10-301/10-601 Introduction to Machine Learning

Machine Learning Department
School of Computer Science
Carnegie Mellon University

RNN LMs
+

Transformer LMs

Matt Gormley, Henry Chai
Lecture 18
Oct. 30, 2024

Reminders

* Homework 6: Learning Theory & Generative Models
— Out: Sun, Oct 27
— Due: Sat, Nov 2, 11:59pm

* Exam 2: Thu, Nov 7, 6:45 pm - 8:45 pm

EXAM 2 LOGISTICS

Exam 2

 Time /Location
— Time: Thu, Nov. 7, 6:45pm — 8:45pm
— Location & Seats: You have all been split across multiple rooms. Everyone has an assigned
seat in one of these room. Please watch Piazza carefully for announcements.
* Logistics
— Covered material: Lecture 8 — Lecture 16
— Format of questions:
* Multiple choice
* True/ False (with justification)

e Derivations
* Short answers

* Interpreting figures
* Implementing algorithms on paper
— No electronic devices

— You are allowed to bring one 8% x 11 sheet of notes (front and back, handwritten with
pen/pencil or tablet)

Topics for Exam 1

* Foundations e (lassification
— Probability, Linear Algebra, — Decision Tree
Geometry, Calculus — KNN
— Optimization — Perceptron
* Important Concepts * Regression
— Overfitting — Linear Regression

— Experimental Design

Topics for Exam 2

* (Classification
— Binary Logistic Regression
* Important Concepts
— Stochastic Gradient Descent
— Regularization
— Feature Engineering
* Feature Learning

— Neural Networks
— Basic NN Architectures
— Backpropagation

Learning Theory

— PAC Learning
— MLE [MAP

Societal Impacts of ML

Regression
— Linear Regression

BACKGROUND:
N-GRAM LANGUAGE MODELS

n-Gram Language Mode]

* Godal: Generate realistic looking sentences in a human
language

* Key Idea: condition on the last n-1 words to sample
the nt" word

P
-—\ Q/
Z N2
N D 2 9 D
/—\\ /\\] o Q Yo
<& s 0 <& bqj X o,qj‘
Y & < > Y S
) 6 N Q S <
O O O O O O
Q Q Q Q Q Q

n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e) o e) (e) (oo

W, W, W; W, Wi We
T

n-Gram Model (n=2) p(wy,wa, ..., wr) = | [p(ws | we—1)
t=1

p(Wv W, W37 cee W6) =
The p(W1)
[The J(bat] p(w, [w,)
[bat][made] p(W3 Wz)
[made][noise J p(W4 W3)
[noise][at] p(W5 W4)
o) (@) p(wg | we)

15

n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e) o e) (e) (oo

W, W, W; W, W Wi
T

n-Gram Model (n=3) p(wy,wa, ..., wr) = [[plwe | we—1,we—2)
t=1

p(Wv W, W37 cee W6) =

The p(W1)
[The J(bat] p(w, [w,)
[The] [bat][made] p(W3 W,, W1)
[bat][made][noise] p(W4 W3’ WZ)
[made][noise][at] P(W5 W4, W3)
[noise][at][night] p(W6 WS’ W4)

n-Gram Language Mode]

Question: How can we define a probability distribution over a
sequence of length T2

e) o e) (e) (oo

Wi W, W3 Wy Ws We
T
n-Gram Model (n=3) p(wi,wa, ..., wr) = | [pwe | we—1, i)
=1
p(w,, 3o We) =
The p(W1)

The (=l YAYVEE RVVA
— Note: This is called a model because we

made some assumptions about how many
previous words to condition on
(i.e. only n-1 words)

Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?

P(w¢ | Wi, = The, p(W¢ | we, = made, P(W¢ | Wy, = cows,
0 Wi, = bat) 0 Wi, = NOIse) O Wy, = eat)
Wi p(- [+) Wi p(-[+>) Wi p(- [+
ate 0.015 at 0.020 corn 0.420
flies 0.046 pollution 0.030 grass 0.510

zebra 0.000 zebra 0.000 zebra 0.000

18

Learning an n-Gram Model

Question: How do we learn the probabilities for the n-Gram
Model?
Answer: From data! Just count n-gram frequencies

p(w; | Wy, = cows,

O Wi, = eat)
.the cows eat grass...

...our cows eat hay daily... Wt p(-[+-)
... factory-farm cows eat corn...

corn 411

...on an organic farm, cows eat hay and...
...do your cows eat grass or corn?...
...what do cows eat if they have...
...cows eat corn when there is no... hay 2/11
... which cows eat which foods depends...
...if cows eat grass...

...when cows eat corn their stomachs...
...should we let cows eat corn?...

grass 3/11

if 111

which 1/11

19

Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up
4

Repeat ~
P > N 2
N) ¥ o %)
QN AN © S N °
< oy N § ¥ B

g g < > Y S
) 6 N Q S <

O O o O O O

Q Q Q Q Q Q

Sampling from a Language Model

Question: How do we sample from a Language Model?

Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up

4.

Repeat

Training Data (Shakespeaere)

5-Gram Model

| tell you, friends, most charitable care
ave the patricians of you. For your
wants, Your suffering in this dearth,
you may as well Strike at the heaven
with your staves as lift them Against
the Roman state, whose course will on
The way it takes, cracking ten thousand
curbs Of more strong link asunder than
can ever Appear in your impediment.
For the dearth, The gods, not the
patricians, make it, and Your knees to
them, not arms, must help.

