
Transformers, AutoDiff
+

Pre-training, Fine-Tuning, In-context Learning

1

10-301/10-601 Introduction to Machine Learning

Matt Gormley & Henry Chai
Lecture 19

Mar. 27, 2024

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Reminders

• Exam 2: Thu, Nov 7, 6:45 pm - 8:45 pm
• Homework 7: Deep Learning & LLMs
– Out: Thu, Nov 7
– Due: Sun, Nov 17, 11:59pm

2

IMPLEMENTING A TRANSFORMER LM

3

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

5

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1a4,2a4,3a4,4

s4,1s4,2s4,3s4,4

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

6

x1 x2 x3 x4

Wk

Wq

Wv

a4,1a4,2a4,3a4,4

s4,1s4,2s4,3s4,4

Q = [q1, . . . , q4]
T = XWq

V = [v1, . . . , v4]
T = XWv

S = [s1, . . . , s4]T = QKT /
√

dk

K = [k1, . . . , k4]
T = XWk

A = [a1, . . . , a4]T = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

• For speed, we compute
all the queries at once
using matrix operations

• First we pack the
queries, keys, values into
matrices

• Then we compute all the
queries at once

q1 q2 q3 q4 Q = [q1, . . . , q4]
T = XWq

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

7

x1 x2 x3 x4

Wk

Wq

V = [v1, . . . , v4]
T = XWv

S = [s1, . . . , s4]T = QKT /
√

dk

K = [k1, . . . , k4]
T = XWk

Wv

A = [a1, . . . , a4]T = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

• For speed, we compute
all the queries at once
using matrix operations

• First we pack the
queries, keys, values into
matrices

• Then we compute all the
queries at once

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

Wq

Q = [q1, . . . , q4]
T = XWq

8

x1 x2 x3 x4

Wk

V = [v1, . . . , v4]
T = XWv

S = [s1, . . . , s4]T = QKT /
√

dk

K = [k1, . . . , k4]
T = XWk

Wv

A = [a1, . . . , a4]T = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

Holy cow, that’s a lot of new
arrows… do we always
want/need all of those?
• Suppose we’re training

our transformer to predict
the next token(s) given
the input…

• … then attending to
tokens that come after
the current token is
cheating!

So what is this model?
• This version is the

standard Transformer
block. (more on this later!)

• But we want the
Transformer LM block

• And that requires
masking!

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed Attention

Wq

Q = XWq

9

x1 x2 x3 x4

Wk

V = XWv

S = QKT /
√

dk

K = XWk

Wv

A = softmax(S)

X′ = AV = softmax(QKT /
√

dk)V

X = [x1, . . . , x4]
T

Answer:

Question: How is the
softmax applied?
A. column-wise
B. row-wise

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

Matrix Version of Single-Headed (Causal) Attention

Wq

Q = XWq

10

x1 x2 x3 x4

Wk

V = XWv

S = QKT /
√

dk

K = XWk

Wv

Acausal = softmax(S + M)

X′ = AV = softmax(QKT /
√

dk + M)V

X = [x1, . . . , x4]
T

Insight: if some element in
the input to the softmax is
-∞, then the corresponding
output is 0!

Answer:

Question: For a causal LM
which is the correct matrix?
A:

B:

C:

M =

⎡

⎢

⎢

⎣

0 0 0 0

−∞ 0 0 0

−∞ −∞ 0 0

−∞ −∞ −∞ 0

⎤

⎥

⎥

⎦

M =

⎡

⎢

⎢

⎣

0 −∞ −∞ −∞

0 0 −∞ −∞

0 0 0 −∞

0 0 0 0

⎤

⎥

⎥

⎦

M =

⎡

⎢

⎢

⎣

0 −∞ −∞ −∞

−∞ 0 −∞ −∞

−∞ −∞ 0 −∞

−∞ −∞ −∞ 0

⎤

⎥

⎥

⎦

In practice, the
attention weights are
computed for all time
steps T, then we mask
out (by setting to –inf)
all the inputs to the
softmax that are for
the timesteps to the
right of the query.

