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10-301/601: Introduction 
to Machine Learning
Lecture 17 – Deep 
Learning



Front Matter

 Announcements

 HW6 released 10/27, due 11/2 at 11:59 PM

 You can only use at most two late days on HW6

 Exam 2 on 11/7 (next Thursday) from 6:45 - 8:45 PM

 All topics from Lecture 8 to Lecture 16 (inclusive)

+ the portion of today’s lecture on MLE/MAP 

are in-scope

 Exam 1 content may be referenced but will not 

be the primary focus of any question
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 Insight: sometimes we have prior information we want 

to incorporate into parameter estimation

 Idea: use Bayes rule to reason about the posterior 

distribution over the parameters

 MLE finds 𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃

 MAP finds 𝜃 = argmax
𝜃

 𝑝 𝜃 𝒟

MAP finds 𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds 𝜃 = argmax
𝜃

 𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds 𝜃. = argmax
𝜃

 log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Recall: 
Maximum a 
Posteriori 
(MAP) 
Estimation
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likelihood prior

log-posterior



Coin 
Flipping
MAP
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 A Bernoulli random variable takes value 1 (or heads) with 

probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 

𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙𝛼−1 1 − 𝜙 𝛽−1

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = 
0

1
𝜙𝛼−1 1 − 𝜙 𝛽−1𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Beta 
Distribution
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Why use this 
strange looking 
Beta prior?

The Beta 
distribution is 
the conjugate 
prior for the 
Bernoulli 
distribution!
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 A Bernoulli random variable takes value 1 (or heads) with 

probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

 The pmf of the Bernoulli distribution is 

𝑝 𝑥|𝜙 = 𝜙𝑥 1 − 𝜙 1−𝑥

 Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙𝛼−1 1 − 𝜙 𝛽−1

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = 
0

1
𝜙𝛼−1 1 − 𝜙 𝛽−1𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1



Coin 
Flipping
MAP
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 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the log-posterior is

ℓ 𝜙 = log 𝑓 𝜙 𝛼, 𝛽 + 

𝑛=1

𝑁

log 𝑝 𝑥 𝑛 𝜙

ℓ 𝜙 = log
𝜙𝛼−1 1 − 𝜙 𝛽−1

Β 𝛼, 𝛽
+ 

𝑛=1

𝑁

log 𝜙𝑥 𝑛
1 − 𝜙 1−𝑥 𝑛

ℓ 𝜙 = 𝛼 − 1 log 𝜙 + 𝛽 − 1 log 1 − 𝜙 − log Β 𝛼, 𝛽

ℓ 𝜙 = + 

𝑛=1

𝑁

𝑥 𝑛 log 𝜙 + 1 − 𝑥 𝑛 log 1 − 𝜙

ℓ 𝜙 = 𝛼 − 1 + 𝑁1 log 𝜙 + 𝛽 − 1 + 𝑁0 log 1 − 𝜙

ℓ 𝜙 = − log Β 𝛼, 𝛽



Coin 
Flipping
MAP
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 Given 𝑁 iid samples 𝑥 1 , … , 𝑥 𝑁 , the partial derivative of 
the log-posterior is

𝜕ℓ

𝜕𝜙
=

𝛼 − 1 + 𝑁1

𝜙
−

𝛽 − 1 + 𝑁0

1 − 𝜙

  ⋮

→ 𝜙𝑀𝐴𝑃 =
𝛼 − 1 + 𝑁1

𝛽 − 1 + 𝑁0 + 𝛼 − 1 + 𝑁1

 𝛼 − 1 is a “pseudocount” of the number of 1’s (or heads) 
you’ve “observed” 

 𝛽 − 1 is a “pseudocount” of the number of 0’s (or tails) 
you’ve “observed”



Coin 
Flipping
MAP:
Example
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 Suppose 𝒟 consists of ten 1’s or heads (𝑁1 = 10) and     

two 0’s or tails (𝑁0 = 2):

𝜙𝑀𝐿𝐸 =
10

10 + 2
=

10

12

 Using a Beta prior with 𝛼 = 101 and 𝛽 = 101, then

𝜙𝑀𝐴𝑃 =
(101 − 1 + 10)

(101 − 1 + 10) + (101 − 1 + 2)
=

110

212
≈

1

2



Coin 
Flipping
MAP:
Example
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 Suppose 𝒟 consists of ten 1’s or heads (𝑁1 = 10) and     

two 0’s or tails (𝑁0 = 2):

𝜙𝑀𝐿𝐸 =
10

10 + 2
=

10

12

 Using a Beta prior with 𝛼 = 1 and 𝛽 = 1, then

𝜙𝑀𝐴𝑃 =
(1 − 1 + 10)

