
RNN LMs
+

Transformer LMs

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley, Henry Chai
Lecture 18

Oct. 30, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Homework 6: Learning Theory & Generative Models
– Out: Sun, Oct 27
– Due: Sat, Nov 2, 11:59pm

• Exam 2: Thu, Nov 7, 6:45 pm - 8:45 pm

3

EXAM 2 LOGISTICS

4

Exam 2
• Time / Location

– Time: Thu, Nov. 7, 6:45pm – 8:45pm
– Location & Seats: You have all been split across multiple rooms. Everyone has an assigned

seat in one of these room. Please watch Piazza carefully for announcements.
• Logistics

– Covered material: Lecture 8 – Lecture 16
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back, handwritten with

pen/pencil or tablet)

5

Topics for Exam 1
• Foundations
– Probability, Linear Algebra,

Geometry, Calculus
– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– Linear Regression

6

Topics for Exam 2
• Classification
– Binary Logistic Regression

• Important Concepts
– Stochastic Gradient Descent
– Regularization
– Feature Engineering

• Feature Learning
– Neural Networks
– Basic NN Architectures
– Backpropagation

• Learning Theory
– PAC Learning
– MLE / MAP

• Societal Impacts of ML

• Regression
– Linear Regression

7

BACKGROUND:
N-GRAM LANGUAGE MODELS

11

n-Gram Language Model
• Goal: Generate realistic looking sentences in a human

language
• Key Idea: condition on the last n-1 words to sample

the nth word

12

The bat made nightnoise at

p(
· |

ST
ART)

START

p(
· |

ST
ART,

 Th
e)

p(
· |

Th
e,

 b
at

)

p(
· |

ba
t,

m
ad

e)
p(

· |
m

ad
e,

 n
oi

se
)

p(
· |

no
ise

, a
t)

n-Gram Language Model
Question: How can we define a probability distribution over a
sequence of length T?

15

p(w1, w2, w3, … , w6) =
 p(w1)
 p(w2 | w1)
 p(w3 | w2)
 p(w4 | w3)
 p(w5 | w4)
 p(w6 | w5)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightat

noise at

made noise

bat made

The bat

The

n-Gram Model (n=2)

n-Gram Language Model
Question: How can we define a probability distribution over a
sequence of length T?

16

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) =
 p(w1)
 p(w2 | w1)
 p(w3 | w2, w1)
 p(w4 | w3, w2)
 p(w5 | w4, w3)
 p(w6 | w5, w4)

n-Gram Language Model
Question: How can we define a probability distribution over a
sequence of length T?

17

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) =
 p(w1)
 p(w2 | w1)
 p(w3 | w2, w1)
 p(w4 | w3, w2)
 p(w5 | w4, w3)
 p(w6 | w5, w4)

Note: This is called a model because we
made some assumptions about how many

previous words to condition on
(i.e. only n-1 words)

Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram
Model?

18

p(wt | wt-2 = made,
 wt-1 = noise)

wt p(· | ·, ·)

at 0.020

…

pollution 0.030

…

zebra 0.000

p(wt | wt-2 = The,
 wt-1 = bat)

wt p(· | ·, ·)

ate 0.015

…

flies 0.046

…

zebra 0.000

p(wt | wt-2 = cows,
 wt-1 = eat)

wt p(· | ·, ·)

corn 0.420

…

grass 0.510

…

zebra 0.000

Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram
Model?