Matrix Version of Multi-Headed (Causal) Attention

11

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
,X′(2)

,X′(3))

Matrix Version of Multi-Headed (Causal) Attention

12

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

W(1)
q

W(2)
q W(3)

q

W(1)
k W(2)

k W(3)
k

W(1)
v

W(2)
v W(3)

v

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))

Matrix Version of Multi-Headed (Causal) Attention

13

X′(i) = softmax
(

Q(i)(K(i))T
√

dk

+ M
)

V(i)

X = [x1, . . . , x4]
T

Q(i)
= XW(i)

q

V(i)
= XW(i)

v

K(i)
= XW(i)

k

X = concat(X′(1)
, . . . ,X′(h))

x1 x2 x3 x4

multi-headed attention

x1’ x2’ x3’ x4’

Wk

Wq

Wv

Recall:
To ensure the dimension of the input
embedding xt is the same as the
output embedding xt’, Transformers
usually choose the embedding sizes
and number of heads appropriately:
• dmodel = dim. of inputs
• dk = dim. of each output
• h = # of heads
• Choose dk = dmodel / h

PRACTICALITIES OF TRANSFORMER LMS

14

Question:
Suppose we have the following input
embeddings and attention weights:
• x1 = [1,0,0,0] a4,1 = 0.1
• x2 = [0,1,0,0] a4,2 = 0.2
• x3 = [0,0,2,0] a4,3 = 0.6
• x4 = [0,0,0,1] a4,4 = 0.1
And Wv = I. Then we can compute x4’.
Now suppose we swap the
embeddings x2 and x3 such that
• x2 = [0,0,2,0]
• x3 = [0,1,0,0]
What is the new value of x4’?

Answer:

In-Class Poll

15

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv values

keys

queries

scores

attention weightsa4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Position Embeddings
• The Problem: Because attention is position

invariant, we need a way to learn about positions
• The Solution: Use (or learn) a collection of position

specific embeddings: pt represents what it means
to be in position t. And add this to the word
embedding wt.
The key idea is that every word that appears in
position t uses the same position embedding pt

• There are a number of varieties of position
embeddings:
– Some are fixed (based on sine and cosine), whereas

others are learned (like word embeddings)
– Some are absolute (as described above) but we can

also use relative position embeddings (i.e. relative
to the position of the query vector)

16

w1 w2 w3 w4

p(w1|h1)

h1

p(w2|h2)

h2

p(w3|h3)

h3

p(w4|h4)

h4

The bat made noise

…

Transformer layer

Transformer layer

Transformer layer

p1 p2 p3 p4

+ + + +

Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times

4 Even miracles take a little time

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens

7 The sun did not shine it was too wet to play

8 The important thing is to never stop questioning

17

• Transformers can be trained very efficiently!
(This is arguably one of the key reasons they have been so
successful.)

• Batching: Rather than processing one sentence at a time,
Transformers take in a batch of B sentences at a time. The
computation is identical for each batch and is trivially
parallelized.

Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times

4 Even miracles take a little time

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens

7 The sun did not shine it was too wet to play

8 The important thing is to never stop questioning

18

• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 In the hole in the ground there lived a hobbit

2 It is our choices that show what we truly are

3 It was the best of times it was the worst of times

4 Even miracles take a little time <PAD> <PAD> <PAD> <PAD>

5 The more that you read the more things you will know

6 We'll always have each other no matter what happens <PAD>

7 The sun did not shine it was too wet to play

8 The important thing is to never stop questioning <PAD> <PAD>

19

• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

Batching: Padding and Truncation

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1 2 41 17 19 41 13 42 23 6 16

2 3 20 32 10 40 36 53 51 49 8

3 3 50 41 9 30 46 21 50 41 55 of times

4 1 25 39 6 22 45 0 0 0 0

5 4 26 40 56 34 41 26 44 56 54 know

6 5 7 15 12 31 28 24 53 14 0

7 4 38 11 29 35 21 50 48 52 47 play

8 4 18 43 20 47 27 37 33 0 0

20

• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

Vocabulary:
{
 '<PAD>': 0,
 'Even': 1,
 'In': 2,
 'It': 3,
 'The': 4,
 "We'll": 5,
 'a': 6,
 'always': 7,
 'are': 8,
 'best': 9,
 …
 'what': 53,
 'will': 54,
 'worst': 55,
 'you': 56
}

i w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12

1

2

3 of times

4

5 know

6

7 play

8

Batching: Padding and Truncation
• Suppose we have 8 training sentences
• We set our block size (maximum sequence length) to 10
• Before collecting them into a batch, we:

