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 Announcements

 HW5 released 10/9, due 10/27 at 11:59 PM

 HW6 released 10/27, due 11/2 at 11:59 PM

 Discussion post series on Piazza about Societal 

Impacts of ML

 “All (substantive) contributions from students in 

these Piazza posts will be automatically 

endorsed and count towards the Piazza extra 

credit portion of your grade”

210/23/24

https://piazza.com/class/lzr0hlf6ktr1hw/post/523
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 For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ 

have

𝑅 ℎ ≤ 𝑅 ℎ +
1

2𝑀
ln ℋ + ln

2

𝛿

with probability at least 1 − 𝛿.

What happens 
when ℋ = ∞?



The Union 
Bound…

A B

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}
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B

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃{𝐴 ∩ 𝐵}

The Union 
Bound is Bad!

A

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}
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Intuition

 If two hypotheses ℎ1, ℎ2 ∈ ℋ are 
very similar, then the events 

 “ℎ1 is consistent with the first 𝑚 
training data points” 

 “ℎ2 is consistent with the first 𝑚 
training data points”

 will overlap a lot! 
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Labellings

 Given some finite set of data points 𝑆 = 𝒙 1 , … , 𝒙 𝑀  

and some hypothesis ℎ ∈ ℋ, applying ℎ to each point in 

𝑆 results in a labelling 

 ℎ 𝒙 1 , … , ℎ 𝒙 𝑀  is a vector of 𝑀 +1’s and -1’s 

 Given 𝑆 = 𝒙 1 , … , 𝒙 𝑀 , each hypothesis in ℋ 

induces a labelling but not necessarily a unique labelling

 The set of labellings induced by ℋon 𝑆 is        

ℋ 𝑆 = ℎ 𝒙 1 , … , ℎ 𝒙 𝑀  ℎ ∈ ℋ
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Example: Labellings

 ℋ = {ℎ1, ℎ2, ℎ3} 
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ℎ2ℎ1

ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4
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ℋ = {ℎ1, ℎ2, ℎ3} 

ℎ1 𝒙 1 , ℎ1 𝒙 2 , ℎ1 𝒙 3 , ℎ1 𝒙 4

 = −1, +1, −1, +1
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ℎ1

𝒙 1

𝒙 3

𝒙 2

𝒙 4

Example: Labellings
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Example: Labellings
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ℎ2

𝒙 1

𝒙 3

𝒙 2

𝒙 4

ℋ = {ℎ1, ℎ2, ℎ3} 

ℎ2 𝒙 1 , ℎ2 𝒙 2 , ℎ2 𝒙 3 , ℎ2 𝒙 4

 = −1, +1, −1, +1

10/23/24



Example: Labellings
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ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4

ℋ = {ℎ1, ℎ2, ℎ3} 

ℎ3 𝒙 1 , ℎ3 𝒙 2 , ℎ3 𝒙 3 , ℎ3 𝒙 4

 = +1, +1, −1, −1
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Example: Labellings

ℋ = {ℎ1, ℎ2, ℎ3}

ℋ 𝑆
= +1, +1, −1, −1 , −1, +1, −1, +1

ℋ 𝑆 = 2
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ℎ2ℎ1

ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4
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Example: Labellings

ℋ = ℎ1, ℎ2, ℎ3

ℋ 𝑆 =
+1, +1, −1, −1

ℋ 𝑆 = 1
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ℎ2ℎ1

ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4
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 ℋ 𝑆  is the set of all labellings induced by ℋon 𝑆

 If 𝑆 = 𝑀, then ℋ 𝑆 ≤ 2𝑀

 ℋ shatters 𝑆 if ℋ 𝑆 = 2𝑀

 The VC-dimension of ℋ, 𝑉𝐶 ℋ , is the size of the largest 

set 𝑆 that can be shattered by ℋ. 

 If ℋ can shatter arbitrarily large finite sets, then 

𝑑𝑉𝐶 ℋ = ∞ 

 To prove that 𝑉𝐶 ℋ = 𝑑, you need to show

1.  ∃ some set of 𝑑 data points that ℋ can shatter and

2.  ∄ a set of 𝑑 + 1 data points that ℋ can shatter 

VC-Dimension
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 What is 𝑉𝐶 ℋ ?