19

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows,
 wt-1 = eat)

Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer:
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat

20

The bat made nightnoise at

p(
· |

ST
ART)

START

p(
· |

ST
ART,

 Th
e)

p(
· |

Th
e,

 b
at

)

p(
· |

ba
t,

m
ad

e)
p(

· |
m

ad
e,

 n
oi

se
)

p(
· |

no
ise

, a
t)

Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer:
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat

21

Approacheth, denay. dungy
Thither! Julius think: grant,--O
Yead linens, sheep's Ancient,
Agreed: Petrarch plaguy Resolved
pear! observingly honourest
adulteries wherever scabbard
guess; affirmation--his monsieur;
died. jealousy, chequins me.
Daphne building. weakness: sun-
rise, cannot stays carry't,
unpurposed. prophet-like drink;
back-return 'gainst surmise
Bridget ships? wane; interim?
She's striving wet;

5-Gram Model
I tell you, friends, most charitable care
ave the patricians of you. For your
wants, Your suffering in this dearth,
you may as well Strike at the heaven
with your staves as lift them Against
the Roman state, whose course will on
The way it takes, cracking ten thousand
curbs Of more strong link asunder than
can ever Appear in your impediment.
For the dearth, The gods, not the
patricians, make it, and Your knees to
them, not arms, must help.

Training Data (Shakespeaere)

RECURRENT NEURAL NETWORK (RNN)
LANGUAGE MODELS

22

Recurrent Neural Networks (RNNs)

23

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT) and output vector sequence y =
(y1, . . . , yT) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h
xt +W�!

h
�!
h

�!
h t�1 + b�!

h

⌘
(8)

 �
h t = H

⇣
W

x
 �
h
xt +W �

h
 �
h

 �
h t+1 + b �

h

⌘
(9)

yt = W�!
h y

�!
h t +W �

h y

 �
h t + by (10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT), xi � RI

hidden units: h = (h1, h2, . . . , hT), hi � RJ

outputs: y = (y1, y2, . . . , yT), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5

The Chain Rule of Probability
Question: How can we define a probability distribution over a
sequence of length T?

24

p(w1, w2, w3, … , w6) =
 p(w1)
 p(w2 | w1)
 p(w3 | w2, w1)
 p(w4 | w3, w2, w1)
 p(w5 | w4, w3, w2, w1)
 p(w6 | w5, w4, w3, w2, w1)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

Chain rule of probability:

Note: This is called the chain rule because
it is always true for every probability

distribution

Recall…

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector

25

p(w1, w2, w3, … , w6) =
 p(w1)
 p(w2 | fθ(w1))
 p(w3 | fθ(w2, w1))
 p(w4 | fθ(w3, w2, w1))
 p(w5 | fθ(w4, w3, w2, w1))
 p(w6 | fθ(w5, w4, w3, w2, w1))The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

RNN Language Model:

RNN Language Model

26

The bat made nightnoise atSTART

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

p(w5|h5)

h5

p(w6|h6)

h6

p(w7|h7)

h7

The bat made nightnoise at END

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1)

RNN Language Model

27

START

p(w1|h1)

h1

The

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1)

RNN Language Model

28

TheSTART

h1

p(w2|h2)

h2

bat

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1)

RNN Language Model

29

The batSTART

p(w3|h3)

made

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3

RNN Language Model

30

The bat madeSTART

p(w4|h4)

noise

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4

RNN Language Model

31

The bat made noiseSTART

p(w5|h5)

at

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4 h5

RNN Language Model

32

The bat made noise atSTART

p(w6|h6)

night

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1)

Answer:

Question: How can we create a distribution
p(wt|ht) from ht?

h1 h2 h3 h4 h5 h6

RNN Language Model

33

The bat made nightnoise atSTART

p(w7|h7)

END

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4 h5 h6 h7

RNN Language Model

34

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7)

The bat made nightnoise at END

p(w1, w2, w3, … , wT) = p(w1 | h1) p(w2 | h2) … p(w2 | hT)

h1 h2 h3 h4 h5 h6 h7

Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer:
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat

35

The bat made nightnoise at

p(
· |

ST
ART)

START

p(
· |

ST
ART,

 Th
e)

p(
· |

Th
e,

 b
at

)

p(
· |

ba
t,

m
ad

e)
p(

· |
m

ad
e,

 n
oi

se
)

p(
· |

no
ise

, a
t)

The same approach to
sampling we used for an n-
Gram Language Model also

works here for an RNN
Language Model

Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When I was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

??
CHARLES: Marry, do I, sir; and I came to acquaint you
with a matter. I am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, I
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, I would be
loath to foil him, as I must, for my own honour, if he
come in: therefore, out of my love to you, I came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you
than bear you; yet I should bear no cross if I did bear you,
for I think you have no money in your purse.