Approacheth, denay. dungy
Thither! Julius think: grant,—-0
Yead linens, sheep's Ancient,
Agreed: Petrarch plaguy Resolved
pear! observingly honourest
adulteries wherever scabbard
guess; affirmation--his monsieur;
died. jealousy, chequins me.
Daphne building. weakness: sun-
rise, cannot stays carry't,
unpurposed. prophet-like drink;
back-return 'gainst surmise
Bridget ships? wane; interim?
She's striving wet;

RECURRENT NEURAL NETWORK (RNN)
LANGUAGE MODELS

Recurrent Neural Networks (RNNs)

inputs: x = (x1,29,...,27),2; € R
hidden units: h = (hy, ho,...,h7),hi € R’

outputs: y = (y1,2,---,yr), ¥ € R"
nonlinearity: H

Definition of the RNN:
he = H(Wenxy + Whphi—1 + bp)
Yt — Whyht =+ by

23

The Chain Rule of Probabilitm

Question: How can we define a probability distribution over a

sequence of length T2

e) o e) (e) (oo

W, W, W3 W, W5 We
T
Chain rule of probability: p(wi,wa,...,wr) = | [p(ws | wi_y,...,w)
t=1
p(w,, vﬁo@, ey Wg) =
p(w,)
e I amr— YAV FVVA
e Note: This is called the chain rule because
(me|] itis always true for every probability
The distribution w)
The PAYVe [VW5 YWy VV3y VVo) W1)

24

RNN Language Model

T
RNN Language Model: p(w1,ws, ..., wr) = | [p(w: | fo(we-1,...,w1))
t=1

p(W1, W, W3) cee W6) =
The p(W1)

(The) (Toat) p(W, | fo(wi))

[The] [bat][made] p(W3 fe(wz, W1))

[The][bat][made | [noise] p(W fG(W3) W,, W1))

[The][bat][made |(noise |[at | p(W fe(w W , W, W1))

[The][bat][made |[noise |[at][night | p(W6 fe(W W,, W3, W, W1))

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector

RNN Language Model

[The][bat][made][noise][at][night] [END]

I A T R

»]«p(w1|h1) TP(WZIhZ) TP(WBWS) Tp(w4lh4) TP(WSIhS) TP(W6|h6)Tp(W7|h7)
. > | > > > > >

) L

h, h, h, h, hs he h,
IT—lITF—IT >l > IT T I+l

A /A N A

[STARTJ [The] [bat] [made] [noise] [at] [night]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

The

T

p(wilh,)

h,
T
/

START

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

bat

T
o[p(wzlhz)

h, h,
CITF—t 1 1]

o

(START] [The |

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

made

T
/[p(wshs)

h, h, hy
I e B e

L1

(START] [The | [bat |

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

noise

T
/[p(w4lh4)

h, h, h, h,
CITH+—lIITr+—lITr—=t11]

I

(START] [The] [bat) [made |

7z

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

T
'[P(Wslhs)

h, h, h, h, hs
(ITThF—l Il >l {11

[1 1 1

(START] | The | [bat | [made | [noise]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

Question: How can we create a distribution

5
Answer: T
[P(W6|h6)
h, h, h; h, hs he

(ITF—lI T Il > 11

L 1t 1 1 1

[STARTJ [The] [bat][made] [noise][at]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

END

T
Ip(w7lh7)

h, h, h, h, hs he h,
IT—lITF—IT >l > IT T I+l

r -t t 1 1 °

[START] [The] [bat] [made] [noise] [at] [night]

Key Idea:
(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(w,.,, ..., W,)) that conditions on
the vector h, = fg(wy,, ..., W,)

RNN Language Model

[The][bat][made][noise][at][night] [END]

T

T

T

T

»]«p(w1|h1) TP(WZIhZ) TP(WBWS) Tp(w4lh4) TP(WSIhS) TP(W6|h6)Tp(W7|h7)
' > | > > > > > >
h, h, h; h, hs he h,
(TTF—lITTFTT > I T I T > TIT 111

A

A

N

A

[START] [The] [bat] [made] [noise] [at] [night]

P(W1, Wy W3y ooy WT) = p(W1 l h1) p(Wz | hz) p(Wz | hT)

Sampling from a Language Model

Question: How do we sample from a Language Model?
Answer:

1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(w, | W, W)

3. Roll that die and generate whichever word w, lands face up
4

Repeat ~ . .@Q/\
N) ¥ S)
QN AN © S N °
< <& N § ¥ B
g g < > Y S
) 6 N Q S <
O O O O O O
Q Q Q Q Q
— — —
) @ The same approach to

[e || bt | sampling we used for an n-

Gram Language Model also
works here for an RNN
Language Model

Sampling from an RNN-LM

44
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hour
council | am great, Murdered and by thy
there My power to give thee but so much
service in the noble bondman here, Woul
her wine.

h me brok
Which is the real
Shakespeare?!

44

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without

n limb shall acquit him well. Your brother is
ender; and, for your love, | would be

as | must, for my own honour, if he

re, out of my love to you, | came hither

KING LEAR: O, if you were a feeble , the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

{thal, that either you might stay him
from his intend brook such disgrace well as he
shall runinto, in t is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

Shakespeare’s As You Like It

VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

RNN-LM Sample

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, | would be
loath to foil him, as | must, for my own honour, if he
come in: therefore, out of my love to you, | came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

RNN-LM Sample

VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hours, but cut thy
council I am great, Murdered and by thy master's ready
there My power to give thee but so much as hell: Some
service in the noble bondman here, Would show him to
her wine.

KING LEAR: O, if you were a feeble sight, the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

Shakespeare’s As You Like It

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without
some broken limb shall acquit him well. Your brother is
but young and tender; and, for your love, | would be
loath to foil him, as | must, for my own honour, if he
come in: therefore, out of my love to you, | came hither
to acquaint you withal, that either you might stay him
from his intendment or brook such disgrace well as he
shall run into, in that it is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Sampling from an RNN-LM

44
VIOLA: Why, Salisbury must find his flesh and thought
That which I am not aps, not a man and in fire, To show
the reining of the raven and the wars To grace my hand
reproach within, and not a fair are hand, That Caesar and
my goodly father's world; When | was heaven of
presence and our fleets, We spare with hour
council | am great, Murdered and by thy
there My power to give thee but so much
service in the noble bondman here, Woul
her wine.

h me brok
Which is the real
Shakespeare?!