(1 − 1 + 10) + (1 − 1 + 2)
=

10

12
= 𝜙𝑀𝐿𝐸



MLE/MAP 
Learning 
Objectives

You should be able to…

 Recall probability basics, including but not limited to: 
discrete and continuous random variables, probability 
mass functions, probability density functions, events vs. 
random variables, expectation and variance, joint 
probability distributions, marginal probabilities, 
conditional probabilities, independence, conditional 
independence

 State the principle of maximum likelihood estimation and 
explain what it tries to accomplish

 State the principle of maximum a posteriori estimation 
and explain why we use it

 Derive the MLE or MAP parameters of a simple model in 
closed form
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Deep Learning

 From Wikipedia’s page on Deep Learning…

 Deep learning = more than one layer

10/28/24 12Source: https://en.wikipedia.org/wiki/Deep_learning

https://en.wikipedia.org/wiki/Deep_learning


Deep Learning
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First layer: computes the 
perceptrons’ predictions

Second layer: combines 
lower-level components



Convolutional 
Neural 
Networks

 Neural networks are frequently applied to inputs with 

some inherent spatial structure, e.g., images

 Idea: use the first few layers to identify relevant macro-

features, e.g., edges

 Insight: for spatially-structured inputs, many useful 

macro-features are shift or location-invariant, e.g., an 

edge in the upper left corner of a picture looks like an 

edge in the center

 Strategy: learn a filter for macro-feature detection in a 

small window and apply it over the entire image
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Convolutional 
Filters

 Images can be represented as matrices, where each 

element corresponds to a pixel

 A filter is just a small matrix that is convolved with 

same-sized sections of the image matrix
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0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0

∗



Convolutional 
Filters

 Images can be represented as matrices, where each 

element corresponds to a pixel

 A filter is just a small matrix that is convolved with 

same-sized sections of the image matrix
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=

0 ∗ 0 + 0 ∗ 1 + 0 ∗ 0 + 0 ∗ 1 + 1 ∗ −4
+ 2 ∗ 1 + 0 ∗ 0 + 2 ∗ 1 + 4 ∗ 0 = 0

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0

∗

0



Convolutional 
Filters

 Images can be represented as matrices, where each 

element corresponds to a pixel

 A filter is just a small matrix that is convolved with 

same-sized sections of the image matrix
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=

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0

∗

0 ∗ 0 + 0 ∗ 1 + 0 ∗ 0 + 1 ∗ 1 + 2 ∗ −4
+ 2 ∗ 1 + 2 ∗ 0 + 4 ∗ 1 + 4 ∗ 0 = −1

0 -1



Convolutional 
Filters

 Images can be represented as matrices, where each 

element corresponds to a pixel

 A filter is just a small matrix that is convolved with 

same-sized sections of the image matrix
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=

0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0

∗



Convolutional 
Filters

10/28/24 19Source: https://en.wikipedia.org/wiki/Kernel_(image_processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)


Poll Question 1: 

What effect do you think the 

following filter will have on an 

image? 

A. Sharpen the image

B. Blur the image

C. Shift the image left

D. Rotate the image clockwise

E. Nothing (TOXIC)

10/28/24 20Source: https://en.wikipedia.org/wiki/Kernel_(image_processing)

https://en.wikipedia.org/wiki/Kernel_(image_processing)


More 
Filters
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https://en.wikipedia.org/wiki/Kernel_(image_processing)


 Images can be represented as matrices, where each 

element corresponds to a pixel

 A filter is just a small matrix that is convolved with 

same-sized sections of the image matrix

Convolutional 
Filters
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0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0

1 | -4 | 1

=

0 1 0

1 -4 1

0 1 0

∗



0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0

Convolutional 
Filters
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 Convolutions can be represented by a feed forward neural 

network where:

1. Nodes in the input layer are only connected to 

some nodes in the next layer but not all nodes.

2. Many of the weights have the same value.

 Many fewer weights than a fully connected layer!

 Convolution weights are learned using gradient descent/ 

backpropagation, not prespecified



 What if relevant features exist at the border of our image?