1. truncate those sentences that are too long
2. pad the sentences that are too short
3. convert each token to an integer via a lookup table (vocabulary)
4. convert each token to an embedding vector of fixed length

Embeddings:
{
 0 :
 1 :
 2 :
 3 :
 4 :
 5 :
 6 :
 7 :
 …
 55 :
 56 :
}

TOKENIZATION

22

Tokenization

Pros/Cons:
• Can have difficulty trading off between vocabulary size and computational

tractability
• Similar words e.g., “transformers” and “transformer” can get mapped to

completely disparate representations
• Typos will typically be out-of-vocabulary (OOV)

23
Slide adapted from Henry Chai

Input: “Henry is giving a lecture on transformers”

Output: [“henry”, “is”, “giving”, “a”, “lecture”, “on”, “transformers”]

Word-based Tokenizer:

Tokenization

Pros/Cons:
• Can have difficulty trading off between vocabulary size and computational

tractability
• Similar words e.g., “transformers” and “transformer” can get mapped to

completely disparate representations
• Typos will typically be out-of-vocabulary (OOV)

24
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers”

Output: [“henry”, “is”, <OOV>, “a”, <OOV>, “on”, “transformers”]

Word-based Tokenizer:

Tokenization

Pros/Cons:
• Much smaller vocabularies but a lot of semantic meaning is lost…
• Sequences will be much longer than word-based tokenization, potentially

causing computational issues
• Can do well on logographic languages e.g., Kanji 漢字

25
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers”

Output: [“h”, “e”, “n”, “r”, “y”, “i”, “s”, “g”, “i”, “v”, “i”, “n”, “ ’ ”, …]

Character-based Tokenizer:

Tokenization

Pros/Cons:
• Split long or rare words into smaller, semantically meaningful components

or subwords
• No out-of-vocabulary words – any non-subword token can be constructed

from other subwords (always includ all characters as subwords)
• Examples algorithms for learning a subword tokenization:

– Byte-Pair-Encoding (BPE), WordPiece, SentencePiece

26
Slide adapted from Henry Chai

Input: “Henry is givin’ a lectrue on transformers”

Output: [“henry”, “is”, “giv”, “##in”, “ ‘ ”, “a”, “lec” “##true”, “on”, “transform”, “##ers”]

Subword-based Tokenizer:

GREEDY DECODING FOR A LANGUAGE MODEL

27

Setup:
• Assume a

character-based
tokenizer

• Each node has all
characters
{a,b,c,…,z} as
neighbors

• Here we only
show the high
probability
neighbors for
space

Greedy Decoding for a Language Model

28

t

Start
State

Greedy Search:
• At each node, selects the edge

with lowest negative log
probability

• Heuristic method of search (i.e.
does not necessarily find the best
path)

• Computation time: linear in max
path length

o

f

m

r

2
4
3
1

b

a

c

3
3
5

c

n

m

z

4
1
2
2

s

q

b

c

3
5
6
4

f

i

p

7
8
9
8

c

a

e

w

9
1
9

b

r

c

d

7
1
3
5

c

q

r

z

2
1
2
2

k

y

h

z

5
3
1
5

Goal:
• Search space consists of nodes

(partial sentences) and weighted by
negative log probability

• Goal is to find the highest probably
(lowest negative log probability)
path from root to a leaf

7

d

y

9

Setup:
• Assume a

character-based
tokenizer

• Each node has all
characters
{a,b,c,…,z} as
neighbors

• Here we only
show the high
probability
neighbors for
space

Sampling from a Language Model

29

t

Start
State

Ancestral Sampling:
• At each node, randomly pick an

edge with probability (converting
from negative log probability)

• Exact method of sampling,
assuming a locally normalized
distribution (i.e. samples a path
according to its total probability)

• Computation time: linear in max
path length

o

f

m

r

2
4
3
1

b

a

c

3
3
5

c

n

m

z

4
1
2
2

s

q

b

c

3
5
6
4

f

i

p

7
8
9
8

c

a

e

w

9
1
9

b

r

c

d

7
1
3
5

c

q

r

z

2
1
2
2

k

y

h

z

5
3
1
5

Goal:
• Search space consists of nodes

(partial sentences) and weighted by
negative log probability

• Goal is to sample a path from root to
a leaf with probability according to
the probability of that path

