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Reminders

• Homework 6: Learning Theory & Generative Models
– Out: Sun, Oct 27
– Due: Sat, Nov 2, 11:59pm

• Exam 2: Thu, Nov 7, 6:45 pm - 8:45 pm
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EXAM 2 LOGISTICS
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Exam 2
• Time / Location

– Time: Thu, Nov. 7, 6:45pm – 8:45pm
– Location & Seats: You have all been split across multiple rooms. Everyone has an assigned 

seat in one of these room. Please watch Piazza carefully for announcements.
• Logistics

– Covered material: Lecture 8 – Lecture 16
– Format of questions:

• Multiple choice
• True / False (with justification)
• Derivations
• Short answers
• Interpreting figures
• Implementing algorithms on paper

– No electronic devices
– You are allowed to bring one 8½ x 11 sheet of notes (front and back, handwritten with 

pen/pencil or tablet)
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Topics for Exam 1
• Foundations
– Probability, Linear Algebra, 

Geometry, Calculus
– Optimization

• Important Concepts
– Overfitting
– Experimental Design

• Classification
– Decision Tree
– KNN
– Perceptron

• Regression
– Linear Regression
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Topics for Exam 2
• Classification
– Binary Logistic Regression

• Important Concepts
– Stochastic Gradient Descent
– Regularization
– Feature Engineering

• Feature Learning
– Neural Networks
– Basic NN Architectures
– Backpropagation

• Learning Theory
– PAC Learning
– MLE / MAP

• Societal Impacts of ML

• Regression
– Linear Regression
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BACKGROUND:
N-GRAM LANGUAGE MODELS
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n-Gram Language Model
• Goal: Generate realistic looking sentences in a human 

language
• Key Idea: condition on the last n-1 words to sample 

the nth word
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n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2)
      p(w4 | w3)
      p(w5 | w4)
      p(w6 | w5)

The bat made nightnoise at
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n-Gram Model (n=2)



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)



n-Gram Language Model
Question: How can we define a probability distribution over a 
sequence of length T?
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The bat made nightnoise at

w1 w2 w3 w4 w5 w6

nightnoise at

made noise at

bat made noise

The bat made

The bat

The

n-Gram Model (n=3)

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2)
      p(w5 | w4, w3)
      p(w6 | w5, w4)

Note: This is called a model because we 
made some assumptions about how many 

previous words to condition on 
(i.e. only n-1 words)



Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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p(wt | wt-2 = made, 
    wt-1 = noise)

wt p(· | ·, ·)
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…
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…
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Learning an n-Gram Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat

20

The bat made nightnoise at

p(
· | 

ST
ART)

START

p(
· | 

ST
ART,

 Th
e)

p(
· | 

Th
e,

 b
at

)

p(
· | 

ba
t, 

m
ad

e)
p(

· | 
m

ad
e,

 n
oi

se
)

p(
· | 

no
ise

, a
t)



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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Approacheth, denay. dungy 
Thither! Julius think: grant,--O 
Yead linens, sheep's Ancient, 
Agreed: Petrarch plaguy Resolved 
pear! observingly honourest 
adulteries wherever scabbard 
guess; affirmation--his monsieur; 
died. jealousy, chequins me. 
Daphne building. weakness: sun-
rise, cannot stays carry't, 
unpurposed. prophet-like drink; 
back-return 'gainst surmise 
Bridget ships? wane; interim? 
She's striving wet;

5-Gram Model
I tell you, friends, most charitable care
ave the patricians of you. For your 
wants,  Your suffering in this dearth, 
you may as well Strike at the heaven 
with your staves as lift them Against 
the Roman state, whose course will on
The way it takes, cracking ten thousand 
curbs Of more strong link asunder than 
can ever Appear in your impediment. 
For the dearth,  The gods, not the 
patricians, make it, and Your knees to 
them, not arms, must help. 

Training Data (Shakespeaere)



RECURRENT NEURAL NETWORK (RNN) 
LANGUAGE MODELS
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Recurrent Neural Networks (RNNs)

23

x1

h1

y1

are given in Section 7.