 Add zeros around the image to allow for the filter to be 

applied “everywhere” e.g. a padding of 1 with a 3x3 filter 

preserves image size and allows every pixel to be the center

0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0 0

Convolutional 
Filters: Padding
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=

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0

0 1 0

1 -4 1

0 1 0

∗

0 1 2 2 1 0

1 0 -1 -1 0 1

2 -2 -5 -5 -2 2

1 2 -2 -1 3 1

1 -1 0 -5 0 1

0 2 -1 0 2 0



Downsampling: 
Pooling
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0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

𝑚𝑎𝑥
00 0

 Combine multiple adjacent nodes into a single node
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0 -1 -1 0

-2 -5 -5 -2

2 -2 -1 3

-1 0 -5 0

0 0

2 3

𝑚𝑎𝑥
pooling

Downsampling: 
Pooling

 Combine multiple adjacent nodes into a single node

 Reduces the dimensionality of the input to subsequent 

layers and thus, the number of weights to be learned

 Protects the network from (slightly) noisy inputs



 Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2
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Downsampling: 
Stride

=

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0

0 1

1 -2
∗

-2
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Downsampling: 
Stride

=

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0

0 1

1 -2
∗

-2 -2

 Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2



 Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2
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Downsampling: 
Stride

=

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0

0 1

1 -2
∗

-2 -2 1



 Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2
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Downsampling: 
Stride

=
0 1

1 -2
∗

-2 -2 1

0

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0



 Only apply the convolution to some subset of the image 

e.g., every other column and row = a stride of 2

 Reduces the dimensionality of the input to subsequent 

layers and thus, the number of weights to be learned

 Many relevant macro-features will tend to span large 

portions of the image, so taking strides with the 

convolution tends not to miss out on too much
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Downsampling: 
Stride

=
0 1

1 -2
∗

-2 -2 1

0 1 1

1 2 0

0 0 0 0 0 0

0 1 2 2 1 0

0 2 4 4 2 0

0 1 3 3 1 0

0 1 2 3 1 0

0 0 1 1 0 0



10/28/24 32Source: https://medium.com/data-science-group-iitr/artistic-style-transfer-with-convolutional-neural-network-7ce2476039fd

Cool Example: Style Transfer

https://medium.com/data-science-group-iitr/artistic-style-transfer-with-convolutional-neural-network-7ce2476039fd


Style Transfer

 Basic idea:

 Learn a content representation for an image using 

convolutional layers

 Learn a style representation for an image using 

convolutional layers

 Compute an image that jointly minimizes the distance 

from the content image’s content representation and 

the style image’s style representation

 For complete details, see 

https://arxiv.org/pdf/1508.06576.pdf
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https://arxiv.org/pdf/1508.06576.pdf


Cool 
Example: 
Style 
Transfer

10/28/24 34Source: https://arxiv.org/pdf/1508.06576.pdf

https://arxiv.org/pdf/1508.06576.pdf


Example: 
Handwriting 
Recognition
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U N E X P E C T E D

C C

C EE

O L A N IV

M B R A S

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312 

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312


Recurrent 
Neural 
Networks

 Neural networks are frequently applied to inputs with 

some inherent temporal or sequential structure, 

e.g., text or words

 Idea: use the information from previous parts of the 

input to inform subsequent predictions

 Insight: the hidden layers learn a useful representation 

(relative to the task)

 Strategy: incorporate the output from earlier hidden 

layers into later ones. 
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Recurrent 
Neural 
Networks
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𝒙𝑡
𝑖

𝒉𝑡

𝒐𝑡

𝑊 1

𝑊 2

𝑊ℎ

𝒉𝑡 = 1, 𝜃 𝑊 1 𝒙𝑡
𝑖

+ 𝑊ℎ𝒉𝑡−1

𝑇
 and 𝒐𝑡 = ො𝑦𝑡

𝑖
= 𝜃 𝑊 2 𝒉𝑡  

 Training dataset consists of 

(input sequence, label sequence) 

pairs, potentially of varying lengths

𝒟 = 𝒙 𝑛 , 𝒚 𝑛
𝑛=1

𝑁

𝒙 𝑛 = 𝒙1
𝑛

, … , 𝒙𝑇𝑛

𝑛

𝒚 𝑛 = 𝒚1
𝑛

, … , 𝒚𝑇𝑛

𝑛

 This model requires an initial value 

for the hidden representation, 𝒉0, 

typically a vector of all zeros



Unrolling
Recurrent 
Neural 
Networks
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C EB R A

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312 

𝒙1
𝑖

𝒙2
𝑖 𝒙3

𝑖 𝒙4
𝑖

𝒙5
𝑖

𝒉1

𝒐1

𝒉2

𝒐2

𝒉3

𝒐3

𝒉4

𝒐4

𝒉5

𝒐5

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊ℎ 𝑊ℎ 𝑊ℎ 𝑊ℎ

𝒉𝑡 = 1, 𝜃 𝑊 1 𝒙𝑡
𝑖

+ 𝑊ℎ𝒉𝑡−1

𝑇
 and 𝒐𝑡 = ො𝑦𝑡

𝑖
= 𝜃 𝑊 2 𝒉𝑡  

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312


Deep
Recurrent 
Neural 
Networks
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𝒙1
𝑖