7

d

y

9

Key-Value Cache
• At each timestep, we reuse all

previous keys and values (i.e.
we need to cache them)

• But we can get rid of the
queries, similarity scores, and
attention weights (i.e. we can
let them fall out of the cache)

30

q1 q2 q3 q4 qj = WT
q xj

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

vj = WT
v xj

s4,j = kT
j q4/

√

dk

kj = WT
k xj

Wv

a4 = softmax(s4)

x′

4 =

4∑

j=1

a4,jvj

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this

timestep

Key-Value Cache
• At each timestep, we reuse all

previous keys and values (i.e.
we need to cache them)

• But we can get rid of the
queries, similarity scores, and
attention weights (i.e. we can
let them fall out of the cache)

31

q1 q2 q3 q4

v1 v2 v3 v4

softmax

k1 k2 k3 k4

x1 x2 x3 x4

Wk

Wq

Wv

a4,1 a4,2 a4,3 a4,4

s4,1 s4,2 s4,3 s4,4

Discarded after this timestep

Computed for previous time-
steps and reused for this

timestep

Qt = XtWq

V = XWv

St = QtKT /
√

dk

K = XWk

At = softmax(St)

X′

t
= AtV = softmax(QtKT /

√

dk)V

X = [x1, . . . , xt]
T

Recap
Deep Learning
• AutoDiff

– is a tool for computing gradients of a
differentiable function, b = f(a)

– the key building block is a module with a
forward() and backward()

– sometimes define f as code in forward() by
chaining existing modules together

• Computation Graphs
– are another way to define f (more conducive to

slides)
– we are considering various (deep) computation

graphs: (1) CNN (2) RNN (3) RNN-LM
(4) Transformer-LM

• Learning a Deep Network
– deep networks (e.g. CNN/RNN) are trained by

optimizing an objective function with SGD
– compute gradients with AutoDiff

Language Modeling
• key idea: condition on previous words to

sample the next word
• to define the probability of the next word…

– …n-gram LM uses collection of massive 50k-
sided dice

– …RNN-LM or Transformer-LM use a neural
network

• Learning an LM
– n-gram LMs are easy to learn: just count co-

occurrences!
– a RNN-LM / Transformer-LM is trained just like

other deep neural networks

32

Two parts: Deep Learning and Language Modeling

MODULE-BASED AUTOMATIC
DIFFERENTIATION

33

Backpropagation

34

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

Backward Computation (Version A)
1. Initialize dy/dy = 1.
2. Visit each node vj in reverse topological order.

Let u1,…, uM denote all the nodes with vj as an input
Assuming that y = h(u) = h(u1,…, uM)
and u = g(v) or equivalently ui = gi(v1,…, vj,…, vN) for all i
a. We already know dy/dui for all i
b. Compute dy/dvj as below (Choice of algorithm ensures

computing (dui/dvj) is easy)

y

u1 · · · ui · · · uM

v1 · · · vj · · · vN

x

Recall…

Backpropagation

35

Training

Automatic Differentiation – Reverse Mode (aka. Backpropagation)

Backward Computation (Version B)
1. Initialize all partial derivatives dy/duj to 0 and dy/dy = 1.
2. Visit each node in reverse topological order.

For variable ui = gi(v1,…, vN)
a. We already know dy/dui
b. Increment dy/dvj by (dy/dui)(dui/dvj)

(Choice of algorithm ensures computing (dui/dvj) is easy)

Return partial derivatives dy/dui for all variables

Forward Computation
1. Write an algorithm for evaluating the function y = f(x). The algorithm defines a

directed acyclic graph, where each variable is a node (i.e. the “computation
graph”)

2. Visit each node in topological order.
For variable ui with inputs v1,…, vN
a. Compute ui = gi(v1,…, vN)
b. Store the result at the node

y

u1 · · · ui · · · uM

v1 · · · vj · · · vN

x

Recall…

Backpropagation

Why is the backpropagation algorithm efficient?
1. Reuses computation from the forward pass in the backward pass
2. Reuses partial derivatives throughout the backward pass (but

only if the algorithm reuses shared computation in the forward
pass)

(Key idea: partial derivatives in the backward pass should be
thought of as variables stored for reuse)

36

Training
Recall…

A Recipe for
Machine Learning

1. Given training data: 3. Define goal:

37

Background

2. Choose each of these:
– Decision function

– Loss function

4. Train with SGD:
(take small steps
opposite the gradient)

Gradients

Backpropagation can compute this
gradient!
And it’s a special case of a more
general algorithm called reverse-
mode automatic differentiation that
can compute the gradient of any
differentiable function efficiently!