2. NETWORK ARCHITECTURE

Given an input sequence x = (x1, . . . , xT ), a standard recur-
rent neural network (RNN) computes the hidden vector se-
quence h = (h1, . . . , hT ) and output vector sequence y =
(y1, . . . , yT ) by iterating the following equations from t = 1
to T :

ht = H (Wxhxt +Whhht�1 + bh) (1)
yt = Whyht + by (2)

where the W terms denote weight matrices (e.g. Wxh is the
input-hidden weight matrix), the b terms denote bias vectors
(e.g. bh is hidden bias vector) and H is the hidden layer func-
tion.

H is usually an elementwise application of a sigmoid
function. However we have found that the Long Short-Term
Memory (LSTM) architecture [11], which uses purpose-built
memory cells to store information, is better at finding and ex-
ploiting long range context. Fig. 1 illustrates a single LSTM
memory cell. For the version of LSTM used in this paper [12]
H is implemented by the following composite function:

it = � (Wxixt +Whiht�1 +Wcict�1 + bi) (3)
ft = � (Wxfxt +Whfht�1 +Wcfct�1 + bf ) (4)
ct = ftct�1 + it tanh (Wxcxt +Whcht�1 + bc) (5)
ot = � (Wxoxt +Whoht�1 +Wcoct + bo) (6)
ht = ot tanh(ct) (7)

where � is the logistic sigmoid function, and i, f , o and c
are respectively the input gate, forget gate, output gate and
cell activation vectors, all of which are the same size as the
hidden vector h. The weight matrices from the cell to gate
vectors (e.g. Wsi) are diagonal, so element m in each gate
vector only receives input from element m of the cell vector.

One shortcoming of conventional RNNs is that they are
only able to make use of previous context. In speech recog-
nition, where whole utterances are transcribed at once, there
is no reason not to exploit future context as well. Bidirec-
tional RNNs (BRNNs) [13] do this by processing the data in
both directions with two separate hidden layers, which are
then fed forwards to the same output layer. As illustrated in
Fig. 2, a BRNN computes the forward hidden sequence

�!
h ,

the backward hidden sequence
 �
h and the output sequence y

by iterating the backward layer from t = T to 1, the forward
layer from t = 1 to T and then updating the output layer:

�!
h t = H

⇣
W

x
�!
h
xt +W�!

h
�!
h

�!
h t�1 + b�!

h

⌘
(8)
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⇣
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h
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h
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h

⌘
(9)

yt = W�!
h y

�!
h t +W �

h y

 �
h t + by (10)

Fig. 1. Long Short-term Memory Cell

Fig. 2. Bidirectional Recurrent Neural Network

Combing BRNNs with LSTM gives bidirectional LSTM [14],
which can access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up pro-
gressively higher level representations of acoustic data. Deep
RNNs can be created by stacking multiple RNN hidden layers
on top of each other, with the output sequence of one layer
forming the input sequence for the next, as shown in Fig. 3.
Assuming the same hidden layer function is used for all N
layers in the stack, the hidden vector sequences hn are itera-
tively computed from n = 1 to N and t = 1 to T :

hn
t = H

�
Whn�1hnhn�1

t +Whnhnhn
t�1 + bnh

�
(11)

where we define h0 = x. The network outputs yt are

yt = WhNyh
N
t + by (12)

Deep bidirectional RNNs can be implemented by replac-
ing each hidden sequence hn with the forward and backward
sequences

�!
h n and

 �
h n, and ensuring that every hidden layer

receives input from both the forward and backward layers at
the level below. If LSTM is used for the hidden layers we get
deep bidirectional LSTM, as illustrated in Fig. 4.

Definition of the RNN:inputs: x = (x1, x2, . . . , xT ), xi � RI

hidden units: h = (h1, h2, . . . , hT ), hi � RJ

outputs: y = (y1, y2, . . . , yT ), yi � RK

nonlinearity: H

x2

h2

y2

x3

h3

y3

x4

h4

y4

x5

h5

y5



The Chain Rule of Probability
Question: How can we define a probability distribution over a 
sequence of length T?