44

CHARLES: Marry, do I, sir; and | came to acquaint you
with a matter. | am given, sir, secretly to understand that
your younger brother Orlando hath a disposition to come
in disguised against me to try a fall. To-morrow, sir, |
wrestle for my credit; and he that escapes me without

n limb shall acquit him well. Your brother is
ender; and, for your love, | would be

as | must, for my own honour, if he

re, out of my love to you, | came hither

KING LEAR: O, if you were a feeble , the courtesy of
your law, Your sight and several breath, will wear the
gods With his heads, and my hands are wonder'd at the
deeds, So drop upon your lordship's head, and your
opinion Shall be against your honour.

Example from

{thal, that either you might stay him
from his intend brook such disgrace well as he
shall runinto, in t is a thing of his own search and
altogether against my will.

TOUCHSTONE: For my part, | had rather bear with you
than bear you; yet | should bear no cross if | did bear you,
for | think you have no money in your purse.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

LEARNING AN RNN

Data:

Dataset for Supervised
Part-of-Speech (POS) Tagging
D= (2" y "),

Sample ® ® @ (9 ® }»
T
Sample 2: @ @ . ‘ @ &
}
Sample 3: @ ‘ @ @ @ } yB
@ @ } e
sample 4: ‘ @ @ ‘ . Ty
) } =

Ry

44

SGD and Mini-batch SGD

Algorithm 1SGD

: Initialize 0(©)

2:

3:

4: s =10

s: fort =1,2,...,7T do

6: for i € shuffle(1,..., N) do

7: Select the next training point (x;, v;)

8: Compute the gradient ¢(*) = V.J;((s= 1)
o: Update parameters (5) = §(s=1) — pq(s)
10: Increment time steps = s+ 1

1: Evaluate average training loss J(0) = + > J;(0)

n 1=

12: return 6%

SGD and Mini-batch SGD

Algorithm 1 Mini-Batch SGD

i: Initialize 0(°)

Divide examples {1, ..., N} randomly into batches {I;, ..., Ip}

where Ule I,={1,...,N}and ﬂle I, =10

s =10

fort =1,2,...,T do

forb=1,2,...,Bdo

Select the next batch Iy, where m = |[|
Compute the gradient g'*) = L 3" V.J;(6%))
Update parameters (s) = §(s=1) — pg(s)

10: Increment time steps = s+ 1

1: Evaluate average training loss J(0) = £+ >_1" . J;(0)

n

N

e 9N @V W

12: return ()

RNN

Algorithm 1 Elman RNN

1: procedure FORWARD(z 1.7, Wan, Wag, ba, Wyn, by)
2: Initialize the hidden state hy to zeros

3 fortinltol do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:

6 at:Wah'ht—1+Wax'xt+ba

Vi ht — O'((],t)

8 Compute the output at time step ¢:

9 yt:Wyh'ht+by

RNN

Algorithm 1 Elman RNN

: procedure FORWARD(Z1.7, Wan, Waz, ba, Wyn, by)
Initialize the hidden state hg to zeros
fortinlto’l do
Receive input data at time step ¢: x;
Compute the hidden state update:
Ay — Wah . ht—l + Wam - Tt + ba
ht = a(at)
Compute the output at time step ¢:
Y = softmax(Wyp, - hy + b))

QRN R NR

RNN + Loss

Algorithm 1 ElIman RNN + Loss

1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
2 Initialize the hidden state hg to zeros

3 fortinltol' do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:
6

7

8

9

£ =log p(w) [+]

///j7ﬂr\\\

e] et) Lot) [Lae) |

Ay = Wah . ht—l =+ Wam - T+ ba
ht — O'(CLt)
Compute the output at time step ¢:
Yy = softmax(Wyp, - hy + by)
10 Compute the cross-entropy loss at time step ¢:

1 b= =2k (U7 log((ye)r)
12: Compute the total loss:

13: V= Zle /4

LEARNING AN RNN-LM

Learning a Language Model

Question: How do we learn the probabilities for the n-Gram | MLE for n-gram LM

Model? * This counting method
: | _ ~ gives us the maximum
Answer: From data! Just count n-gram frequencies Plelihood estimate of
P(We| Wi, = cows, the n-gram LM
0 Wi, = eat) t
parameters

... the cows eat grass...

¢ hav dail w C1n°) * We can derive it in the
...](c)ur cowfs eat hay dal Z t 21 I usual way:
... Tactory- arm. cows eat corn... orn A _ Write the likelihood of
...on an organic farm, cows eat hay and... the sentences under the
...do your cows eat grass or corn?... grass 311 n-gram LM
...what do cows eat if they have... — Set the gradient to zero
...cows eat corn when there is no... hay 2/11 and impose the constraint
...which cows eat which foods depends... that the probabilities sum-

. lf 1/11 tO"One

...if cows eat grass...

: — Solve for the MLE
... when cows eat corn their stomachs...

which 1/11
... should we let cows eat corn?...

Learning a Language Model

MLE for Deep Neural LM

* We can also use maximum likelihood estimation
to learn the parameters of an RNN-LM or
Transformer-LM too!

e But notin closed form - instead we follow a
different recipe:

— Write the likelihood of the sentences under the
Deep Neural LM model

— Compute the gradient of the (batch) likelihood w.r.t.

the parameters by AutoDiff

— Follow the negative gradient using Mini-batch SGD
(or your favorite optimizer)

MLE for n-gram LM

* This counting method
gives us the maximum
likelihood estimate of
the n-gram LM
parameters

e We can deriveitin the
usual way:
— Write the likelihood of

the sentences under the
n-gram LM

— Set the gradient to zero
and impose the constraint

that the probabilities sum-
to-one

— Solve for the MLE

How can we use this to compute

RNN + Loss the loss for an RNN-LM?