36
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

Shakespeare’s As You Like It
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When I was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

RNN-LM Sample
CHARLES: Marry, do I, sir; and I came to acquaint you
with a matter. I am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, I
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, I would be
loath to foil him, as I must, for my own honour, if he
come in: therefore, out of my love to you, I came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you
than bear you; yet I should bear no cross if I did bear you,
for I think you have no money in your purse.

37
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

RNN-LM Sample
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When I was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Shakespeare’s As You Like It
CHARLES: Marry, do I, sir; and I came to acquaint you
with a matter. I am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, I
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, I would be
loath to foil him, as I must, for my own honour, if he
come in: therefore, out of my love to you, I came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you
than bear you; yet I should bear no cross if I did bear you,
for I think you have no money in your purse.

38
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When I was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

??
CHARLES: Marry, do I, sir; and I came to acquaint you
with a matter. I am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, I
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, I would be
loath to foil him, as I must, for my own honour, if he
come in: therefore, out of my love to you, I came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you
than bear you; yet I should bear no cross if I did bear you,
for I think you have no money in your purse.

39
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LEARNING AN RNN

43

n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised
Part-of-Speech (POS) Tagging

44

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)

Recall…

SGD and Mini-batch SGD

45

Algorithm 1 SGD

1: Initialize θ(0)

2:
3:
4: s = 0
5: for t = 1, 2, . . . , T do
6: for i ∈ shufÒe(1, . . . , N) do
7: Select the next training point (xi, yi)
8: Compute the gradient g(s) = ∇Ji(θ

(s−1))
9: Update parameters θ(s) = θ(s−1)

− ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…

SGD and Mini-batch SGD

46

Algorithm 1Mini‐Batch SGD

1: Initialize θ(0)

2: Divide examples {1, . . . , N} randomly into batches {I1, . . . , IB}
3: where

⋃
B

b=1 Ib = {1, . . . , N} and
⋂

B

b=1 Ib = ∅
4: s = 0
5: for t = 1, 2, . . . , T do
6: for b = 1, 2, . . . , B do
7: Select the next batch Ib, wherem = |Ib|
8: Compute the gradient g(s) = 1

m

∑
i∈Ib

∇Ji(θ
(s))

9: Update parameters θ(s) = θ(s−1) − ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…

RNN

47

y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4

Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = Wyh · ht + by

RNN

48

Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)

y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4

RNN + Loss

49

Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t)k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt

y1 y2 y3 y4

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

LEARNING AN RNN-LM

50

Learning a Language Model
Question: How do we learn the probabilities for the n-Gram
Model?

51

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows,
 wt-1 = eat)

MLE for n-gram LM
• This counting method

gives us the maximum
likelihood estimate of
the n-gram LM
parameters

• We can derive it in the
usual way:
– Write the likelihood of

the sentences under the
n-gram LM

– Set the gradient to zero
and impose the constraint
that the probabilities sum-
to-one

– Solve for the MLE

Learning a Language Model
Question: How do we learn the probabilities for the n-Gram
Model?

52

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows,
 wt-1 = eat)

MLE for n-gram LM
• This counting method

gives us the maximum
likelihood estimate of
the n-gram LM
parameters

• We can derive it in the
usual way:
– Write the likelihood of

the sentences under the
n-gram LM

– Set the gradient to zero
and impose the constraint
that the probabilities sum-
to-one

– Solve for the MLE

MLE for Deep Neural LM
• We can also use maximum likelihood estimation

to learn the parameters of an RNN-LM or
Transformer-LM too!