24

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | w1)
      p(w3 | w2, w1)
      p(w4 | w3, w2, w1)
      p(w5 | w4, w3, w2, w1)
      p(w6 | w5, w4, w3, w2, w1)

The bat made nightnoise at

w1 w2 w3 w4 w5 w6

The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

Chain rule of probability:

Note: This is called the chain rule because 
it is always true for every probability 

distribution

Recall…



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector

25

p(w1, w2, w3, … , w6) = 
      p(w1)
      p(w2 | fθ(w1))
      p(w3 | fθ(w2, w1))
      p(w4 | fθ(w3, w2, w1))
      p(w5 | fθ(w4, w3, w2, w1))
      p(w6 | fθ(w5, w4, w3, w2, w1))The bat made nightnoise at

The bat made noise at

The bat made noise

The bat made

The bat

The

RNN Language Model:



RNN Language Model
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The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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START

p(w1|h1) 

h1

The

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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TheSTART

h1

p(w2|h2) 

h2

bat

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)



RNN Language Model
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The batSTART

p(w3|h3) 

made

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3



RNN Language Model
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The bat madeSTART

p(w4|h4) 

noise

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4



RNN Language Model
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The bat made noiseSTART

p(w5|h5) 

at

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4 h5



RNN Language Model
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The bat made noise atSTART

p(w6|h6) 

night

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

Answer:

Question: How can we create a distribution 
p(wt|ht) from ht?

h1 h2 h3 h4 h5 h6



RNN Language Model
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The bat made nightnoise atSTART

p(w7|h7) 

END

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1)

h1 h2 h3 h4 h5 h6 h7



RNN Language Model
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The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

The bat made nightnoise at END

p(w1, w2, w3, … , wT) = p(w1 | h1) p(w2 | h2) … p(w2 | hT)

h1 h2 h3 h4 h5 h6 h7



Sampling from a Language Model
Question: How do we sample from a Language Model?
Answer: 
1. Treat each probability distribution like a (50k-sided) weighted die
2. Pick the die corresponding to p(wt | wt-2, wt-1)
3. Roll that die and generate whichever word wt lands face up
4. Repeat
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The same approach to 
sampling we used for an n-
Gram Language Model also 

works here for an RNN 
Language Model



Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.

36
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real 
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

Shakespeare’s As You Like It
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

RNN-LM Sample
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.

37
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

RNN-LM Sample
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

Shakespeare’s As You Like It
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.

38
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Sampling from an RNN-LM

??
VIOLA: Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, To show 
the reining of the raven and the wars To grace my hand 
reproach within, and not a fair are hand, That Caesar and 
my goodly father's world; When I was heaven of 
presence and our fleets, We spare with hours, but cut thy 
council I am great, Murdered and by thy master's ready 
there My power to give thee but so much as hell: Some 
service in the noble bondman here, Would show him to 
her wine. 

KING LEAR: O, if you were a feeble sight, the courtesy of 
your law, Your sight and several breath, will wear the 
gods With his heads, and my hands are wonder'd at the 
deeds, So drop upon your lordship's head, and your 
opinion Shall be against your honour.

?? 
CHARLES: Marry, do I, sir; and I came to acquaint you 
with a matter. I am given, sir, secretly to understand that 
your younger brother Orlando hath a disposition to come 
in disguised against me to try a fall.  To-morrow, sir, I 
wrestle for my credit; and he that escapes me without 
some broken limb shall acquit him well. Your brother is 
but young and tender; and, for your love, I would be 
loath to foil him, as I must, for my own honour, if he 
come in: therefore, out of my love to you, I came hither 
to acquaint you withal, that either you might stay him 
from his intendment or brook such disgrace well as he 
shall run into, in that it is a thing of his own search and 
altogether against my will.

TOUCHSTONE: For my part, I had rather bear with you 
than bear you; yet I should bear no cross if I did bear you, 
for I think you have no money in your purse.

39
Example from http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Which is the real 
Shakespeare?!

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


LEARNING AN RNN
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n n v d n
Sample 2:

time likeflies an arrow

Dataset for Supervised 
Part-of-Speech (POS) Tagging

44

n v p d n
Sample 1:

time likeflies an arrow

p n n v v
Sample 4:

with youtime will see

n v p n n
Sample 3:

flies withfly their wings

D = {x(n),y(n)}Nn=1Data:

y(1)

x(1)

y(2)

x(2)

y(3)

x(3)

y(4)

x(4)

Recall…



SGD and Mini-batch SGD
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Algorithm 1 SGD

1: Initialize θ(0)

2:
3:
4: s = 0
5: for t = 1, 2, . . . , T do
6: for i ∈ shufÒe(1, . . . , N) do
7: Select the next training point (xi, yi)
8: Compute the gradient g(s) = ∇Ji(θ

(s−1))
9: Update parameters θ(s) = θ(s−1)

− ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…



SGD and Mini-batch SGD
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Algorithm 1Mini‐Batch SGD