Algorithm 1 ElIman RNN + Loss

1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
2 Initialize the hidden state hg to zeros

3 fortinltol' do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:
6

7

8

9

£ =log p(w) [+]

///j7ﬂr\\\

e] et) Lot) [Lae) |

Ay = Wah . ht—l =+ Wam - T+ ba
ht — O'(CLt)
Compute the output at time step ¢:
Yy = softmax(Wyp, - hy + by)
10 Compute the cross-entropy loss at time step ¢:

1 b= =2k (U7 log((ye)r)
12: Compute the total loss:

13: V= Zthl /4

Oow can we use this to compute

H
RN N-LM + LOSS L the loss for an RNN-LM?

log p(w) = log p(wy, Wy, W3, ... , Wr)

— log p(w, | h,) + ... +log p(ws | hy) Algorithm 1 ElIman RNN + Loss

1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
2 Initialize the hidden state hg to zeros

3 fortinltol' do

4: Receive input data at time step ¢: x;

5: Compute the hidden state update:
6

7

8

9

£ =log p(w) [+]

///j7ﬂr\\\

e] et) Lot) [Lae) |

Ay = Wah . ht—l =+ Wam - T+ ba
ht — O'(CLt)
Compute the output at time step ¢:
Yy = softmax(Wyp, - hy + by)
10 Compute the cross-entropy loss at time step ¢:

1 b= =2k (U7 log((ye)r)
12: Compute the total loss:

13: /= Zthl /4

y; = p(wih;) Tz = p(whlh.) ys = pP(WAslhs) T4 = p(fvalhy)

L b, b L,

ow can we use this to compute

H
RN N-LN\ + LOSS L the loss for an RNN-LM?

log p(w) = log p(w,, Wy, Wy oo , W
&pl): 102 E((\M | h1)+?-- N IOgT[))(WT | hy) Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(z 1.7, Yi.7Wan, Waz, ba, Wyn, by)
L=logpw)[+ | 2 Initialize the hidden state h(to zeros
A 3 fortinltol do
4: Receive input data at time step ¢: x;
L6) Lot)[40] (a6 | 5: Compute the hidden state update:
6 at:Wah'ht—1+Wax'It+ba
¥ = p(wWilk) Y2 =p(walha) ¥s = p(wihs) 7 hy = o(ay)
I T I 8 Compute the output at time step ¢:
9 v = softmax(Wyp, - hy + b))
10 Compute the cross-entropy loss at time step ¢:
" . b = = Y () Log(yo)n)
12: Compute the total loss:

13: /= Zthl /4

Learning an RNN-LM

* Each training example is
a sequence %e.g. log p(w) = 10g p(w., Wa, W3, ..., Wr)
sentence), so we have =log p(w;, | h,) + log p(w, | h,) + ... +log p(wr | hy)
training data D = {w("), J = log p(w)
w®), . wiNy

* The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is
typically the log- T 0 - . s
likelihood of the training L) (2] L6) La6)) LaG)) LAG)) L)
examples: .

J(8) = £ log pe(w0))

* We train by mini-batch
SGD (or your favorite
flavor of mini-batch SGD)

one

training
example

[START] [The] [bat][made] [noise][at]

—

night | [END |

57

LARGE LANGUAGE MODELS

How large are LLMs?

Comparison of some recent large language models (LLMs)

Creators Year of | Training Data (# Model Size (#
release | tokens) parameters)

GPT-2 OpenAl 2019 ~10 billion (40Gb) 1.5 billion
GPT-3 OpenAl 2020 300 billion 175 billion
PaLM Google 2022 780 billion 540 billion
Chinchilla DeepMind 2022 1.4 trillion 70 billion
LaMDA Google 2022 1.56 trillion 137 billion

(cf. Bard)

LLaMA Meta 2023 1.4 trillion 65 billion
LLaMA-2 Meta 2023 2 trillion 70 billion
GPT-4 OpenAl 2023 g 2 (1.76 trillion)
Gemini (Ultra) Google 2023 g ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion

What is ChatGPT?

* ChatGPT is a large (in the sense of having many parameters)
language model, fine-tuned to be a dialogue agent

* The base language model is GPT-3.5 which was trained on a
large quantity of text

Transformer Language Models

MODEL: GPT

66

Attention

[
S41
[[[

1 2 4
(rri1 [CrrJ1 Cerf Gt

Attention

1

/ — . .

X = ai,5Vy
j=1

aJ

|
E,oftmax
s

[

[TT]

Attention

2

/ — . .

Xo = a2,5Vj
j=1

[/ softinax]
S

0 ul

\A \'p

Attention

1
(0 O e O

Attention

[
S41
[[[

1 2 4
(rri1 [CrrJ1 Cerf Gt

Attention

)) / _
X; X4 Xy = E Qg V4

))
1 2
1 O I I I A B I

attention weights

Scores

T [T [T OO values

Scaled Dot-Product Attention

\"
T v = WTXj values

(

1 2 V3
L[] L[] L[]
X X, X; X,

Scaled Dot-Product Attention

a 4,2 d

[softmax/ / /]

S$ 2 513 5$4

]]
ki > k, T
1/ OO [T11 [T ki = Wi x; keys
Vi Vv, / V, T
1 O O s o A e i v, = Wy X; values
X X X3 X4

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

/
X4 = A4,5V;j
j=1
a1 a
W, s$
]
A 9 W7 queries
Wi [(T1T1 O | q; = W Xj
k
1 _ xxrT
o1/ | | ki = Wi x; keys
Wv Vv Vv T
X