• But not in closed form – instead we follow a
different recipe:
– Write the likelihood of the sentences under the

Deep Neural LM model
– Compute the gradient of the (batch) likelihood w.r.t.

the parameters by AutoDiff
– Follow the negative gradient using Mini-batch SGD

(or your favorite optimizer)

RNN + Loss

54

Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t)k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt

y1 y2 y3 y4

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute
the loss for an RNN-LM?

RNN-LM + Loss _

55

y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4)

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute
the loss for an RNN-LM?

w1 w2 w3w0=START

w1 w2 w3 w4

log p(w) = log p(w1, w2, w3, … , wT)
 = log p(w1 | h1) + … + log p(wT | hT) Algorithm 1 Elman RNN + Loss

1: procedure FORWARD(x1:T , y
∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t)k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt

RNN-LM + Loss _

56

w1 w2 w3w0=START

y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4)

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+

log p(w) = log p(w1, w2, w3, … , wT)
 = log p(w1 | h1) + … + log p(wT | hT)

ℓ = log p(w)

h1 h2 h3 h4

w4

x1 x2 x3 x4 x5

How can we use this to compute
the loss for an RNN-LM?

Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t)k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt

Learning an RNN-LM
• Each training example is

a sequence (e.g.
sentence), so we have
training data D = {w(1),
w(2), …, w(N)}

• The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is
typically the log-
likelihood of the training
examples:
 J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch
SGD (or your favorite
flavor of mini-batch SGD)

57

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7)

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT)
 = log p(w1 | h1) + log p(w2 | h2) + … + log p(wT | hT)

one
training
example

+
J = log p(w)

END

LARGE LANGUAGE MODELS

58

How large are LLMs?

62

Model Creators Year of
release

Training Data (#
tokens)

Model Size (#
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3 OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

LLaMA-2 Meta 2023 2 trillion 70 billion

GPT-4 OpenAI 2023 ? ? (1.76 trillion)

Gemini (Ultra) Google 2023 ? ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion

Comparison of some recent large language models (LLMs)

What is ChatGPT?

• ChatGPT is a large (in the sense of having many parameters)
language model, fine-tuned to be a dialogue agent

• The base language model is GPT-3.5 which was trained on a
large quantity of text

63

MODEL: GPT
Transformer Language Models

66

Attention

67

v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Attention

68

v1

a1,1

s1,1

softmax

x′

1 =

1∑

j=1

a1,jvj

Attention

69

v1 v2

a2,1

s2,1 s2,2

softmax

x′

2 =

2∑

j=1

a2,jvj

a2,2

Attention

70

v1 v2 v3

a3,1 a3,1 a3,1

s3,1 s3,2 s3,3

softmax

x′

3 =

3∑

j=1

a3,jvj

Attention

71

v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Attention

72

v1 v2 v3 v4

a4,1 a4,2 a4,3

s4,1 s4,2 s4,3 s4,4

softmax

x′

t =

t∑

j=1

at,jvj

values

scores

attention weights

x1’ x2’ x3’ x4’

a4,4

v1 v2 v3 v4

softmax

Scaled Dot-Product Attention

73

x1 x2 x3 x4

vj = WT
v xj

Wv values

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

74

x1 x2 x3 x4

Wk

vj = WT
v xj

kj = WT
k xj

Wv values

keys

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

75

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

76

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

scoress4,j = kT
j q4/

√

dk

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

77

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention

78

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

attention

qj = WT
q xj

Scaled Dot-Product Attention

79

x′

t =

t∑

j=1

at,jvj

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

st,j = kT
j qt/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsat = softmax(st)

attention

x1’ x2’ x3’ x4’

Animation of 3D Convolution

80
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

Recall…

http://cs231n.github.io/convolutional-networks/

Multi-headed Attention

81

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer

• Each head gets its own
parameters

• We can concatenate all
the outputs to get a
single vector for each
time step

1st
head 2nd

head 3rd
head

Multi-headed Attention

82

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer

• Each head gets its own
parameters

• We can concatenate all
the outputs to get a
single vector for each
time step

• To ensure the dimension of the
input embedding xt is the same
as the output embedding xt’,
Transformers usually choose
the embedding sizes and
number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