1: Initialize θ(0)

2: Divide examples {1, . . . , N} randomly into batches {I1, . . . , IB}
3: where

⋃
B

b=1 Ib = {1, . . . , N} and
⋂

B

b=1 Ib = ∅
4: s = 0
5: for t = 1, 2, . . . , T do
6: for b = 1, 2, . . . , B do
7: Select the next batch Ib, wherem = |Ib|
8: Compute the gradient g(s) = 1

m

∑
i∈Ib

∇Ji(θ
(s))

9: Update parameters θ(s) = θ(s−1) − ηg(s)

10: Increment time step s = s+ 1

11: Evaluate average training loss J(θ) = 1
n

∑
n

i=1 Ji(θ)

12: return θ(s)

Recall…



RNN
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y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4

Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = Wyh · ht + by



RNN
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Algorithm 1 Elman RNN
1: procedure FORWARD(x1:T ,Wah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)

y1 y2 y3 y4

h1 h2 h3 h4

x1 x2 x3 x4



RNN + Loss
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Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt

y1 y2 y3 y4

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4



LEARNING AN RNN-LM

50



Learning a Language Model
Question: How do we learn the probabilities for the n-Gram 
Model?

51

wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)

MLE for n-gram LM
• This counting method 

gives us the maximum 
likelihood estimate of 
the n-gram LM 
parameters

• We can derive it in the 
usual way:
– Write the likelihood of 

the sentences under the 
n-gram LM

– Set the gradient to zero 
and impose the constraint 
that the probabilities sum-
to-one

– Solve for the MLE



Learning a Language Model
Question: How do we learn the probabilities for the n-Gram 
Model?
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wt p(· | ·, ·)

corn 4/11

grass 3/11

hay 2/11

if 1/11

which 1/11

Answer: From data! Just count n-gram frequencies

…the cows eat grass…
…our cows eat hay daily…
…factory-farm cows eat corn…
…on an organic farm, cows eat hay and…
…do your cows eat grass or corn?...
…what do cows eat if they have…
…cows eat corn when there is no…
…which cows eat which foods depends…
…if cows eat grass…
…when cows eat corn their stomachs…
…should we let cows eat corn?...

p(wt | wt-2 = cows, 
    wt-1 = eat)

MLE for n-gram LM
• This counting method 

gives us the maximum 
likelihood estimate of 
the n-gram LM 
parameters

• We can derive it in the 
usual way:
– Write the likelihood of 

the sentences under the 
n-gram LM

– Set the gradient to zero 
and impose the constraint 
that the probabilities sum-
to-one

– Solve for the MLE

MLE for Deep Neural LM
• We can also use maximum likelihood estimation 

to learn the parameters of an RNN-LM or 
Transformer-LM too!

• But not in closed form – instead we follow a 
different recipe:
– Write the likelihood of the sentences under the 

Deep Neural LM model
– Compute the gradient of the (batch) likelihood w.r.t. 

the parameters by AutoDiff
– Follow the negative gradient using Mini-batch SGD 

(or your favorite optimizer)



RNN + Loss

54

Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt

y1 y2 y3 y4

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute 
the loss for an RNN-LM?



RNN-LM + Loss   _
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y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+ℓ = log p(w)

h1 h2 h3 h4

x1 x2 x3 x4

y*
1 y*

2 y*
3 y*

4

How can we use this to compute 
the loss for an RNN-LM?

w1 w2 w3w0=START

w1 w2 w3 w4

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + … + log p(wT | hT) Algorithm 1 Elman RNN + Loss

1: procedure FORWARD(x1:T , y
∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt



RNN-LM + Loss   _
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w1 w2 w3w0=START

y1 = p(w1|h1) y2 = p(w2|h2) y3 = p(w3|h3) y4 = p(w4|h4) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ4(·,·)

+

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + … + log p(wT | hT)

ℓ = log p(w)

h1 h2 h3 h4

w4

x1 x2 x3 x4 x5

How can we use this to compute 
the loss for an RNN-LM?

