior over the parameter ¢, which has pdf
MAP . _
R G
f@lap) = —F—

where B(a, B) = fol d* (1 — ¢p)P~1d¢ is a normalizing

constant to ensure the distribution integrates to 1

10/23/24
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Beta

Distribution

10/23/24

fgla, B)

12

14

0.8 -

04 A

02 -

00

Beta Distribution w/ a=1 and =1

L]

02 04 0e 0oa

140
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Beta

Distribution
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f(¢|a, B)

fi¢la, B)

144

12

104

08 A

06 4

0d 4

02 A

0o 4

25

20

15

10

05

00

Beta Distribution w/ a=2 and =2

0.0

Beta Distribution w/ a=2 and =5

0.0

fi¢la, B)

Ceta Distribution w/ @=10 and f=10
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30

25

20

15

10

05

Beta Distribution w/ a=4 and =1
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40 \ -

35
30
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10
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00

0.0 0.2 04 06 08
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Why use this
strange looking
Beta prior?

The Beta
distribution is
the conjugate
prior for the
Bernoulli
distribution!

10/23/24

* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is
p(x|p) = p*(1 — ) ™*

- Assume a Beta prior over the parameter ¢, which has pdf

" (1 - )P
B(a,f)

where B(a, B) = fol d* (1 — ¢p)P~1d¢ is a normalizing

f(@la,p) =

constant to ensure the distribution integrates to 1
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Coin

Flipping
MAP
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+ Given N iid samples {x(1), ..., x(M)}, the log-posterior is

N
£(@) =log f(pla,f) + ) logp(x™|9)
n=1

56



Coin

Flipping
MAP
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» Given N iid samples {x(l), ,x(N)}, the partial derivative of

the log-posterior is
d0f B (a—1+N;) (B—-1+N,)

FE 1—¢
- B (a —1+N,)
_)¢MAP_(ﬁ—1+NO)+(a—1+N1)

a — 1is a “pseudocount” of the number of 1’s (or heads)

you’ve “observed”

*f — lis a “pseudocount” of the number of 0’s (or tails)

you’ve “observed”

57



Coin

Flipping
MAP:
Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (N; = 2):

10 10
10+2 12

¢MLE —

* Using a Beta prior witha = 2 and f = 5, then

B (2—-1+10) _11_10
¢MAP_(2—1+10)+(5—1+2)_17 12

58



Coin

Flipping
MAP:
Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (N; = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior with @ = 101 and f = 101, then

(101 — 1 + 10) 110

— N

Puar = H01—1+10)+ (101—1+2) 212

1
2

59



Coin

Flipping
MAP:
Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (N; = 2):

10 10
10+2 12

¢MLE —

* Using a Beta priorwitha = 1and f = 1, then

(1-1+10) 10

Puar = A T 10+ A-142) 12 PmeE
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You should be able to...

* Recall probability basics, including but not limited to:
discrete and continuous random variables, probability
mass functions, probability density functions, events vs.
random variables, expectation and variance, joint
probability distributions, marginal probabilities,
conditional probabilities, independence, conditional

Lea rning independence

Objectives - State the principle of maximum likelihood estimation and
explain what it tries to accomplish

MLE/MAP

- State the principle of maximum a posteriori estimation
and explain why we use it

* Derive the MLLE or MAP parameters of a simple model in
closed form

10/23/24 61
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