• Then concatenate the outputs

Multi-headed Attention

83

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer

• Each head gets its own
parameters

• We can concatenate all
the outputs to get a
single vector for each
time step

• To ensure the dimension of the
input embedding xt is the same
as the output embedding xt’,
Transformers usually choose
the embedding sizes and
number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

• Then concatenate the outputs

RNN Language Model

Key Idea:
(1) convert all previous words to a fixed length vector
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on
the vector ht = fθ(wt-1, …, w1) 84

The bat made nightnoise atSTART

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

p(w5|h5)

h5

p(w6|h6)

h6

p(w7|h7)

h7

The bat made nightnoise at END

Recall…

Transformer Language Model

85

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Important!
• RNN computation

graph grows
linearly with the
number of input
tokens

• Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

Transformer Language Model

86

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Important!
• RNN computation

graph grows
linearly with the
number of input
tokens

• Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

Layer Normalization
• The Problem: internal

covariate shift occurs
during training of a deep
network when a small
change in the low layers
amplifies into a large
change in the high layers

• One Solution: Layer
normalization normalizes
each layer and learns
elementwise gain/bias

• Such normalization allows
for higher learning rates
(for faster convergence)
without issues of
diverging gradients

87
Figure from https://arxiv.org/pdf/1607.06450.pdf

Given input a ∈ R
K , LayerNorm computes output b ∈ R

K :

b = γ ⊙
a − µ

σ
⊕ β

where we have mean µ = 1

K

∑

K

k=1
ak,

standard deviation σ =
√

1

K

∑

K

k=1
(ak − µ)2,

and parameters γ ∈ R
K , β ∈ R

K .
⊙ and⊕ denote elementwise multiplication and addition.

Residual Connections
• The Problem: as network

depth grows very large, a
performance degradation
occurs that is not explained
by overfitting (i.e. train / test
error both worsen)

• One Solution: Residual
connections pass a copy of
the input alongside another
function so that information
can flow more directly

• These residual connections
allow for effective training
of very deep networks that
perform better than their
shallower (though still deep)
counterparts

88
Figure from https://arxiv.org/pdf/1512.03385.pdf

a

b

b = f(a)

Plain Connection

a

b

b = b′
+ a

Residual Connection

b′ = f(a)

Residual Connections
• The Problem: as network

depth grows very large, a
performance degradation
occurs that is not explained
by overfitting (i.e. train / test
error both worsen)

• One Solution: Residual
connections pass a copy of
the input alongside another
function so that information
can flow more directly

• These residual connections
allow for effective training
of very deep networks that
perform better than their
shallower (though still deep)
counterparts

89
Figure from https://arxiv.org/pdf/1512.03385.pdf

a

b

b = f(a)

Plain Connection

a

b

Residual Connection

b = f(a) + a

Why are residual connections helpful?
Instead of f(a) having to learn a full

transformation of a, f(a) only needs to learn an
additive modification of a (i.e. the residual).

Post-LN Version:
This is the version of

the Transformer Layer
that was introduced in

the original paper in
2017.

The LayerNorm
modules occur at the
end of each set of 3

layers.

Transformer Layer

90

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connection (addition)

layer normalization

feed forward neural network

residual connection (addition)

layer normalization

Transformer Layer

91

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

feed forward neural network

layer normalization

layer normalization

residual connection (addition)

residual connection (addition)Pre-LN Version:
However, subsequent

work found that
reordering such that

the LayerNorm’s came
at the beginning of
each set of 3 layers,

the multi-headed
attention and feed-
forward NN layers
tend to be better

behaved (i.e. tricks like
warm-up are less

important).