Algorithm 1 Elman RNN + Loss
1: procedure FORWARD(x1:T , y

∗

1:TWah,Wax, ba,Wyh, by)
2: Initialize the hidden state h0 to zeros
3: for t in 1 to T do
4: Receive input data at time step t: xt

5: Compute the hidden state update:
6: at = Wah · ht−1 +Wax · xt + ba
7: ht = σ(at)
8: Compute the output at time step t:
9: yt = softmax(Wyh · ht + by)
10: Compute the cross‐entropy loss at time step t:
11: ℓt = −

∑K

k=1
(y∗t )k log((yt)k)

12: Compute the total loss:
13: ℓ =

∑T

t=1
ℓt



Learning an RNN-LM
• Each training example is 

a sequence (e.g. 
sentence), so we have 
training data D = {w(1), 
w(2), …, w(N)}

• The objective function 
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is 
typically the log-
likelihood of the training 
examples: 
  J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch 
SGD (or your favorite 
flavor of mini-batch SGD)

57

The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + log p(w2 | h2) + … + log p(wT | hT)

one 
training 
example

+
J = log p(w)

END



LARGE LANGUAGE MODELS
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How large are LLMs?

62

Model Creators Year of 
release

Training Data (# 
tokens)

Model Size (# 
parameters)

GPT-2 OpenAI 2019 ~10 billion (40Gb) 1.5 billion

GPT-3 OpenAI 2020 300 billion 175 billion

PaLM Google 2022 780 billion 540 billion

Chinchilla DeepMind 2022 1.4 trillion 70 billion

LaMDA
(cf. Bard)

Google 2022 1.56 trillion 137 billion

LLaMA Meta 2023 1.4 trillion 65 billion

LLaMA-2 Meta 2023 2 trillion 70 billion

GPT-4 OpenAI 2023 ? ? (1.76 trillion)

Gemini (Ultra) Google 2023 ? ? (1.5 trillion)

LLaMA-3 Meta 2024 15 trillion 405 billion

Comparison of some recent large language models (LLMs)



What is ChatGPT?

• ChatGPT is a large (in the sense of having many parameters) 
language model, fine-tuned to be a dialogue agent

• The base language model is GPT-3.5 which was trained on a 
large quantity of text 

63



MODEL: GPT
Transformer Language Models

66



Attention

67

v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



Attention
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v1

a1,1

s1,1

softmax

x′

1 =

1∑

j=1

a1,jvj



Attention
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v1 v2

a2,1

s2,1 s2,2

softmax

x′

2 =

2∑

j=1

a2,jvj

a2,2



Attention
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v1 v2 v3

a3,1 a3,1 a3,1

s3,1 s3,2 s3,3

softmax

x′

3 =

3∑

j=1

a3,jvj



Attention
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v1 v2 v3 v4

softmax

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



Attention
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v1 v2 v3 v4

a4,1 a4,2 a4,3

s4,1 s4,2 s4,3 s4,4

softmax

x′

t =

t∑

j=1

at,jvj

values

scores

attention weights

x1’ x2’ x3’ x4’

a4,4



v1 v2 v3 v4

softmax

Scaled Dot-Product Attention
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x1 x2 x3 x4

vj = WT
v xj

Wv values

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

vj = WT
v xj

kj = WT
k xj

Wv values

keys

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

kj = WT
k xj

Wv values

keys

queries

scoress4,j = kT
j q4/

√

dk

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Scaled Dot-Product Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

attention



qj = WT
q xj

Scaled Dot-Product Attention
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x′

t =

t∑

j=1

at,jvj

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

st,j = kT
j qt/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsat = softmax(st)

attention

x1’ x2’ x3’ x4’



Animation of 3D Convolution

80
Figure from Fei-Fei Li & Andrej Karpathy & Justin Johnson (CS231N) 

http://cs231n.github.io/convolutional-networks/ 

Recall…

http://cs231n.github.io/convolutional-networks/


Multi-headed Attention

81

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step

1st 
head 2nd 

head 3rd 
head



Multi-headed Attention
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step

• To ensure the dimension of the 
input embedding xt is the same 
as the output embedding xt’, 
Transformers usually choose 
the embedding sizes and 
number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

• Then concatenate the outputs



Multi-headed Attention
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

• Just as we can have 
multiple channels in a 
convolution layer, we 
can use multiple heads 
in an attention layer 

• Each head gets its own 
parameters

• We can concatenate all 
the outputs to get a 
single vector for each 
time step

• To ensure the dimension of the 
input embedding xt is the same 
as the output embedding xt’, 
Transformers usually choose 
the embedding sizes and 
number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

• Then concatenate the outputs



RNN Language Model

Key Idea: 
(1) convert all previous words to a fixed length vector 
(2) define distribution p(wt | fθ(wt-1, …, w1)) that conditions on 
the vector ht = fθ(wt-1, …, w1) 84

The bat made nightnoise atSTART

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

p(w5|h5) 

h5

p(w6|h6) 

h6

p(w7|h7) 

h7

The bat made nightnoise at END

Recall…



Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM!

