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10-301/601: Introduction 
to Machine Learning
Lecture 16 – Learning 
Theory (Infinite Case)



Front Matter

 Announcements

 HW5 released 10/9, due 10/27 at 11:59 PM

 HW6 released 10/27, due 11/2 at 11:59 PM

 Discussion post series on Piazza about Societal 

Impacts of ML

 “All (substantive) contributions from students in 

these Piazza posts will be automatically 

endorsed and count towards the Piazza extra 

credit portion of your grade”

210/23/24

https://piazza.com/class/lzr0hlf6ktr1hw/post/523
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 For a finite hypothesis set ℋ and arbitrary distribution 

𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, all ℎ ∈ ℋ 

have

𝑅 ℎ ≤ ෠𝑅 ℎ +
1

2𝑀
ln ℋ + ln

2

𝛿

with probability at least 1 − 𝛿.

What happens 
when ℋ = ∞?



The Union 
Bound…

A B

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}
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B

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃{𝐴 ∩ 𝐵}

The Union 
Bound is Bad!

A

𝑃 𝐴 ∪ 𝐵 ≤ 𝑃 𝐴 + 𝑃{𝐵}
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Intuition

 If two hypotheses ℎ1, ℎ2 ∈ ℋ are 
very similar, then the events 

 “ℎ1 is consistent with the first 𝑚 
training data points” 

 “ℎ2 is consistent with the first 𝑚 
training data points”

 will overlap a lot! 

10/23/24 6
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Labellings

 Given some finite set of data points 𝑆 = 𝒙 1 , … , 𝒙 𝑀  

and some hypothesis ℎ ∈ ℋ, applying ℎ to each point in 

𝑆 results in a labelling 

 ℎ 𝒙 1 , … , ℎ 𝒙 𝑀  is a vector of 𝑀 +1’s and -1’s 

 Given 𝑆 = 𝒙 1 , … , 𝒙 𝑀 , each hypothesis in ℋ 

induces a labelling but not necessarily a unique labelling

 The set of labellings induced by ℋon 𝑆 is        

ℋ 𝑆 = ℎ 𝒙 1 , … , ℎ 𝒙 𝑀  ℎ ∈ ℋ

810/23/24



Example: Labellings

 ℋ = {ℎ1, ℎ2, ℎ3} 
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ℎ2ℎ1

ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4
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ℋ = {ℎ1, ℎ2, ℎ3} 

ℎ1 𝒙 1 , ℎ1 𝒙 2 , ℎ1 𝒙 3 , ℎ1 𝒙 4

 = −1, +1, −1, +1
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ℎ1

𝒙 1

𝒙 3

𝒙 2

𝒙 4

Example: Labellings
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Example: Labellings
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ℎ2

𝒙 1

𝒙 3

𝒙 2

𝒙 4

ℋ = {ℎ1, ℎ2, ℎ3} 

ℎ2 𝒙 1 , ℎ2 𝒙 2 , ℎ2 𝒙 3 , ℎ2 𝒙 4

 = −1, +1, −1, +1
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Example: Labellings
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ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4

ℋ = {ℎ1, ℎ2, ℎ3} 

ℎ3 𝒙 1 , ℎ3 𝒙 2 , ℎ3 𝒙 3 , ℎ3 𝒙 4

 = +1, +1, −1, −1
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Example: Labellings

ℋ = {ℎ1, ℎ2, ℎ3}

ℋ 𝑆
= +1, +1, −1, −1 , −1, +1, −1, +1

ℋ 𝑆 = 2
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ℎ2ℎ1

ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4
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Example: Labellings

ℋ = ℎ1, ℎ2, ℎ3

ℋ 𝑆 =
+1, +1, −1, −1

ℋ 𝑆 = 1

  

14

ℎ2ℎ1

ℎ3

𝒙 1

𝒙 3

𝒙 2

𝒙 4
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 ℋ 𝑆  is the set of all labellings induced by ℋon 𝑆

 If 𝑆 = 𝑀, then ℋ 𝑆 ≤ 2𝑀

 ℋ shatters 𝑆 if ℋ 𝑆 = 2𝑀

 The VC-dimension of ℋ, 𝑉𝐶 ℋ , is the size of the largest 

set 𝑆 that can be shattered by ℋ. 