Recall…

Backpropagation:
Abstract Picture

38

(F) Loss
J =

�K
k=1 y�

k HQ;(yk)

(E) Output (softmax)
yk = 2tT(bk)�K

l=1 2tT(bl)

(D) Output (linear)
bk =

�D
j=0 �kjzj �k

(C) Hidden (nonlinear)
zj = �(aj), �j

(B) Hidden (linear)
aj =

�M
i=0 �jixi, �j

(A) Input
Given xi, �i

Forward Backward

5. J = −yT log ŷ 6. gŷ = −y ÷ ŷ

4. ŷ = softmax(b) 7. gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

3. b = βz 8. gβ = gT

b zT

gz = βT gT

b

2. z = σ(a) 10. ga = gz ⊙ z ⊙ (1− z)

1. a = αx 11. gα = gaxT

…

…

Output

Input

Hidden Layer

…

Backpropagation:
Procedural Method

Drawbacks of
Procedural Method
1. Hard to reuse /

adapt for other
models

2. (Possibly) harder to
make individual
steps more efficient

3. Hard to find source
of error if finite-
difference check
reports an error
(since it tells you
only that there is an
error somewhere in
those 17 lines of
code)

39

Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Paramsα, β)
2: a = αx
3: z = σ(a)
4: b = βz
5: ŷ = softmax(b)
6: J = −yT log ŷ
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Paramsα, β,

Intermediates o)
2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gŷ = −y ÷ ŷ
4: gb = gT

ŷ
(

diag(ŷ)− ŷŷT
)

5: gβ = gT

b zT

6: gz = βT gT
b

7: ga = gz ⊙ z ⊙ (1− z)
8: gα = gaxT

9: return parameter gradients gα,gβ

Module-based AutoDiff
Module-based automatic differentiation (AD / Autodiff) is a technique that has
long been used to develop libraries for deep learning
• Dynamic neural network packages allow a specification of the computation

graph dynamically at runtime
– PyTorch http://pytorch.org
– Torch http://torch.ch
– DyNet https://dynet.readthedocs.io
– TensorFlow with Eager Execution https://www.tensorflow.org

• Static neural network packages require a static specification of a
computation graph which is subsequently compiled into code
– TensorFlow with Graph Execution https://www.tensorflow.org
– Aesara (and Theano) https://aesara.readthedocs.io
– (These libraries are also module-based, but herein by “module-based AD” we mean the

dynamic approach)

40

http://pytorch.org/
http://torch.ch/
https://dynet.readthedocs.io/
https://www.tensorflow.org/
https://www.tensorflow.org/
https://aesara.readthedocs.io/

Module-based AutoDiff
• Key Idea:

– componentize the computation of the neural-network into layers
– each layer consolidates multiple real-valued nodes in the

computation graph (a subset of them) into one vector-valued node
(aka. a module)

• Each module is capable of two actions:

41

1. Forward computation of output b = [b1, . . . , bB] given input
a = [a1, . . . , aA] via some di昀昀erentiable function f . That is
b = f(a).

2. Backward computation of the gradient of the input
ga = ∇aJ = [∂J

∂a1

, . . . , ∂J
∂aA

] given the gradient of output
gb = ∇bJ = [∂J

∂b1
, . . . , ∂J

∂bB
], where J is the 昀椀nal real‐valued

output of the entire computation graph. This is done via the
chain rule ∂J

∂ai
=

∑J
j=1

∂J
∂bj

dbj
dai

for all i ∈ {1, . . . , A}.

module

a

b gb

ga

Module-based AutoDiff

42

Dimensions: input a ∈ RA, output b ∈ RB , gradient
of output ga ! ∇aJ ∈ RA, and gradient of input gb !