X3 X,

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

/ —
Xy = A4,5V

j=1

Q\Z O s4,; = kI qu/+/dyScores

- q; = ngj queries
k, 2 k; k, T
T/ Oy [[kj = Wi x; keys
"2 vz/ A v, T
1 O O s o A e i v, = Wy X; values
X

X3 X,

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

/ —
Xy = A4,5V

j=1

a, = softmax(sy)attention weights

Q\Z O s4,; = kI qu/+/dyScores

- q; = ngj queries
k, 2 k; k, T
T/ Oy [[kj = Wi x; keys
"2 vz/ A v, T
1 O O s o A e i v, = Wy X; values
X

X3 X,

2
CrrrJ ey ey tiffd

Scaled Dot-Product Attention

X, X

2
[1]

ay = softmax(s4)attention weights

S4. = ijqél/w /d,. scores
q; = ngj queries
k;, = Wix, keys

_ T

78

Scaled Dot-Product Attention

X)

X)

X)

1
LI 1]

2
LLT]

)
X4

/ — . .
X = E :atJVJ

3
LLT]

g=1

a; = softmax(s;) attention weights

si,; = k; qi/+/dj, scores

} qQj = ngj queries

X3

\[attention

_//X1 Xz

X4

k;, = Wix, keys

_ wlo
v, = Wlx; values

Animation of 3D Convolution

Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3) Filter W1 (3x3x3) Output Volume (3x3x2)
X[:,:,0] wO[:,:,0] wl[:,:,0] o[:,:,0]
0 0 0 0 0 0 O -1 1 T ([1 5 -3 -3
0 2 W/---‘l/ 11 [3 .10 7
0 0 |21 ff2]0 O 1 0 -1 11 |-1 1 -3 -2
0 1 (2 {0 |0 o[:,:,1]
0 2 [0 L] 2 -1 1
0 2 1 0 O = n
00000 o i
x[:,:,1]

0 0 0 0 O

0 1 1 2

0 2 |2 (2 |2

0 0 2o j2 0 Bjasb0 (1x1x Bias b1 (1x1x1)

0 210 ﬂfl O[:,:, [:,:,0]
001000 O L 0

0 0 0 0 0 O

X[:,:,2] toggle movement

0 0 0 O 0 0

0 0 00 2 070

0 2 |1 |1 ff1 0

0o 2 [of2l0]0 O

0o o 241 |2 0

01 2 0 0 2 O

0 0 0 0 0 0 O

80

Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N)

http://cs231n.github.io/convolutional-networks/

Multi-headed Attention

<1 head
q ead 37
ead \
Wi
multi-headed attention
I
lI
W,

X1

X,

X3

X4

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

81

To ensure the dimension of the

nput embedding x s the same - My |ti-headed Attention

as the output embedding x,
Transformers usually choose
the embedding sizes and
number of heads appropriately:

* dmodel = dim. of inputs

* dy=dim. of each output

* h=#of heads

e Choose dy = diodel / D X, X, X’ X,
Then concatenate the outputs (1] [1]
W, L] ﬁ'
W, multi-headed attention
W,
—//x1 X, X3 Xq

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

To ensure the dimension of the
input embedding x; is the same
as the output embedding x,
Transformers usually choose
the embedding sizes and
number of heads appropriately:

* dmodel = dim. of inputs

* dy=dim. of each output

* h=#of heads

e Choose dy = diodel / D
Then concatenate the outputs

Multi-headed Attention

)

)

)

X, X, X5 X,
T T
B H
BH B multi-headed attention
B B
X, X3 Xq

X1

Just as we can have
multiple channels in a
convolution layer, we
can use multiple heads
in an attention layer
Each head gets its own
parameters

We can concatenate all
the outputs to get a
single vector for each
time step

RNN Language Model

[The][bat][made][noise][at][night] [END]

T

T

T

T

TP(W1|h1) TP(WZIhZ) TP(W3|h3) Tp(w4lh4) 'r(Wslhs) T(W6Ih6) ']‘P(W7|h7)
' > * > > > > > >

h,

h,

hs

h,

A

hy

he

h,

[—L1

[—>

[—1]

[—> 1]

[> |

[1—>1

A

A

N

A

[STARTJ [The] [bat] [made] [noise] [at] [night]

Key Idea:

(1) convert all previous words to a fixed length vector

(2) define distribution p(w; | fo(wy.,, -..

the vector h, = fg(wy,, ..., W,)

, W,)) that conditions on

Transformer Language Model

Important!

* RNN computation
graph grows
linearly with the
number of input
tokens

* Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

)\

[The [bat] [made] [noise]

P

T P(W1|h1) p(W2|h2)
>

>

T

p(ws|hs) 4 P(Walh,)

1
IIIIIIIIII

IPZ=

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Transformer Language Model

Important!

RNN computation
graph grows
linearly with the
number of input
tokens

Transformer-LM
computation graph
grows quadratically
with the number of
input tokens

)\

[The

[bat] [made] [noise]

T

T

P(W2|h2)

T

p(wslh;)

T

p(w,lh,)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM!

Layer Normalization

* The Problem: internal Given input a € R”*, LayerNorm computes output b € R¥:
covariate shift occurs
during training of a deep
network when a small
change in the low layers

a_
b=v0—&70
0)

amplities into a large where we have meanu = = S0 a
. . — — k

change in the high layers H f Zf{—l ’

* One Solution: Layer standard deviation o = \/f D=1 (ar — 1)?,
normalization normalizes and parameters v € RX, 8 € RX,
:?ecnllé?q)ﬁvriggcgl;?s/rbnisas ® and & denote elementwise multiplication and addition.