 If ℋ can shatter arbitrarily large finite sets, then 

𝑑𝑉𝐶 ℋ = ∞ 

 To prove that 𝑉𝐶 ℋ = 𝑑, you need to show

1.  ∃ some set of 𝑑 data points that ℋ can shatter and

2.  ∄ a set of 𝑑 + 1 data points that ℋ can shatter 

VC-Dimension

1510/23/24



VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 What is 𝑉𝐶 ℋ ?

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 

16

𝑆
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𝑆1 𝑆2
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 
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ℋ 𝑆2 = 8ℋ 𝑆1 = 6 
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 What is 𝑉𝐶 ℋ ?

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 

 Can ℋ shatter some set of 4 points? 

24

𝑆1 𝑆2

All points on the 
convex hull

At least one point 
inside the convex hull
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VC-Dimension: 
Example
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VC-Dimension: 
Example
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All points on the 
convex hull

ℋ 𝑆1 = 14

At least one point 
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 What is 𝑉𝐶 ℋ ?

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 
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All points on the 
convex hull

ℋ 𝑆1 = 14 ℋ 𝑆2 = 14

At least one point 
inside the convex hull
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VC-Dimension: 
Example

 𝒙 ∈ ℝ2 and ℋ = all 2-dimensional linear separators 

 𝑉𝐶 ℋ  = 3

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 

 Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

At least one point 
inside the convex hull

ℋ 𝑆1 = 14 ℋ 𝑆2 = 14
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VC-Dimension: 
Example

 𝒙 ∈ ℝ𝑑  and ℋ = all 𝑑-dimensional linear separators 

 𝑉𝐶 ℋ  = 𝑑 + 1

 Can ℋ shatter some set of 1 point?

 Can ℋ shatter some set of 2 points? 

 Can ℋ shatter some set of 3 points? 

 Can ℋ shatter some set of 4 points? 
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All points on the 
convex hull

One point inside 
the convex hull

ℋ 𝑆1 = 14 ℋ 𝑆2 = 14
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 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

VC-Dimension: 
Example

33

𝑎 𝑏
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 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

Poll Question 1: 

What is 𝑉𝐶 ℋ ?

A. 0
B. 1
C. 1.5 (TOXIC)
D. 2
E. 3

34

𝑎 𝑏
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 𝑥 ∈ ℝ and ℋ = all 1-dimensional positive intervals

 𝑉𝐶 ℋ = 2

VC-Dimension: 
Example

35

𝑎 𝑏

𝑥 1 𝑥 3𝑥 2
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Theorem 3: 
Vapnik-
Chervonenkis 
(VC)-Bound

36

 Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 

points satisfies 

𝑀 = 𝑂
1

𝜖
𝑉𝐶 ℋ log

1

𝜖
+ log

1

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ with 

෠𝑅 ℎ = 0 have 𝑅 ℎ ≤ 𝜖

10/23/24



Statistical 
Learning 
Theory 
Corollary 3

37

 Infinite, realizable case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 

all ℎ ∈ ℋ with ෠𝑅 ℎ = 0 have

𝑅 ℎ ≤ 𝑂
1

𝑀
𝑉𝐶 ℋ log

𝑀

𝑉𝐶 ℋ
+ log

1

𝛿

with probability at least 1 − 𝛿.
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Theorem 4: 
Vapnik-
Chervonenkis 
(VC)-Bound

38

 Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, if the number of labelled training data 

points satisfies 

𝑀 = 𝑂
1

𝜖2
𝑉𝐶 ℋ + log

1

𝛿

then with probability at least 1 − 𝛿, all ℎ ∈ ℋ have 

𝑅 ℎ − ෠𝑅 ℎ ≤ 𝜖
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Statistical 
Learning 
Theory 
Corollary 4
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 Infinite, agnostic case: for any hypothesis set ℋ and 

distribution 𝑝∗, given a training data set 𝑆 s.t. 𝑆 = 𝑀, 

all ℎ ∈ ℋ have 

𝑅 ℎ ≤ ෠𝑅 ℎ + 𝑂
1

𝑀
𝑉𝐶 ℋ + log

1

𝛿

with probability at least 1 − 𝛿.
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Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈

ℋ have 

𝑅 ℎ ≤ ෠𝑅 ℎ + 𝑂
1

𝑀
𝑉𝐶 ℋ + log

1

𝛿

with probability at least 1 − 𝛿.