Important!
• RNN computation 

graph grows 
linearly with the 
number of input 
tokens

• Transformer-LM 
computation graph 
grows quadratically 
with the number of 
input tokens



Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM!

Important!
• RNN computation 

graph grows 
linearly with the 
number of input 
tokens

• Transformer-LM 
computation graph 
grows quadratically 
with the number of 
input tokens



Layer Normalization
• The Problem: internal 

covariate shift occurs 
during training of a deep 
network when a small 
change in the low layers 
amplifies into a large 
change in the high layers

• One Solution: Layer 
normalization normalizes 
each layer and learns 
elementwise gain/bias

• Such normalization allows 
for higher learning rates 
(for faster convergence) 
without issues of 
diverging gradients

87
Figure from https://arxiv.org/pdf/1607.06450.pdf 

Given input a ∈ R
K , LayerNorm computes output b ∈ R

K :

b = γ ⊙
a − µ

σ
⊕ β

where we have mean µ = 1

K

∑

K

k=1
ak,

standard deviation σ =
√

1

K

∑

K

k=1
(ak − µ)2,

and parameters γ ∈ R
K , β ∈ R

K .
⊙ and⊕ denote elementwise multiplication and addition.



Residual Connections
• The Problem: as network 

depth grows very large, a 
performance degradation 
occurs that is not explained 
by overfitting (i.e. train / test 
error both worsen)

• One Solution: Residual 
connections pass a copy of 
the input alongside another 
function so that information 
can flow more directly

• These residual connections 
allow for effective training 
of very deep networks that 
perform better than their 
shallower (though still deep) 
counterparts

88
Figure from https://arxiv.org/pdf/1512.03385.pdf

a

b

b = f(a)

Plain Connection

a

b

b = b′
+ a

Residual Connection

b′ = f(a)



Residual Connections
• The Problem: as network 

depth grows very large, a 
performance degradation 
occurs that is not explained 
by overfitting (i.e. train / test 
error both worsen)

• One Solution: Residual 
connections pass a copy of 
the input alongside another 
function so that information 
can flow more directly

• These residual connections 
allow for effective training 
of very deep networks that 
perform better than their 
shallower (though still deep) 
counterparts

89
Figure from https://arxiv.org/pdf/1512.03385.pdf

a

b

b = f(a)

Plain Connection

a

b

Residual Connection

b = f(a) + a

Why are residual connections helpful?
Instead of f(a) having to learn a full 

transformation of a, f(a) only needs to learn an 
additive modification of a (i.e. the residual). 



Post-LN Version:
This is the version of 

the Transformer Layer 
that was introduced in 

the original paper in 
2017.

The LayerNorm 
modules occur at the 
end of each set of 3 

layers.

Transformer Layer

90

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connection (addition)

layer normalization

feed forward neural network

residual connection (addition)

layer normalization



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

feed forward neural network

layer normalization

layer normalization

residual connection (addition)

residual connection (addition)Pre-LN Version:
However, subsequent 

work found that 
reordering such that 

the LayerNorm’s came 
at the beginning of 
each set of 3 layers, 

the multi-headed 
attention and feed-
forward NN layers 
tend to be better 

behaved (i.e. tricks like 
warm-up are less 

important).



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

feed forward neural network

layer normalization

layer normalization

residual connection (addition)

residual connection (addition)

Transformer
Layer



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

multi-headed attentionWk

Wq

Wv

x1’ x2’ x3’ x4’

residual connections

layer normalization

feed forward neural network

residual connections

layer normalization

Transformer
Layer



Transformer Layer
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Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

x1 x2 x3 x4

x1’ x2’ x3’ x4’

Transformer layer



Transformer Language Model
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x1 x2 x3 x4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Each layer of a Transformer LM 
consists of several sublayers:
1. attention
2. feed-forward neural network
3. layer normalization
4. residual connections

Each hidden vector looks back at 
the hidden vectors of the current 
and previous timesteps in the 
previous layer.