𝒙2
𝑖 𝒙3

𝑖 𝒙4
𝑖

𝒙5
𝑖

𝒉1
1

𝒐1

𝒉2
1

𝒐2

𝒉3
1

𝒐3

𝒉4
1

𝒐4

𝒉5
1

𝒐5

𝑊 1

𝑊 3

𝑊 1

𝑊 3

𝑊 1

𝑊 3

𝑊 1

𝑊 3

𝑊 1

𝑊 3

𝑊ℎ
1

𝒉1
2

𝒉2
2

𝒉3
2 𝒉4

2 𝒉5
2

𝑊 2 𝑊 2 𝑊 2 𝑊 2 𝑊 2

𝒉𝑡
𝑙

= 1, 𝜃 𝑊 𝑙 𝒉𝑡
𝑙−1

+ 𝑊ℎ
𝑙

𝒉𝑡−1
𝑙

𝑇
 and 𝒐𝑡 = ො𝑦𝑡

𝑖
= 𝜃 𝑊 𝐿 𝒉𝑡

𝐿−1
 

𝑊ℎ
1

𝑊ℎ
1

𝑊ℎ
1

𝑊ℎ
2 𝑊ℎ

2
𝑊ℎ

2
𝑊ℎ

2



Deep
Recurrent 
Neural 
Networks
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𝒙𝑡
𝑖

𝒉𝑡
1

𝒐𝑡

𝑊 1

𝑊 𝐿

𝑊ℎ
1

𝒉𝑡
𝐿−1

⋮

𝒉𝑡
𝑙

= 1, 𝜃 𝑊 𝑙 𝒉𝑡
𝑙−1

+ 𝑊ℎ
𝑙

𝒉𝑡−1
𝑙

𝑇
 and 𝒐𝑡 = ො𝑦𝑡

𝑖
= 𝜃 𝑊 𝐿 𝒉𝑡

𝐿−1
 

𝑊ℎ
𝐿−1



But why do we 
only pass 
information 
forward? 
What if later 
time steps 
have useful 
information as 
well? 
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𝒙𝑡
𝑖

𝒉𝑡
1

𝒐𝑡

𝑊 1

𝑊 𝐿

𝑊ℎ
1

𝒉𝑡
𝐿−1

⋮

𝒉𝑡
𝑙

= 1, 𝜃 𝑊 𝑙 𝒉𝑡
𝑙−1

+ 𝑊ℎ
𝑙

𝒉𝑡−1
𝑙

𝑇
 and 𝒐𝑡 = ො𝑦𝑡

𝑖
= 𝜃 𝑊 𝐿 𝒉𝑡

𝐿−1
 

𝑊ℎ
𝐿−1



But why do we 
only pass 
information 
forward? 
What if later 
time steps 
have useful 
information as 
well? 
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??? EB R A

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312 

𝒙1
𝑖

𝒙2
𝑖 𝒙3

𝑖 𝒙4
𝑖

𝒙5
𝑖

𝒉1

𝒐1

𝒉2

𝒐2

𝒉3

𝒐3

𝒉4

𝒐4

𝒉5

𝒐5

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊ℎ 𝑊ℎ 𝑊ℎ 𝑊ℎ

𝒉𝑡 = 1, 𝜃 𝑊 1 𝒙𝑡
𝑖

+ 𝑊ℎ𝒉𝑡−1

𝑇
 and 𝒐𝑡 = ො𝑦𝑡

𝑖
= 𝜃 𝑊 2 𝒉𝑡  

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312


But why do we 
only pass 
information 
forward? 
What if later 
time steps 
have useful 
information as 
well? 
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I or N or S 
or V or K …

EB R A

Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312 

𝒙1
𝑖

𝒙2
𝑖 𝒙3

𝑖 𝒙4
𝑖

𝒙5
𝑖

𝒉1

𝒐1

𝒉2

𝒐2

𝒉3

𝒐3

𝒉4

𝒐4

𝒉5

𝒐5

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊 1

𝑊 2

𝑊ℎ 𝑊ℎ 𝑊ℎ 𝑊ℎ

𝒉𝑡 = 1, 𝜃 𝑊 1 𝒙𝑡
𝑖

+ 𝑊ℎ𝒉𝑡−1

𝑇
 and 𝒐𝑡 = ො𝑦𝑡

𝑖
= 𝜃 𝑊 2 𝒉𝑡  

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319312
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 A (deep/bidirectional) RNN simply represents a 

(somewhat complicated) computation graph 

 Weights are shared between different timesteps, 

significantly reducing the number of parameters to 

be learned!

 Can be trained using (stochastic) gradient descent/ 

backpropagation → “backpropagation through time”
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