40

Approximation 
Generalization 
Tradeoff

How well does ℎ 
approximate 𝑐∗?

How well does 
ℎ generalize?

10/23/24



Agnostic case: for any hypothesis class ℋ and 

distribution 𝐷, given a training data set 𝑆 𝑆 = 𝑚, all ℎ ∈

ℋ have 

𝑅 ℎ ≤ ෠𝑅 ℎ + 𝑂
1

𝑀
𝑉𝐶 ℋ + log

1

𝛿

with probability at least 1 − 𝛿.
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Approximation 
Generalization 
Tradeoff

Increases as 
𝑉𝐶 ℋ  increases

Decreases as 
𝑉𝐶 ℋ  increases
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Learning 
Theory 
Learning 
Objectives

You should be able to…
 Identify the properties of a learning setting and 

assumptions required to ensure low generalization error
 Distinguish true error, train error, test error
 Define PAC and explain what it means to be 

approximately correct and what occurs with high 
probability

 Apply sample complexity bounds to real-world machine 
learning examples

4210/23/24



Recall: 
Probabilistic 
Learning

 Previously: 

 (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

 Classifier, ℎ ∶ 𝒳 → 𝒴

 Goal: find a classifier, ℎ, that best approximates 𝑐∗

 Now:

 (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

 Distribution, 𝑝 𝑌 𝒙

 Goal: find a distribution, 𝑝, that best approximates 𝑝∗

10/23/24 43



Recall: 
Maximum 
Likelihood 
Estimation 
(MLE)

 Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

 Idea: set the parameter(s) so that the likelihood of the 

samples is maximized

 Intuition: assign as much of the (finite) probability mass 

to the observed data at the expense of unobserved data

 Example: the 

exponential 

distribution 

10/23/24 44Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 

https://en.wikipedia.org/wiki/Exponential_distribution


Bernoulli 
Distribution
MLE
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 A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the log-likelihood is

𝜕ℓ

𝜕𝜙
=

𝑁1

෠𝜙
−

𝑁0

1 − ෠𝜙
= 0 →

𝑁1

෠𝜙
=

𝑁0

1 − ෠𝜙

𝜕ℓ

𝜕𝜙
→ 𝑁1 1 − ෠𝜙 = 𝑁0

෠𝜙 → 𝑁1 = ෠𝜙 𝑁0 + 𝑁1

𝜕ℓ

𝜕𝜙
→ ෠𝜙 =

𝑁1

𝑁0 + 𝑁1

 where 𝑁1 is the number of 1’s in 𝑥 1 , … , 𝑥 𝑁  and 𝑁0 is 
the number of 0’s



Coin 
Flipping
MLE
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 A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the log-likelihood is

ℓ 𝜙 = ෍

𝑖=1

𝑁

log 𝑝 𝑥 𝑖 |𝜙 = ෍

𝑖=1

𝑁

log 𝜙𝑥 𝑖
1 − 𝜙 1−𝑥 𝑖

ℓ 𝜙 = ෍

𝑖=1

𝑁

𝑥 𝑖 log 𝜙 + 1 − 𝑥 𝑖 log 1 − 𝜙

ℓ 𝜙 = 𝑁1 log 𝜙 + 𝑁0 log 1 − 𝜙

 where 𝑁1 is the number of 1’s in 𝑥 1 , … , 𝑥 𝑁  and 𝑁0 is 
the number of 0’s



Coin 
Flipping
MLE
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 A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 The partial derivative of the log-likelihood is