The language model part is just like 
an RNN-LM.

Transformer layer

Transformer layer

Transformer layer



Question:
Suppose we have the following input 
embeddings and attention weights:
• x1 = [1,0,0,0] a4,1 = 0.1
• x2 = [0,1,0,0] a4,2 = 0.2
• x3 = [0,0,2,0] a4,3 = 0.6
• x4 = [0,0,0,1] a4,4 = 0.1
And Wv = I. Then we can compute x4’.
Now suppose we swap the 
embeddings x2 and x3 such that 
• x2 = [0,0,2,0]
• x3 = [0,1,0,0]
What is the new value of x4’?

Answer:

In-Class Poll
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q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4



Position Embeddings
• The Problem: Because attention is position 

invariant, we need a way to learn about positions
• The Solution: Use (or learn) a collection of position 

specific embeddings: pt represents what it means 
to be in position t. And add this to the word 
embedding wt.
The key idea is that every word that appears in 
position t uses the same position embedding pt 

• There are a number of varieties of position 
embeddings:
– Some are fixed (based on sine and cosine), whereas 

others are learned (like word embeddings)
– Some are absolute (as described above) but we can 

also use relative position embeddings (i.e. relative 
to the position of the query vector)
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w1 w2 w3 w4

p(w1|h1) 

h1

p(w2|h2) 

h2

p(w3|h3) 

h3

p(w4|h4) 

h4

The bat made noise

…

Transformer layer

Transformer layer

Transformer layer

p1 p2 p3 p4

+ + + +



LEARNING A TRANSFORMER LM
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Learning a Transformer LM
• Each training example is 

a sequence (e.g. 
sentence), so we have 
training data D = {w(1), 
w(2), …, w(N)}

• The objective function 
for a Deep LM (e.g. RNN-
LM or Tranformer-LM) is 
typically the log-
likelihood of the training 
examples: 
  J(θ) = 𝛴i log pθ(w(i))

• We train by mini-batch 
SGD (or your favorite 
flavor of mini-batch SGD)
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The bat made nightnoise atSTART

p(w1|h1) p(w2|h2) p(w3|h3) p(w4|h4) p(w5|h5) p(w6|h6) p(w7|h7) 

ℓ1(·,·) ℓ2(·,·) ℓ3(·,·) ℓ6(·,·)ℓ4(·,·) ℓ5(·,·) ℓ7(·,·)

log p(w) = log p(w1, w2, w3, … , wT) 
                  = log p(w1 | h1) + log p(w2 | h2) + … + log p(w2 | hT)

one 
training 
example

Transformer LM

+
J = log p(w)

END

Training a Transformer-LM 
is the same, except we 

swap in a different deep 
language model.



Language Modeling
An aside:
• State-of-the-art language models currently tend to rely on transformer networks 

(e.g. GPT-3)
• RNN-LMs comprised most of the early neural LMs that led to current SOTA 

architectures
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Figure from https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word

https://paperswithcode.com/sota/language-modelling-on-penn-treebank-word


GPT-3

• GPT stands for Generative Pre-trained Transformer
• GPT is just a Transformer LM, but with a huge number of 

parameters
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Model # layers dimension 
of states

dimension 
of inner 
states

# attention 
heads

# params

GPT (2018) 12 768 3072 12 117M

GPT-2 
(2019)

48 1600 -- -- 1542M

GPT-3 
(2020)

96 12288 4*12288 96 175000M



Why does efficiency matter?
Case Study: GPT-3
• # of training 

tokens = 500 
billion

• # of 
parameters = 
175 billion

• # of cycles = 50 
petaflop/s-days 
(each of which 
are 8.64e+19 
flops)
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Figure from https://arxiv.org/pdf/2005.14165.pdf 

https://arxiv.org/pdf/2005.14165.pdf


Recap
Deep Learning
• AutoDiff

– is a tool for computing gradients of a 
differentiable function, b = f(a)

– the key building block is a module with a 
forward() and backward()