∇bJ ∈ RB .

Sigmoid Module The sigmoid layer has only one input
vectora. Belowσ is the sigmoidappliedelement-
wise, and⊙ is element-wisemultiplication s.t. u⊙
v = [u1v1, . . . , uMvM].
1: procedure SĎČĒĔĎĉFĔėĜĆėĉ(a)
2: b = σ(a)
3: return b
4: procedure SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gb ⊙ b ⊙ (1− b)
6: return ga

Softmax Module The softmax layer has only one input
vector a. For any vector v ∈ RD, we have that
diag(v) returns aD ×D diagonal matrix whose
diagonal entries arev1, v2, . . . , vD andwhosenon-
diagonal entries are zero.
1: procedure SĔċęĒĆĝFĔėĜĆėĉ(a)
2: b = softmax(a)
3: return b
4: procedure SĔċęĒĆĝBĆĈĐĜĆėĉ(a, b, gb)
5: ga = gT

b
(

diag(b)− bbT
)

6: return ga

Linear Module The linear layer has two inputs: a vec-
tor a and parameters ω ∈ RB×A. The output b
is not used by LĎēĊĆėBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure LĎēĊĆėFĔėĜĆėĉ(a, ω)
2: b = ωa
3: return b
4: procedure LĎēĊĆėBĆĈĐĜĆėĉ(a, ω, b, gb)
5: gω = gbaT

6: ga = ω
T gb

7: return gω,ga

Cross-Entropy Module Thecross-entropy layer has two in-
puts: a gold one-hot vector a and a predicted proba-
bility distribution â. It’s output b ∈ R is a scalar. Be-
low ÷ is element-wise division. The output b is not
used by CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ, but we pass it in
for consistency of form.
1: procedure CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(a, â)
2: b = −aT log â
3: return b
4: procedure CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(a, â, b, gb)
5: gâ = −gb(a ÷ â)
6: return ga

Module-based AutoDiff

Advantages of
Module-based
AutoDiff
1. Easy to reuse /

adapt for other
models

2. Encapsulated
layers are easier
to optimize (e.g.
implement in C++
or CUDA)

3. Easier to find
bugs because we
can run a finite-
difference check
on each layer
separately

43

Algorithm 1 Forward Computation
1: procedure NNFĔėĜĆėĉ(Training example (x, y), Parametersα,
β)

2: a = LĎēĊĆėFĔėĜĆėĉ(x,α)
3: z = SĎČĒĔĎĉFĔėĜĆėĉ(a)
4: b = LĎēĊĆėFĔėĜĆėĉ(z,β)
5: ŷ = SĔċęĒĆĝFĔėĜĆėĉ(b)
6: J = CėĔĘĘEēęėĔĕĞFĔėĜĆėĉ(y, ŷ)
7: o = object(x,a, z,b, ŷ, J)
8: return intermediate quantities o

Algorithm 2 Backpropagation
1: procedure NNBĆĈĐĜĆėĉ(Training example (x, y), Parameters
α, β, Intermediates o)

2: Place intermediate quantities x,a, z,b, ŷ, J in o in scope
3: gJ = dJ

dJ
= 1 ◃ Base case

4: gŷ = CėĔĘĘEēęėĔĕĞBĆĈĐĜĆėĉ(y, ŷ, J, gJ)
5: gb = SĔċęĒĆĝBĆĈĐĜĆėĉ(b, ŷ,gŷ)
6: gβ,gz = LĎēĊĆėBĆĈĐĜĆėĉ(z,b,gb)
7: ga = SĎČĒĔĎĉBĆĈĐĜĆėĉ(a, z,gz)
8: gα,gx = LĎēĊĆėBĆĈĐĜĆėĉ(x,a,ga) ◃We discard gx
9: return parameter gradients gα,gβ

Module-based AutoDiff (OOP Version)

Object-Oriented Implementation:
– Let each module be an object
– Then allow the control flow dictate the creation of the computation graph
– No longer need to implement NNBackward(·), just follow the computation

graph in reverse topological order

44

1 class Sigmoid(Module)
2 method forward(a)
3 b = σ(a)
4 return b
5 method backward(a , b , gb)
6 ga = gb ⊙ b ⊙ (1− b)
7 return ga