𝜕ℓ

𝜕𝜙
=

𝑁1

𝜙
−

𝑁0

1 − 𝜙
= 0 →

𝑁1

෠𝜙
=

𝑁0

1 − ෠𝜙

𝜕ℓ

𝜕𝜙
→ 𝑁1 1 − ෠𝜙 = 𝑁0

෠𝜙 → 𝑁1 = ෠𝜙 𝑁0 + 𝑁1

𝜕ℓ

𝜕𝜙
→ ෠𝜙 =

𝑁1

𝑁0 + 𝑁1

 where 𝑁1 is the number of 1’s in 𝑥 1 , … , 𝑥 𝑁  and 𝑁0 is 
the number of 0’s



Coin 
Flipping
MLE
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 A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 The partial derivative of the log-likelihood is

𝜕ℓ

𝜕𝜙
=

𝑁1

෠𝜙
−

𝑁0

1 − ෠𝜙
= 0 →

𝑁1

෠𝜙
=

𝑁0

1 − ෠𝜙

𝜕ℓ

𝜕𝜙
→ 𝑁1 1 − ෠𝜙 = 𝑁0

෠𝜙 → 𝑁1 = ෠𝜙 𝑁0 + 𝑁1

𝜕ℓ

𝜕𝜙
→ ෠𝜙 =

𝑁1

𝑁0 + 𝑁1

 where 𝑁1 is the number of 1’s in 𝑥 1 , … , 𝑥 𝑁  and 𝑁0 is 
the number of 0’s



Poll Question 2:

Go to 
https://justflipacoin.com/ 
and flip the coin 5 times. 
What is the MLE of your 
coin? 
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 A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 The partial derivative of the log-likelihood is

𝜕ℓ

𝜕𝜙
=

𝑁1

෠𝜙
−

𝑁0

1 − ෠𝜙
= 0 →

𝑁1

෠𝜙
=

𝑁0

1 − ෠𝜙

𝜕ℓ

𝜕𝜙
→ 𝑁1 1 − ෠𝜙 = 𝑁0

෠𝜙 → 𝑁1 = ෠𝜙 𝑁0 + 𝑁1

𝜕ℓ

𝜕𝜙
→ ෠𝜙 =

𝑁1

𝑁0 + 𝑁1

 where 𝑁1 is the number of 1’s in 𝑥 1 , … , 𝑥 𝑁  and 𝑁0 is 
the number of 0’s

A.  0/5
B.  1/5
C.  2/5
D.  3/5
E.  𝜋/5 (TOXIC)
F.  4/5
G.  5/5

https://justflipacoin.com/


 Insight: sometimes we have prior information we want 

to incorporate into parameter estimation

 Idea: use Bayes rule to reason about the posterior 

distribution over the parameters

 MLE finds ෠𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃

 MAP finds ෠𝜃 = argmax
𝜃

 𝑝 𝜃 𝒟

MAP finds ෠𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds ෠𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds ෠𝜃. = argmax
𝜃

 log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Maximum a 
Posteriori 
(MAP) 
Estimation
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likelihood prior

log-posterior



 Insight: sometimes we have prior information we want 

to incorporate into parameter estimation

 Idea: use Bayes rule to reason about the posterior 

distribution over the parameters

 MLE finds ෠𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃

 MAP finds ෠𝜃 = argmax
𝜃

 𝑝 𝜃 𝒟

MAP finds ෠𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds ෠𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds ෠𝜃. = argmax
𝜃

 log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Okay, but how 
on earth do we 
pick a prior? 

10/23/24 51

likelihood prior

log-posterior



Coin 
Flipping
MAP
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 A Bernoulli random variable takes value 1 (or heads) with 

probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 

𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙𝛼−1 1 − 𝜙 𝛽−1

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = ׬
0

1
𝜙𝛼−1 1 − 𝜙 𝛽−1𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Beta 
Distribution
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Beta 
Distribution
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Why use this 
strange looking 
Beta prior?