Transformer Layer

92

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

feed forward neural network

layer normalization

layer normalization

residual connection (addition)

residual connection (addition)

Transformer
Layer

Transformer Layer

93

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer

Transformer Layer

94

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

x1’ x2’ x3’ x4’

Transformer layer

Transformer Language Model

95

x1 x2 x3 x4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Each layer of a Transformer LM
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer

Question:
Suppose we have the following input
embeddings and attention weights:
• x1 = [1,0,0,0] a4,1 = 0.1
• x2 = [0,1,0,0] a4,2 = 0.2
• x3 = [0,0,2,0] a4,3 = 0.6
• x4 = [0,0,0,1] a4,4 = 0.1
And Wv = I. Then we can compute x4’.
Now suppose we swap the
embeddings x2 and x3 such that
• x2 = [0,0,2,0]
• x3 = [0,1,0,0]
What is the new value of x4’?

Answer:

In-Class Poll

96

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Position Embeddings
• The Problem: Because attention is position

invariant, we need a way to learn about positions
• The Solution: Use (or learn) a collection of position

specific embeddings: pt represents what it means
to be in position t. And add this to the word
embedding wt.
The key idea is that every word that appears in
position t uses the same position embedding pt

• There are a number of varieties of position
embeddings:
– Some are fixed (based on sine and cosine), whereas

others are learned (like word embeddings)
– Some are absolute (as described above) but we can

also use relative position embeddings (i.e. relative
to the position of the query vector)

97

w1 w2 w3 w4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Transformer layer

Transformer layer

Transformer layer

p1 p2 p3 p4

+ + + +

LEARNING A TRANSFORMER LM

98

Learning a Transformer LM
• Each training example is

a sequence (e.g.
sentence), so we have
training data D = {w(1),
w(2), …, w(N)}

• The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is
typically the log-
likelihood of the training
examples:
 J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch
SGD (or your favorite
flavor of mini-batch SGD)

99

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7)

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT)
 = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one
training
example

Transformer LM

+
J = log p(w)

END

Training a Transformer-LM
is the same, except we

swap in a different deep
language model.

Language Modeling
An aside:
• State-of-the-art language models currently tend to rely on transformer networks

(e.g. GPT-3)
• RNN-LMs comprised most of the early neural LMs that led to current SOTA

architectures

100
Figure from https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

GPT-3

• GPT stands for Generative Pre-trained Transformer
• GPT is just a Transformer LM, but with a huge number of

parameters

101

Model # layers dimension
of states

dimension
of inner
states

attention
heads

params

GPT (2018) 12 768 3072 12 117M

GPT-2
(2019)

48 1600 -- -- 1542M

GPT-3
(2020)

96 12288 4*12288 96 175000M

Why does efficiency matter?
Case Study: GPT-3
• # of training

tokens = 500
billion

• # of
parameters =
175 billion

• # of cycles = 50
petaflop/s-days
(each of which
are 8.64e+19
flops)

102
Figure from https://arxiv.org/pdf/2005.14165.pdf

https://arxiv.org/pdf/2005.14165.pdf

Recap
Deep Learning
• AutoDiff

– is a tool for computing gradients of a
differentiable function, b = f(a)

– the key building block is a module with a
forward() and backward()