– sometimes define f as code in forward() by 
chaining existing modules together

• Computation Graphs
– are another way to define f (more conducive to 

slides)
– we are considering various (deep) computation 

graphs: (1) CNN (2) RNN (3) RNN-LM 
(4) Transformer-LM

• Learning a Deep Network
– deep networks (e.g. CNN/RNN) are trained by 

optimizing an objective function with SGD
– compute gradients with AutoDiff

Language Modeling
• key idea: condition on previous words to 

sample the next word
• to define the probability of the next word…

– …n-gram LM uses collection of massive 50k-
sided dice 

– …RNN-LM or Transformer-LM use a neural 
network

• Learning an LM
– n-gram LMs are easy to learn: just count co-

occurrences!
– a RNN-LM / Transformer-LM is trained just like 

other deep neural networks
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Two parts: Deep Learning and Language Modeling



IMPLEMENTING A TRANSFORMER LM
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q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention
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v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention
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x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1a4,2a4,3a4,4

s4,1s4,2s4,3s4,4



q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention
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x1 x2 x3 x4

Wk

Wq

Wv

a4,1a4,2a4,3a4,4

s4,1s4,2s4,3s4,4

Q = [q1, . . . , q4]
T = XWq

V = [v1, . . . , v4]
T = XWv

S = [s1, . . . , s4]T = QKT /
√

dk

K = [k1, . . . , k4]
T = XWk

A = [a1, . . . , a4]T = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

• For speed, we compute 
all the queries at once 
using matrix operations

• First we pack the 
queries, keys, values into 
matrices

• Then we compute all the 
queries at once



q1 q2 q3 q4 Q = [q1, . . . , q4]
T = XWq

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention
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x1 x2 x3 x4

Wk

Wq

V = [v1, . . . , v4]
T = XWv

S = [s1, . . . , s4]T = QKT /
√

dk

K = [k1, . . . , k4]
T = XWk

Wv

A = [a1, . . . , a4]T = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

• For speed, we compute 
all the queries at once 
using matrix operations

• First we pack the 
queries, keys, values into 
matrices

• Then we compute all the 
queries at once



q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

Wq

Q = [q1, . . . , q4]
T = XWq
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x1 x2 x3 x4

Wk

V = [v1, . . . , v4]
T = XWv

S = [s1, . . . , s4]T = QKT /
√

dk

K = [k1, . . . , k4]
T = XWk

Wv

A = [a1, . . . , a4]T = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

Holy cow, that’s a lot of new 
arrows… do we always 
want/need all of those?
• Suppose we’re training 

our transformer to predict 
the next token(s) given 
the input…

• … then attending to 
tokens that come after 
the current token is 
cheating! 

So what is this model?
• This version is the 

standard Transformer 
block. (more on this later!)

• But we want the 
Transformer LM block

• And that requires 
masking!



q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

Wq

Q = XWq
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x1 x2 x3 x4

Wk

V = XWv

S = QKT /
√

dk

K = XWk

Wv

A = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

Answer:

Question: How is the 
softmax applied? 
A. column-wise
B. row-wise



q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed (Causal) Attention

Wq

Q = XWq
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x1 x2 x3 x4

Wk

V = XWv

S = QKT /
√

dk

K = XWk

Wv

Acausal = softmax(S + M)

X′ = AV = softmax(QKT /
√

dk + M)V

X = [x1, . . . , x4]
T

Insight: if some element in 
the input to the softmax is 
-∞, then the corresponding 
output is 0!

Answer:

Question: For a causal LM 
which is the correct matrix?
A:

B:

C:

M =

⎡

⎢

⎢

⎣

0 0 0 0

−∞ 0 0 0

−∞ −∞ 0 0

−∞ −∞ −∞ 0

⎤

⎥

⎥

⎦

M =

⎡

⎢

⎢

⎣

0 −∞ −∞ −∞

0 0 −∞ −∞

0 0 0 −∞

0 0 0 0

⎤

⎥

⎥

⎦

M =

⎡

⎢

⎢

⎣

0 −∞ −∞ −∞

−∞ 0 −∞ −∞

−∞ −∞ 0 −∞

−∞ −∞ −∞ 0

⎤

⎥

⎥

⎦

In practice, the 
attention weights are 
computed for all time 
steps T, then we mask 
out (by setting to –inf) 
all the inputs to the 
softmax that are for 
the timesteps to the 
right of the query.



Matrix Version of Multi-Headed (Causal) Attention
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
,X′(2)

,X′(3))
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x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))



Matrix Version of Multi-Headed (Causal) Attention
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X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

Recall:
To ensure the dimension of the input 
embedding xt is the same as the 
output embedding xt’, Transformers 
usually choose the embedding sizes 
and number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h