The Beta 
distribution is 
the conjugate 
prior for the 
Bernoulli 
distribution!
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 A Bernoulli random variable takes value 1 (or heads) with 

probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 

𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙𝛼−1 1 − 𝜙 𝛽−1

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = ׬
0

1
𝜙𝛼−1 1 − 𝜙 𝛽−1𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Coin 
Flipping
MAP
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 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the log-posterior is

ℓ 𝜙 = log 𝑓 𝜙 𝛼, 𝛽 + ෍

𝑛=1

𝑁

log 𝑝 𝑥 𝑛 𝜙

ℓ 𝜙 = log
𝜙𝛼−1 1 − 𝜙 𝛽−1

Β 𝛼, 𝛽
+ ෍

𝑛=1

𝑁

log 𝜙𝑥 𝑛
1 − 𝜙 1−𝑥 𝑛

ℓ 𝜙 = 𝛼 − 1 log 𝜙 + 𝛽 − 1 log 1 − 𝜙 − log Β 𝛼, 𝛽

ℓ 𝜙 = + ෍

𝑛=1

𝑁

𝑥 𝑛 log 𝜙 + 1 − 𝑥 𝑛 log 1 − 𝜙

ℓ 𝜙 = 𝛼 − 1 + 𝑁1 log 𝜙 + 𝛽 − 1 + 𝑁0 log 1 − 𝜙

ℓ 𝜙 = − log Β 𝛼, 𝛽



Coin 
Flipping
MAP
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 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the partial derivative of 
the log-posterior is

𝜕ℓ

𝜕𝜙
=

𝛼 − 1 + 𝑁1

𝜙
−

𝛽 − 1 + 𝑁0

1 − 𝜙

  ⋮

→ ෠𝜙𝑀𝐴𝑃 =
𝛼 − 1 + 𝑁1

𝛽 − 1 + 𝑁0 + 𝛼 − 1 + 𝑁1

 𝛼 − 1 is a “pseudocount” of the number of 1’s (or heads) 
you’ve “observed” 

 𝛽 − 1 is a “pseudocount” of the number of 0’s (or tails) 
you’ve “observed”



Coin 
Flipping
MAP:
Example
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 Suppose 𝒟 consists of ten 1’s or heads (𝑁1 = 10) and     

two 0’s or tails (𝑁0 = 2):

𝜙𝑀𝐿𝐸 =
10

10 + 2
=

10

12

 Using a Beta prior with 𝛼 = 2 and 𝛽 = 5, then

𝜙𝑀𝐴𝑃 =
(2 − 1 + 10)

(2 − 1 + 10) + (5 − 1 + 2)
=

11

17
<

10

12



Coin 
Flipping
MAP:
Example
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 Suppose 𝒟 consists of ten 1’s or heads (𝑁1 = 10) and     

two 0’s or tails (𝑁0 = 2):

𝜙𝑀𝐿𝐸 =
10

10 + 2
=

10

12

 Using a Beta prior with 𝛼 = 101 and 𝛽 = 101, then

𝜙𝑀𝐴𝑃 =
(101 − 1 + 10)

(101 − 1 + 10) + (101 − 1 + 2)
=

110

212
≈

1

2



Coin 
Flipping
MAP:
Example
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 Suppose 𝒟 consists of ten 1’s or heads (𝑁1 = 10) and     

two 0’s or tails (𝑁0 = 2):

𝜙𝑀𝐿𝐸 =
10

10 + 2
=

10

12

 Using a Beta prior with 𝛼 = 1 and 𝛽 = 1, then

𝜙𝑀𝐴𝑃 =
(1 − 1 + 10)

(1 − 1 + 10) + (1 − 1 + 2)
=

10

12
= 𝜙𝑀𝐿𝐸



MLE/MAP 
Learning 
Objectives

You should be able to…

 Recall probability basics, including but not limited to: 
discrete and continuous random variables, probability 
mass functions, probability density functions, events vs. 
random variables, expectation and variance, joint 
probability distributions, marginal probabilities, 
conditional probabilities, independence, conditional 
independence

 State the principle of maximum likelihood estimation and 
explain what it tries to accomplish

 State the principle of maximum a posteriori estimation 
and explain why we use it

 Derive the MLE or MAP parameters of a simple model in 
closed form

6110/23/24
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