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 

16

𝑆
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VC-Dimension: 
Example
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𝑆1 𝑆2
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 
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ℋ 𝑆2 = 8ℋ 𝑆1 = 6 

10/23/24



VC-Dimension: 
Example
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convex hull
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VC-Dimension: 
Example
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𝑆2
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VC-Dimension: 
Example
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𝑆2
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VC-Dimension: 
Example
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Example
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All points on the 
convex hull
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 
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All points on the 
convex hull

ℋ 𝑆1 = 14 ℋ 𝑆2 = 14

At least one point 
inside the convex hull
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 𝑉𝐶 ℋ  = 3

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 

 Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

At least one point 
inside the convex hull

ℋ 𝑆1 = 14 ℋ 𝑆2 = 14
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VC-Dimension: 
Example

 𝒙 ∈ ℝ𝑑  and ℋ = all 𝑑-dimensional linear separators 

 𝑉𝐶 ℋ  = 𝑑 + 1

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 

 Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

One point inside 
the convex hull

ℋ 𝑆1 = 14 ℋ 𝑆2 = 14
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 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

VC-Dimension: 
Example
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𝑎 𝑏
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 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

Poll Question 1: 

What is 𝑉𝐶 ℋ ?

A. 0
B. 1
C. 1.5 (TOXIC)
D. 2
E. 3
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𝑎 𝑏
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 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

 𝑉𝐶 ℋ = 2

VC-Dimension: 
Example
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𝑎 𝑏

𝑥 1 𝑥 3𝑥 2
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Theorem 3: 
Vapnik-
Chervonenkis 
(VC)-Bound

36

 Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 

points satisfies 

𝑀 = 𝑂
1

𝜖
𝑉𝐶 ℋ log

1

𝜖
+ log

1

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 

𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖
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Statistical 
Learning 
Theory 
Corollary 3

37

 Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 

all ℎ ∈ ℋ with 𝑅 ℎ = 0 have

𝑅 ℎ ≤ 𝑂
1

𝑀
𝑉𝐶 ℋ log

𝑀

𝑉𝐶 ℋ
+ log

1

𝛿

with probability at least 1 − 𝛿.
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Theorem 4: 
Vapnik-
Chervonenkis 
(VC)-Bound

38

 Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 

points satisfies 

𝑀 = 𝑂
1

𝜖2
𝑉𝐶 ℋ + log

1

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ have 

𝑅 ℎ − 𝑅 ℎ ≤ 𝜖
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Statistical 
Learning 
Theory 
Corollary 4
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 Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 

all ℎ ∈ ℋ have 

𝑅 ℎ ≤ 𝑅 ℎ + 𝑂
1

𝑀
𝑉𝐶 ℋ + log

1

𝛿

with probability at least 1 − 𝛿.
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Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈

ℋ have 

𝑅 ℎ ≤ 𝑅 ℎ + 𝑂
1

𝑀
𝑉𝐶 ℋ + log

1

𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

How well does ℎ 
approximate 𝑐∗?

How well does 
ℎ generalize?
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Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈

ℋ have 

𝑅 ℎ ≤ 𝑅 ℎ + 𝑂
1

𝑀
𝑉𝐶 ℋ + log

1

𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

Increases as 
𝑉𝐶 ℋ  increases

Decreases as 
𝑉𝐶 ℋ  increases
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Learning 
Theory 
Learning 
Objectives

You should be able to…
 Identify the properties of a learning setting and 

assumptions required to ensure low generalization error
 Distinguish true error, train error, test error
 Define PAC and explain what it means to be 

approximately correct and what occurs with high 
probability

 Apply sample complexity bounds to real-world machine 
learning examples

4210/23/24



Recall: 
Probabilistic 
Learning

 Previously: 

 (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

 Classifier, ℎ ∶ 𝒳 → 𝒴

 Goal: find a classifier, ℎ, that best approximates 𝑐∗

 Now:

 (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

 Distribution, 𝑝 𝑌 𝒙

 Goal: find a distribution, 𝑝, that best approximates 𝑝∗
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Recall: 
Maximum 
Likelihood 
Estimation 
(MLE)

 Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

 Idea: set the parameter(s) so that the likelihood of the 

samples is maximized

 Intuition: assign as much of the (finite) probability mass 

to the observed data at the expense of unobserved data

 Example: the 

exponential 

distribution 

10/23/24 44Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 

https://en.wikipedia.org/wiki/Exponential_distribution


Bernoulli 
Distribution
MLE
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 A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the log-likelihood is

𝜕ℓ

𝜕𝜙
=

𝑁1

𝜙
−

𝑁0

1 − 𝜙
= 0 →

𝑁1

𝜙
=

𝑁0

1 − 𝜙

𝜕ℓ

𝜕𝜙
→ 𝑁1 1 − 𝜙 = 𝑁0

𝜙 → 𝑁1 = 𝜙 𝑁0 + 𝑁1

𝜕ℓ

𝜕𝜙
→ 𝜙 =

𝑁1

𝑁0 + 𝑁1

 where 𝑁1 is the number of 1’s in 𝑥 1 , … , 𝑥 𝑁  and 𝑁0 is 
the number of 0’s



Coin 
Flipping
MLE
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 A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the log-likelihood is