* Such normalization allows 1.0 Attentive reader

LSTM
BN-LSTM

BN-everywhere
LN-LSTM

for higher learning rates
(for faster convergence)
without issues of
diverging gradients

o
©

o
@

o©
Sl

validation error rate
o
~l

s
i
3
§
{

o
ey

_ _ 0 100 200 300 400 500 600 700 800
Figure from https://arxiv.org/pdf/1607.06450.pdf training steps (thousands)

Residual Connections

Residual Connection

* The Problem: as network Plain Connection
depth grows very large, a b
performance degradation b T
occurs that is not explained
by overfitting (i.e. train / test N [b =b' + a}e
error both worsen) _

* One Solution: Residual [b= f(a) }
connections pass a copy of b —
the input alongside another I = f(a)
function so that information a2
can flow more directly T

a

* These residual connections
allow for effective training
of very deep networks that
perform better than their
shallower (though still deep)
counterparts <

50

30

ResNet-18 % W ANAAMAANNAAA,

—ResNet-34 34-layer

. . 0 10 20 30 20 50 0 10 20 30 40 50
Figure from https://arxiv.org/pdf/1512.03385.pdf iter. (1e4) iter. (1e4)

Residual Connections

The Problem: as network
depth grows very large, a
performance degradation
occurs that is not explained
by overfitting (i.e. train / test
error both worsen)

One Solution: Residual
connections pass a copy of
the input alongside another
function so that information
can flow more directly

These residual connections
allow for effective training
of very deep networks that
perform better than their
shallower (though still deep)
counterparts

Figure from https://arxiv.org/pdf/1512.03385.pdf

Residual Connection
Plain Connection

b

|

b= /(@]

Why are residual connections helpful?

Instead of f(a) having to learn a full
transformation of a, f(a) only needs to learn an
additive modification of a (i.e. the residual).

I1IIII)I(2IIII)I(3’IIII)I(4,IIIW
Post-LN Version: (—————] Each layer of a Transformer LM
This is the version of ::On:ftzn(z;cos:veral sublayers:
(IO O O O .
the Trans.former Lay?r T T T T 2. feed-forward neural network
that was introduced in residual connection (addition) 3. layer normalization
ine erigel perper (i T OO O O 4. residual connections
2017.
[feed forward neural network
The LayerNorm B O =
1 1 T
mOdUIES occur at the [layer normalization]
end of each set of 3
layers. (IO OO OI- O

residual connection (addition)

Transformer Layer

1 2 3 4
TT11 1y i) tLrtd

Each layer of a Transformer LM

consists of several sublayers:
However, subsequent) y
TT0 [T OO O3 1. attention

work found that 2. feed-forward neural network
t;eeolfj;er-:.rlllg()irl;c’: zzf:e [feed forward neural network] 3. layer normalization
at the beginning of
each set of 3 layers, —
the multi-headed N L
attention and feed- 1 — T Tdd” i)
forward NN Iayers residual connection (addition)

Pre-LN Version:

residual connection (addition)

T [T OO [COLO 4. residual connections

layer normalization

tend to be better [IT0O OO OO0 OO
behaved (i.e. tricks like e — 7 i\
Warm—up are less [B8 B multi-headed attention J
HeE

important).

1

layer normalization

4
X1\?‘Hx2|||| 1T

Transformer Layer

IIIIIIIIIIIIIIIIIIﬂ
A A A A

| | |
residual connection (addition)

N

[feed forward neural network

layer normalization
y_

1 i T T

residulpl c ti o)

A A A

multi-headed attention }

III%IIIIIIIIIIIII
1 1 i)

layer normalization

VA

o=

N X, X,
TSI T CCLI

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

92

Transformer Layer

I1IIIII2IIIII3IIIII4III_I
A A A

A
Each layer of a Transformer LM
/ \ consists of several sublayers:
1. attention

2. feed-forward neural network
3. layer normalization
4. residual connections

Transformer
Layer

U

Transformer Layer

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

x, X, X, x,’

1 2 3 4
[(ITT111 L) et trerr
[Transformer layer

I O

Transformer Language Model

[The

[bat] [made] [noise]

T

T

T

p(w;|h,) p(ws|h;) p(w,lh,)

>

>

L

IIII%

Transformer layer

%II/I I%I |

Transformd

r layer

0 |

%ﬂ I

Transformer layer

%)

Each layer of a Transformer LM
consists of several sublayers:

1. attention

2. feed-forward neural network
3. layer normalization

4. residual connections

Each hidden vector looks back at
the hidden vectors of the current
and previous timesteps in the
previous layer.

The language model part is just like
an RNN-LM.

In-Class Poll

Question:)
Suppose we have the following input [Soﬁmax / /
embeddings and attention weights: w, NN E

» x,=[1,0,0,0]a,,= 0.1 E awi= i

* X = :0)110)0] dg,= 0.2 o/t -! Sun

* x;=[0,0,2,0]a,;=0.6 g ob oo b &

* x,=[0,0,0,1]a,,=0.1

And W, = I. Then we can compute x,”. | Answer:
Now suppose we swap the

embed

dings x, and x; such that
0,0,2,0]

0,1,0,0]

What is the new value of x4’?