1 class Softmax(Module)
2 method forward(a)
3 b = softmax(a)
4 return b
5 method backward(a , b , gb)
6 ga = gT

b
(

diag(b)− bbT
)

7 return ga

1 class Linear(Module)
2 method forward(a , ω)
3 b = ωa
4 return b
5 method backward(a , ω , b , gb)
6 gω = gbaT

7 ga = ω
T gb

8 return gω,ga

1 class CrossEntropy(Module)
2 method forward(a , â)
3 b = −aT log â
4 return b
5 method backward(a , â , b , gb)
6 gâ = −gb(a ÷ â)
7 return ga

Module-based AutoDiff (OOP Version)

45

1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

Module-based AutoDiff (OOP Version)

46

1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()

Module-based AutoDiff (OOP Version)

47

1 class NeuralNetwork(Module):
2

3 method init()
4 lin1_layer = Linear()
5 sig_layer = Sigmoid()
6 lin2_layer = Linear()
7 soft_layer = Softmax()
8 ce_layer = CrossEntropy()
9

10 method forward(Tensor x , Tensor y , Tensor α , Tensor β)
11 a =lin1_layer.apply_fwd(x,α)
12 z =sig_layer.apply_fwd(a)
13 b =lin2_layer.apply_fwd(z,β)
14 ŷ =soft_layer.apply_fwd(b)
15 J =ce_layer.apply_fwd(y, ŷ)
16 return J.out_tensor
17

18 method backward(Tensor x , Tensor y , Tensor α , Tensor β)
19 tape_bwd()
20 return lin1_layer.in_gradients[1] , lin2_layer.in_gradients[1]

1 global tape = stack()
2

3 class Module:
4

5 method init()
6 out_tensor = null
7 out_gradient = 1
8

9 method apply_fwd(List in_modules)
10 in_tensors = [x.out_tensor for x in in_modules]
11 out_tensor = forward(in_tensors)
12 tape.push(self)
13 return self
14

15 method apply_bwd():
16 in_gradients = backward(in_tensors , out_tensor , out_gradient)
17 for i in 1, . . . , len(in_modules):
18 in_modules[i].out_gradient += in_gradients[i]
19 return self
20

21 function tape_bwd():
22 while len(tape) > 0
23 m = tape.pop()
24 m.apply_bwd()

PyTorch
The same simple
neural network
we defined in
pseudocode can
also be defined
in PyTorch.

48
Example adapted from https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html

PyTorch

49

Q: Why don’t we call linear.forward() in PyTorch?

A: This is just syntactic sugar. There’s a special method in Python
__call__ that allows you to define what happens when you treat
an object as if it were a function.

In other words, running the following:
 linear(x)
is equivalent to running:
 linear.__call__(x)
which in PyTorch is (nearly) the same as running:
 linear.forward(x)

This is because PyTorch defines every Module’s __call__ method
to be something like this:
 def __call__(self):
 self.forward()

PyTorch

50

Q: Why don’t we pass in the parameters to a PyTorch Module?

A: This just makes your code cleaner.

In PyTorch, you store the parameters inside the Module and “mark”
them as parameters that should contribute to the eventual gradient
used by an optimizer

Recap
Deep Learning
• AutoDiff

– is a tool for computing gradients of a
differentiable function, b = f(a)

– the key building block is a module with a
forward() and backward()

– sometimes define f as code in forward() by
chaining existing modules together

• Computation Graphs
– are another way to define f (more conducive to

slides)
– we are considering various (deep) computation

graphs: (1) CNN (2) RNN (3) RNN-LM
(4) Transformer-LM

• Learning a Deep Network
– deep networks (e.g. CNN/RNN) are trained by

optimizing an objective function with SGD
– compute gradients with AutoDiff

Language Modeling
• key idea: condition on previous words to

sample the next word
• to define the probability of the next word…

– …n-gram LM uses collection of massive 50k-
sided dice

– …RNN-LM or Transformer-LM use a neural
network

• Learning an LM
– n-gram LMs are easy to learn: just count co-

occurrences!
– a RNN-LM / Transformer-LM is trained just like

other deep neural networks

51

Two parts: Deep Learning and Language Modeling