– sometimes define f as code in forward() by
chaining existing modules together

• Computation Graphs
– are another way to define f (more conducive to

slides)
– we are considering various (deep) computation

graphs: (1) CNN (2) RNN (3) RNN-LM
(4) Transformer-LM

• Learning a Deep Network
– deep networks (e.g. CNN/RNN) are trained by

optimizing an objective function with SGD
– compute gradients with AutoDiff

Language Modeling
• key idea: condition on previous words to

sample the next word
• to define the probability of the next word…

– …n-gram LM uses collection of massive 50k-
sided dice

– …RNN-LM or Transformer-LM use a neural
network

• Learning an LM
– n-gram LMs are easy to learn: just count co-

occurrences!
– a RNN-LM / Transformer-LM is trained just like

other deep neural networks

103

Two parts: Deep Learning and Language Modeling

IMPLEMENTING A TRANSFORMER LM

104

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

105

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

106

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1a4,2a4,3a4,4

s4,1s4,2s4,3s4,4

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

107

x1 x2 x3 x4

Wk

Wq

Wv

a4,1a4,2a4,3a4,4

s4,1s4,2s4,3s4,4

Q = [q1, . . . , q4]
T = XWq

V = [v1, . . . , v4]
T = XWv

S = [s1, . . . , s4]T = QKT /
√

dk

K = [k1, . . . , k4]
T = XWk

A = [a1, . . . , a4]T = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

• For speed, we compute
all the queries at once
using matrix operations

• First we pack the
queries, keys, values into
matrices

• Then we compute all the
queries at once

q1 q2 q3 q4 Q = [q1, . . . , q4]
T = XWq

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

108

x1 x2 x3 x4

Wk

Wq

V = [v1, . . . , v4]
T = XWv

S = [s1, . . . , s4]T = QKT /
√

dk

K = [k1, . . . , k4]
T = XWk

Wv

A = [a1, . . . , a4]T = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

• For speed, we compute
all the queries at once
using matrix operations

• First we pack the
queries, keys, values into
matrices

• Then we compute all the
queries at once

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

Wq

Q = [q1, . . . , q4]
T = XWq

109

x1 x2 x3 x4

Wk

V = [v1, . . . , v4]
T = XWv

S = [s1, . . . , s4]T = QKT /
√

dk

K = [k1, . . . , k4]
T = XWk

Wv

A = [a1, . . . , a4]T = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

Holy cow, that’s a lot of new
arrows… do we always
want/need all of those?
• Suppose we’re training

our transformer to predict
the next token(s) given
the input…

• … then attending to
tokens that come after
the current token is
cheating!

So what is this model?
• This version is the

standard Transformer
block. (more on this later!)

• But we want the
Transformer LM block

• And that requires
masking!

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

Wq

Q = XWq

110

x1 x2 x3 x4

Wk

V = XWv

S = QKT /
√

dk

K = XWk

Wv

A = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

Answer:

Question: How is the
softmax applied?
A. column-wise
B. row-wise

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed (Causal) Attention

Wq

Q = XWq

111

x1 x2 x3 x4

Wk

V = XWv

S = QKT /
√

dk

K = XWk

Wv

Acausal = softmax(S + M)

X′ = AV = softmax(QKT /
√

dk + M)V

X = [x1, . . . , x4]
T

Insight: if some element in
the input to the softmax is
-∞, then the corresponding
output is 0!

Answer:

Question: For a causal LM
which is the correct matrix?
A:

B:

C:

M =

⎡

⎢

⎢

⎣

0 0 0 0

−∞ 0 0 0

−∞ −∞ 0 0

−∞ −∞ −∞ 0

⎤

⎥

⎥

⎦

M =

⎡

⎢

⎢

⎣

0 −∞ −∞ −∞

0 0 −∞ −∞

0 0 0 −∞

0 0 0 0

⎤

⎥

⎥

⎦

M =

⎡

⎢

⎢

⎣

0 −∞ −∞ −∞

−∞ 0 −∞ −∞

−∞ −∞ 0 −∞

−∞ −∞ −∞ 0

⎤

⎥

⎥

⎦

In practice, the
attention weights are
computed for all time
steps T, then we mask
out (by setting to –inf)
all the inputs to the
softmax that are for
the timesteps to the
right of the query.

Matrix Version of Multi-Headed (Causal) Attention

112

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
,X′(2)

,X′(3))

Matrix Version of Multi-Headed (Causal) Attention

113

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))

Matrix Version of Multi-Headed (Causal) Attention

114

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

Recall:
To ensure the dimension of the input
embedding xt is the same as the
output embedding xt’, Transformers
usually choose the embedding sizes
and number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