4
=) aiv;
=1

ay = softmax(s,) attention weights

S4,5 = k?Q4/\/ dk: scores
q; = WqTXj queries

_ wil.
v; = W x; values

(\ -

[The [bat] [made] [noise]

Position Embeddings | | |

. . L p(w,|h,) p(w,|h,) p(ws|hs) Ap(wslhy)
* The Problem: Because attention is position T
invariant, we need a way to learn about positions > > > >
* The Solution: Use (or learn) a collection of position h, T h, T s T h, T
|

specific embeddings: p; represents what it means [T | L1 [T |

[|
to be in position t. And add this to the word
embedding W;. [Transformer layer l]

The key idea is that every word that appears in l_l_% L~
position t uses the same position embedding p; 7 | '/IH I l%l I %rul
* There are a number of varieties of position [Transformer layer]
embeddings: % IENZey .
— Some are fixed (based on sine and cosine), whereas '_'_% = |4\r| /pﬂ A
others are learned (like word embeddings) [Transformér layer)
— Some are absolute (as described above) but we can
also use relative position embeddings (i.e. relative
to the position of the query vector) , [.] [.] (.]
majiesReslls:
P T P: T Ps T P4 T
(0 o

IIIIII\I/\IIII_@TI_II_

LEARNING A TRANSFORMER LM

Learning a Transformer LM

* Each training example is
a sequence %e.g. log p(w) = 10g p(w., Wa, W3, ..., Wr)
sentence), so we have =log p(w;, | h,) + log p(w, | h,) + ... +log p(w, | h)
training data D = {w("), J = log p(w)
w®), . wiNy

* The objective function
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is

typically the log- (20) (860) (500 (260) (860 (20) (60)

likelihood of the training
5) TP(W‘F 3) T](W5|) T(WGI 6) 4 p(w;|
| \

examples: 0 T T

J(e) = Zi |Og pG(W) A p(w|h) A p(w,|h,) A p(w;|

* We train by mini-batch
SGD (or your favorite

one

training
example

flavor of mini-batch SGD) / |
Training a Transformer-LM [\ : | T : \ \]
is the same, except we \ \ \ \ \ \
swap in a different deep (sTART) [The | [bat) [made) (noise] [at | [night) [END |
language model.

Language Modeling

An aside:

* State-of-the-art language models currently tend to rely on transformer networks
(e.g. GPT-3)

* RNN-LMs comprised most of the early neural LMs that led to current SOTA
architectures

Language Modelling on Penn Treebank (Word Level)

Leaderboard Dataset

View Test perplexity v | by Date v | for All models v

Zaremba et al. (2014) - LSTM (large)

Recurrént.highway networks

>
=
>
| AWD-LSTM -continuous cache pointer
o
e GL-LWGC,+ AWD-MoS-LSTM + dynamic eval
a.
5 GPT-2
L: BERT-Large-CAS
CPT-3_(Zero-Shot)
0
2015 2016 2017 2018 2019 2020 2021 2022
Other models Models with lowest Test perplexity

100

Figure from

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

GPT-3

e GPT stands for Generative Pre-trained Transformer

* GPTisjust a Transformer LM, but with a huge number of
parameters

layers dimension | dimension |# attention |# params
of states of inner heads
states

GPT (2018) 12 3072 117M
GPT-2 48 1600 - - 1542M
(2019)

GPT-3 96 12288 4%12288 96 175000M

(2020)

101

Why does efficiency matter?

Case Study: GPT-3
* # of training

tokens =500
billion
of

parameters =
175 billion

of cycles =50
petaflop/s-days
(each of which

are 8.64e+19
flops)

Figure from

Quantity Weight in Epochs elapsed when

Dataset (tokens) training mix training for 300B tokens
Common Crawl] (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 29
Booksl 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Table 2.2: Datasets used to train GPT-3. “Weight in training mix" refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

Model Name Mparams Mlayers @model Mheads @head Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 104
GPT-3 Large 760M 24 1536 16 96 0.5M 2.5 %1074
GPT-3 XL 1.3B 24 2048 24 128 IM 2.0x 1074
GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-36.7B 6.7B 32 4096 32 128 M 1.2 x 1074
GPT-3 13B 13.0B 40 5140 40 128 2M 1.0 x 10—4
GPT-3 175B or “GPT-3" 175.0B 96 12288 96 128 3.2M 0.6 x 1074

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models

which we trained. All models were trained for a total of 300 billion tokens.

10000

1000
0
>
)
?
@
4
a
o
e 100
]
T
a
o
]
&
[10
'_ I I
1 .
& & & &9 &
&9’ «)V’v‘ «Qﬁ @,\/0 ‘t& ,5\:°‘ cg é\, \
& A5 & el <7
& & &£ & d é@ & c? c? (g

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH™20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

102

https://arxiv.org/pdf/2005.14165.pdf

Two parts: and R e C a p

Deep Learning

 AutoDiff

— is atool for computing %radients of a
differentiable function, b = f(a)

— the key building block is a module with a
forward() and backward()

— sometimes define f as code in forward() by
chaining existing modules together
* Computation Graphs

— are another way to define f (more conducive to
slides)

— we are considering various (deep) computation
raphs: (1) CNN (2) RNN (3) RNN-LM
%4) Transformer-LM
* Learning a Deep Network

— deep networks (e.g. CNN/RNN) are trained by
optimizing an objective function with SGD

— compute gradients with AutoDiff

Language Modeling

key idea: condition on previous words to
sample the next word

to define the probability of the next word...
— ...n-gram LM uses collection of massive 50k-
sided dice

— ...RNN-LM or Transformer-LM use a neural
network

Learning an LM

— n-gram LMs are easy to learn: just count co-
occurrences!