ℓ 𝜙 = 

𝑖=1

𝑁

log 𝑝 𝑥 𝑖 |𝜙 = 

𝑖=1

𝑁

log 𝜙𝑥 𝑖
1 − 𝜙 1−𝑥 𝑖

ℓ 𝜙 = 

𝑖=1

𝑁

𝑥 𝑖 log 𝜙 + 1 − 𝑥 𝑖 log 1 − 𝜙

ℓ 𝜙 = 𝑁1 log 𝜙 + 𝑁0 log 1 − 𝜙

 where 𝑁1 is the number of 1’s in 𝑥 1 , … , 𝑥 𝑁  and 𝑁0 is 
the number of 0’s



Coin 
Flipping
MLE
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 A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 The partial derivative of the log-likelihood is

𝜕ℓ

𝜕𝜙
=

𝑁1

𝜙
−

𝑁0

1 − 𝜙
= 0 →

𝑁1

𝜙
=

𝑁0

1 − 𝜙

𝜕ℓ

𝜕𝜙
→ 𝑁1 1 − 𝜙 = 𝑁0

𝜙 → 𝑁1 = 𝜙 𝑁0 + 𝑁1

𝜕ℓ

𝜕𝜙
→ 𝜙 =

𝑁1

𝑁0 + 𝑁1

 where 𝑁1 is the number of 1’s in 𝑥 1 , … , 𝑥 𝑁  and 𝑁0 is 
the number of 0’s



Coin 
Flipping
MLE
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 A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 The partial derivative of the log-likelihood is

𝜕ℓ

𝜕𝜙
=

𝑁1

𝜙
−

𝑁0

1 − 𝜙
= 0 →

𝑁1

𝜙
=

𝑁0

1 − 𝜙

𝜕ℓ

𝜕𝜙
→ 𝑁1 1 − 𝜙 = 𝑁0

𝜙 → 𝑁1 = 𝜙 𝑁0 + 𝑁1

𝜕ℓ

𝜕𝜙
→ 𝜙 =

𝑁1

𝑁0 + 𝑁1

 where 𝑁1 is the number of 1’s in 𝑥 1 , … , 𝑥 𝑁  and 𝑁0 is 
the number of 0’s



Poll Question 2:

Go to 
https://justflipacoin.com/ 
and flip the coin 5 times. 
What is the MLE of your 
coin? 
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 A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 The partial derivative of the log-likelihood is

𝜕ℓ

𝜕𝜙
=

𝑁1

𝜙
−

𝑁0

1 − 𝜙
= 0 →

𝑁1

𝜙
=

𝑁0

1 − 𝜙

𝜕ℓ

𝜕𝜙
→ 𝑁1 1 − 𝜙 = 𝑁0

𝜙 → 𝑁1 = 𝜙 𝑁0 + 𝑁1

𝜕ℓ

𝜕𝜙
→ 𝜙 =

𝑁1

𝑁0 + 𝑁1

 where 𝑁1 is the number of 1’s in 𝑥 1 , … , 𝑥 𝑁  and 𝑁0 is 
the number of 0’s

A.  0/5
B.  1/5
C.  2/5
D.  3/5
E.  𝜋/5 (TOXIC)
F.  4/5
G.  5/5

https://justflipacoin.com/


 Insight: sometimes we have prior information we want 

to incorporate into parameter estimation

 Idea: use Bayes rule to reason about the posterior 

distribution over the parameters

 MLE finds 𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃

 MAP finds 𝜃 = argmax
𝜃

 𝑝 𝜃 𝒟

MAP finds 𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds 𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds 𝜃. = argmax
𝜃

 log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Maximum a 
Posteriori 
(MAP) 
Estimation

10/23/24 50
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log-posterior



 Insight: sometimes we have prior information we want 

to incorporate into parameter estimation

 Idea: use Bayes rule to reason about the posterior 

distribution over the parameters

 MLE finds 𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃

 MAP finds 𝜃 = argmax
𝜃

 𝑝 𝜃 𝒟

MAP finds 𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds 𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds 𝜃. = argmax
𝜃

 log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Okay, but how 
on earth do we 
pick a prior? 

10/23/24 51

likelihood prior

log-posterior



Coin 
Flipping
MAP
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 A Bernoulli random variable takes value 1 (or heads) with 

probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 

𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙𝛼−1 1 − 𝜙 𝛽−1

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = 
0

1
𝜙𝛼−1 1 − 𝜙 𝛽−1𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Beta 
Distribution
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Beta 
Distribution
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Why use this 
strange looking 
Beta prior?

The Beta 
distribution is 
the conjugate 
prior for the 
Bernoulli 
distribution!
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 A Bernoulli random variable takes value 1 (or heads) with 

probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 

𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙𝛼−1 1 − 𝜙 𝛽−1

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = 
0

1
𝜙𝛼−1 1 − 𝜙 𝛽−1𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Coin 
Flipping
MAP
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 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the log-posterior is

ℓ 𝜙 = log 𝑓 𝜙 𝛼, 𝛽 + 

𝑛=1

𝑁

log 𝑝 𝑥 𝑛 𝜙

ℓ 𝜙 = log
𝜙𝛼−1 1 − 𝜙 𝛽−1

Β 𝛼, 𝛽
+ 

𝑛=1

𝑁

log 𝜙𝑥 𝑛
1 − 𝜙 1−𝑥 𝑛

ℓ 𝜙 = 𝛼 − 1 log 𝜙 + 𝛽 − 1 log 1 − 𝜙 − log Β 𝛼, 𝛽

ℓ 𝜙 = + 

𝑛=1

𝑁

𝑥 𝑛 log 𝜙 + 1 − 𝑥 𝑛 log 1 − 𝜙

ℓ 𝜙 = 𝛼 − 1 + 𝑁1 log 𝜙 + 𝛽 − 1 + 𝑁0 log 1 − 𝜙

ℓ 𝜙 = − log Β 𝛼, 𝛽



Coin 
Flipping
MAP
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 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the partial derivative of 
the log-posterior is

𝜕ℓ

𝜕𝜙
=

𝛼 − 1 + 𝑁1

𝜙
−

𝛽 − 1 + 𝑁0

1 − 𝜙

  ⋮

→ 𝜙𝑀𝐴𝑃 =
𝛼 − 1 + 𝑁1

𝛽 − 1 + 𝑁0 + 𝛼 − 1 + 𝑁1

 𝛼 − 1 is a “pseudocount” of the number of 1’s (or heads) 
you’ve “observed” 

 𝛽 − 1 is a “pseudocount” of the number of 0’s (or tails) 
you’ve “observed”



Coin 
Flipping
MAP:
Example
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 Suppose 𝒟 consists of ten 1’s or heads (𝑁1 = 10) and     

two 0’s or tails (𝑁0 = 2):

𝜙𝑀𝐿𝐸 =
10

10 + 2
=

10

12

 Using a Beta prior with 𝛼 = 2 and 𝛽 = 5, then

𝜙𝑀𝐴𝑃 =
(2 − 1 + 10)

(2 − 1 + 10) + (5 − 1 + 2)
=

11

17
<

10

12



Coin 
Flipping
MAP:
Example
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 Suppose 𝒟 consists of ten 1’s or heads (𝑁1 = 10) and     

two 0’s or tails (𝑁0 = 2):

𝜙𝑀𝐿𝐸 =
10

10 + 2
=

10

12

 Using a Beta prior with 𝛼 = 101 and 𝛽 = 101, then

𝜙𝑀𝐴𝑃 =
(101 − 1 + 10)

(101 − 1 + 10) + (101 − 1 + 2)
=

110

212
≈

1

2



Coin 
Flipping
MAP:
Example
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 Suppose 𝒟 consists of ten 1’s or heads (𝑁1 = 10) and     

two 0’s or tails (𝑁0 = 2):

𝜙𝑀𝐿𝐸 =
10

10 + 2
=

10

12

 Using a Beta prior with 𝛼 = 1 and 𝛽 = 1, then

𝜙𝑀𝐴𝑃 =
(1 − 1 + 10)

(1 − 1 + 10) + (1 − 1 + 2)
=

10

12
= 𝜙𝑀𝐿𝐸



MLE/MAP 
Learning 
Objectives

You should be able to…

 Recall probability basics, including but not limited to: 
discrete and continuous random variables, probability 
mass functions, probability density functions, events vs. 
random variables, expectation and variance, joint 
probability distributions, marginal probabilities, 
conditional probabilities, independence, conditional 
independence

 State the principle of maximum likelihood estimation and 
explain what it tries to accomplish

 State the principle of maximum a posteriori estimation 
and explain why we use it

 Derive the MLE or MAP parameters of a simple model in 
closed form

6110/23/24
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