— a RNN-LM /[Transformer-LM is trained just like
other deep neural networks

IMPLEMENTING A TRANSFORMER LM

Matrix Version of Single-Headed Attention

a, = softmax(sy)attention weights

[softmax/ / /]

W, S s$z da T
O] s4,j = Kj qa//dpSCOTES
N
_ w7 '
W, o q; = Wq X queries
k, 2 ks k, T
T/ Y [[kj = Wi x; keys
Wv Vi Vv, / V3 Vy T
T OO OO O™ v = W, X; values
Xi X, X3 X4
T OO0 O O

Matrix Version of Single-Headed Attention

/
Xy = E :a4,jVj
J=1

d4d 4

!
[softmax / / /]
Wy 54 $$ $§$4

a, = softmax(sy)attention weights

s1,; = Kk qq/+/djScores

- :
k 2 ks k, B T
T/ Oy O OO kj = W;x; keys
Wv Vi \'/ / V3 \' T
1 e O o v o O o o v, = W, Xx; values
X4 X, X; Xy

Matrix Version of Single-Headed Attention

* Forspeed, we compute
all the queries at once X' = AV = softmax(QKT/\/ dr)V

using matrix operations
* First we pack the
queries, keys, values into 434 als
matrices A =[ay,...,a4)" = softmax(S)
* Then we compute all the T
queries at once [softmax / /
S

[
22k

W,

D

S = [s1,...,84]" = QK" /\/dx
1 Q=lq,...,q)" =XW,
[|| — :k1,...7k4:T :ka

Wv Vi V, V3 V4 _ _ T

[T [0 I OO = |V1,...,Vv4]" = XW,

I
k1 2 k3 k4
11/ L CLT1 |

X X, X3 X4
17

70 I OO [= [X1,...,X4]

Matrix Version of Single-Headed Attention

* Forspeed, we compute

all the queries at once X' — AV = softma KT/ /dV
using matrix operations X(QK" /+/dk)

* First we pack the
queries, keys, values into

matrices [T (T [0 A=la,...,a)" = softmax(S)
* Then we compute all the T /f T
queries at once IIRVYANYET AN,]
Wq | \/ | ! T T
T H%D = [s1,..-584]" = QK" //di
q 4
W, o XA [Q:[QM---»(M]T:XWCJ
K, _ _
= [kq,..., k)" = XW,
w, Vv, v, A Vv,) 1T

T [OO O™ V=|vy,...,vqyl" =XW,

X X, X3 X4
17

70 I OO [= [X1,...,X4]

Matrix Version of Single-Headed Attention

Holy cow, that’s a lot of new

arrows... do we always X' = AV = softmax(QKT/\/ dp)V

want/need all of those?

* Suppose we’re training

our transformer to predict T
the next token(s) given LU L L] A =lay,...,ay]" = softmax(S)

the input...

e ... then attending to
tokens that come after

. T T, /
the current token is S =[s1,...,84]" = QK" /\/dx
cheating!

So what is this model? Q=|q,... ,q4]T = XW,
e This version is the
standard Transformer K=k,... 7k4:T — XW,
block. (more on this later!)
 But we want the " v " T V= | 1T
= |vi,...,v4|" = XW
Transformer LM block LIT] LIT] LIT] LIT] V1, y V4 | v
.) X X, X3 X, _]
A8 TEIE (EEUITes T IO OO0 [T = [x1,...,x4]"

masking!

Matrix Version of Single-Headed Attention

Vi

\'/

V3

[]

V4

X1

X,

X3

X4

X' = AV = softmax(QK* /\/di)V

Question: How is the

1 2
A = softmax(S) softmax applied:
A. column-wise

B. row-wise

S =QK"'/+\/d; Answer:

Q = XW,
K = XW,
V =XW,

X = [X]_,...,X4:|T

Matrix Version of Single-Headed (Causal) Attention

Insight: if some elementin
the input to the softmax s
-o0, then the corresponding
output is 0!

Question: For a causal LM
which is the correct matrix?

A:

M =
B:

M =
C:

M =

Answer:

[0 0 0 O]
—00 0 0 0
—00 —O00 0 0
|—00 —00 —oo 0]

[0 -0 —o0 —o0]
0 0 —00 —00
0 0 0 —00

0o 0 0 0

-0 —00 —00 0

0] —00 —00 —O0
—00 0 —00 —00
—00 —00 0 —00

|

Vi

 I1 1

\'/

1]

V3

X' = AV = softmax(QK* /\/d;, + M)V

'
a

n A ausal = softmax(S + M)

V4

In practice, the

attention weights are

S = QK" /\/dr computed for all time
steps T, then we mask

X1

X,

X3

X4

710 O O O X =[X1,...,Xy4

Q = XW, out (by setting to —inf)
all the inputs to the
softmax that are for

K = XWy the timesteps to the
right of the query.

V = XW,

]T

Matrix Version of Multi-Headed (Causal) Attention

(1)
W, w(2)
J w®)
q
(1)
W, W,(f) .
Wk
(1)
W, wW(2)
v Wq()g)
_//X1 X

X3

\[multi-headed attention \J

X4

X = concat(X'(V), X' X'(3))

Q) (K(z‘))T

X' = softmax (

Q) = Xwéi)
K = xw'”
Vi) = xXW)

X = [x1,...,x4]"

Vdy

+M)ww

Matrix Version of Multi-Headed (Causal) Attention

(1)
W, w(2)
J w®)
q
(1)
W, W,(f) .
Wk
(1)
W, wW(2)
v Wq()g)
_//X1 X

X3

\[multi-headed attention \J

X4

X = concat(X'(M), ... X/(h)

Q) (K(z‘))T

X' = softmax (

Q) = Xwéi)
K = xw'”
Vi) = xXW)

X = [x1,...,x4]"

Vdy

+M)ww

Recall:
To ensure the dimension of the input . .
embedding x; is the same as the 10 Of M UItl"H eaded (Ca Usal) Attentlon
output embedding x;’, Transformers
usually choose the embedding sizes
and number of heads appropriately:
dmodel = dim. of inputl?c,ID i ’ X = concat(X’(l), . ,X’(h))

e dy=dim. of each output
* h=#ofheads
* Choose dy = diodel / D o

3

(L]

1ED ZED 4,ED
W, k{ multi-headed attention \J Q(Z) — XW((I’L)

K = Xw'"

Q) (K(z‘))T
Vi

X'() = softmax (+ M) v(©)

Vi) = xXW)

1

OT O O I X =[X1,...,Xy4

]T

